重点知识点综合练(第三章一元一次方程-第四章几何图形初步)

合集下载

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

2021-2022学年度 秋季 七年级上学期 人教版数学 《第四章 几何图形初步》有关线段的计算问题练习题(新版)新人教版1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. (1)如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度. (2)根据(1)的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和B C 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.5. 已知P 为线段AB 上的一点,且25AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.人教版数学七年级上册 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A 、B 、C 三点,已知8.9. 人教版七年级数学上册必须要记、背的知识点1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1a a>⇔= ; 0a 1a a <⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小: (1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

初中数学知识点归纳汇总

初中数学知识点归纳汇总

初中数学知识归纳总结(打印版)目录七年级数学(上)知识点 0第一章有理数 0第二章整式的加减 (2)第三章一元一次方程 (3)第四章图形的认识初步 (4)七年级数学(下)知识点 (5)第五章相交线与平行线 (5)第六章平面直角坐标系 (7)第七章三角形 (7)第八章二元一次方程组 (10)第九章不等式与不等式组 (11)第十章数据的收集、整理与描述 (12)八年级数学(上)知识点 (13)第十一章全等三角形 (13)第十二章轴对称 (14)第十三章实数 (15)第十四章一次函数 (16)第十五章整式的乘除与分解因式 (17)八年级数学(下)知识点 (18)第十六章分式 (18)第十七章反比例函数 (19)第十八章勾股定理 (20)第十九章四边形 (20)第二十章数据的分析 (22)九年级数学(上)知识点 (23)第二十一章二次根式 (23)第二十二章一元二次根式 (23)第二十三章旋转 (25)第二十四章圆 (26)第二十五章概率 (27)九年级数学(下)知识点 (29)第二十六章二次函数 (29)第二十七章相似 (31)第二十八章锐角三角函数 (32)第二十九章投影与视图 (33)1⎨- a 七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一.知识框架(2)相反数的和为 0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1) 正数的绝对值是其本身,0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: a 论;⎧⎪a ⎨0 ⎪⎩- a (a > 0) (a = 0) 或 a (a < 0)= ⎧a ⎩ (a ≥ 0) (a < 0) ;绝对值的问题经常分类讨 5. 有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比 0 大,负数永远第 0 页 共 37=" 0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6. 互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a ≠0,那么a 的倒数是 1; a若 ab=1⇔ a 、b 互为倒数;若 ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1) 同号两数相加,取相同的符号,并把绝对值相加;(2) 异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3) 一个数与 0 相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b ).10 有理数乘法法则:(1) 两数相乘,同号为正,异号为负,并把绝对值相乘;(2) 任何数同零相乘都得零;(3) 几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12. 有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, a . 即 无意义 013. 有理数乘方的法则:(1) 正数的任何次幂都是正数;(2) 负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1) 求相同因式积的运算,叫做乘方;(2) 乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于 10 的数记成 a ×10n 的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法.16. 近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17. 有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1. 近似数 25.0 的精确度与近似数 25 一样.2. 近似数 4 千万与近似数 4000 万的精确度一样.3. 近似数 660 万,它精确到万位.有三个有效数字.4. 用四舍五入法得近似数6.40 和6.4 是相等的.5. 近似数3.7x10 的二次与近似数370 的精确度一样.1、错。

七年级数学上册第三章一元一次方程知识点总结归纳完整版

七年级数学上册第三章一元一次方程知识点总结归纳完整版

(名师选题)七年级数学上册第三章一元一次方程知识点总结归纳完整版单选题1、下列图中所示的球、圆柱、正方体的重量分别都相等,三个天平分别都保持平衡,那么第三个天平中,右侧秤盘上所放正方体的个数应为( )A .5B .4C .3D .2答案:A分析:设一个球的质量为a ,一个圆柱体的质量为b ,一个正方体的质量为c ,根据天平平衡的条件可得2a =5b ,2c =3b ,再根据等式的性质得到3a =5c 即可.解:设一个球的质量为a ,一个圆柱体的质量为b ,一个正方体的质量为c ,由题意得,2a =5b ,2c =3b ,即a =52b ,c =32b ,∴3a =152b ,5c =152b , 即3a =5c ,∴右侧秤盘上所放正方体的个数应为5,故选:A .小提示:本题考查认识立体图形、等式的性质,掌握等式的性质是解决问题的前提.2、将连续奇数1,3,5,7,9,…排成如图所示的数表,若将十字形框上下左右移动,可框出另外五个数,则框出的五个数之和可以是( )A.2020B.2022C.2023D.2025答案:D分析:先设中间的数为2x+1(x为整数),进而得到该数上方、下方、左边、右边的数分别为(2x+1)-10、(2x+1)+10、(2x+1)-2、(2x+1)+2,然后求得框出的五个数之和,即可得到答案.解:设中间的数为2x+1(x为整数),则该数上方、下方、左边、右边的数分别为(2x+1)-10、(2x+1)+10、(2x+1)-2、(2x+1)+2,∴框出的五个数之和为(2x+1)+(2x+1)-10+(2x+1)+10+(2x+1)-2+(2x+1)+2=10x+5,∵x为整数,∴10x+5是5的倍数,且个位数字为5,故选:D.小提示:本题考查了代数式的表示,属于数字的变化规律类题型,解题的关键是会用含有未知数的式子表示框出的5个数.3、小明解方程x+12−1=x−23的步骤如下:解:方程两边同乘6,得3(x+1)−1=2(x−2)①去括号,得3x+3−1=2x−2②移项,得3x−2x=−2−3+1③合并同类项,得x=−4④以上解题步骤中,开始出错的一步是()A.①B.②C.③D.④答案:A分析:按照解一元一次方程的一般步骤进行检查,即可得出答案.解:方程两边同乘6,得3(x+1)−6=2(x−2)①∴开始出错的一步是①,故选:A.小提示:本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解决问题的关键.4、“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置.如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A.依题意3×120=x−120B.依题意20x+3×120=(20+1)x+120C.该象的重量是5040斤D.每块条形石的重量是260斤答案:B分析:利用题意找出等量关系,将等量关系中的量用已知数和未知数的代数式替换即可得出结论.解:根据题意可得方程;20x+3×120=(20+1)x+120则A错误,B正确;解上面的方程得:x=240,故D错误;∴大象的重量是20×240+3×120=5160(斤)故C错误,故选:B.小提示:本题主要考查一元一次方程的应用,根据题意真确列出方程是解题的关键.5、若x=2是关于x的一元一次方程ax−b=3的解,则4a−2b+1的值是()A.7B.8C.−7D.−8答案:A分析:将x=2代入ax-b=3中,得2a-b=3,整体代入代数式即可得到答案.解:将x=2代入ax-b=3中,得2a-b=3,∴4a−2b+1=2(2a-b)+1=2×3+1=7,故选A.小提示:此题考查了方程的解,已知式子的值求代数式的值,正确理解方程的解是解题的关键.6、解一元一次方程的过程就是通过变形,把一元一次方程转化为x=a的形式,下面是解方程2x−0.30.5−x+0.40.3=1的主要过程,方程变形对应的依据错误的是()解:原方程可化为20x−35−10x+43=1(①)去分母,得3(20x−3)−5(10x+4)=15(②)去括号,得60x−9−50x−20=15(③)移项,得60x−50x=15+9+20(④)合并同类项,得10x=44(合并同类项法则)系数化为1,得x=4.4(等式的基本性质2)A.①分数的基本性质B.②等式的基本性质2C.③乘法对加法的分配律D.④加法交换律答案:D分析:方程利用分数的基本性质化简,再利用等式的基本性质2两边乘以15去分母,去括号后利用等式的基本性质1移项,合并后将x系数化为1,即可求出解.解:原方程可化为20x−35−10x+43=1(①)去分母,得3(20x −3)−5(10x +4)=15( ② )去括号,得60x −9−50x −20=15( ③ )移项,得60x −50x =15+9+20(等式的基本性质1 )合并同类项,得10x =44(合并同类项法则)系数化为1,得x =4.4(等式的基本性质2).故选:D .小提示:本题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7、小明早上8点从家骑车去图书馆,计划在上午11点30分到达图书馆.出发半小时后,小明发现若原速骑行,将迟到10分钟,于是他加速继续骑行,平均每小时多骑行1千米,恰好准时到达,则小明原来的速度是( )A .12千米/小时B .17千米/小时C .18千米/小时D .20千米/小时答案:C分析:设原来的速度是x 千米/小时,则提高速度后为x +1千米/小时,根据出发半小时后,发现按原速行驶要迟到10分钟,将速度每小时增加1千米,恰好准时到达,分别表示路程建立方程求解即可.解:设小明原来的速度是x 千米/小时,则提高速度后为x +1千米/小时,由题意得(3.5+16)x =12x +(x +1)×(3.5−0.5),解得:x =18.答:小明原来的速度是18千米/小时.故选:C小提示:此题考查一元一次方程的实际运用,利用行程问题中的速度、时间、路程之间的等量关系是解决问题的关键.8、有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排住4人,就会空出5间宿舍;如果每间宿舍安排住3人,就有100人没床位,那么在学校住宿的学生有多少人?设在学校住宿的学生有x 人,根据题意可列方程为( )A .x 4+5=x−1003B .x 4+5=x 3−100C .x+54=x−1003D .x 4−5=x−1003答案:A分析:根据宿舍间数一定即可列出方程.解:根据题意得:x4+5=x−1003故选:A.小提示:本题考查了一元一次方程的实际应用,理解题意,找准等量关系,列出方程是解决本题的关键.9、轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A.x7+3=x9−3B.x7−3=x9+3C.x7+3=x9D.x7−3=x9答案:B分析:根据顺流速度减去水流速度等于逆流速度加上水流速度列出方程即可.解:设A、B两码头间距离为x,由题意得:x7−3=x9+3,故选:B.小提示:此题考查一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系.10、已知一项工程,甲单独完成需要5天,乙单独完成需要10天,现先由甲单独做2天,然后再安排乙与甲合作完成剩下的部分,则完成这项工程共耗时( )A.1天B.2天C.3天D.4天答案:D分析:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x﹣2)天,根据总工作量=甲完成的工作量+乙完成的工作量,即可得出关于x的一元一次方程,解之即可得出结论.解:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x﹣2)天,根据题意得:x5+x−210=1,解得:x=4.即完成这项工程共耗时4天.故选:D小提示:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.填空题11、已知A=2x−5,B=3x+3,若A比B大7,则x的值为________.答案:-15分析:根据“A比B大7”列出方程,进而求解即可.解:根据题意可得:A=B+7,由此可得出关于x的方程2x−5=3x+3+7,移项,得:2x−3x=3+7+5,合并同类项,得:−x=15,系数化为1,得:x=−15,所以答案是:-15.小提示:此题考查了一元一次方程的简单应用,熟练掌握解一元一次方程的步骤是解本题的关键.12、当x=________时,整式3x−1与2x+1互为相反数;答案:0分析:利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.解:∵代数式3x−1与2x +1互为相反数,∴3x−1+2x +1=0,解得x=0.所以答案是:0.小提示:此题考查了解一元一次方程,以及相反数,熟练掌握解一元一次方程的解法是解题的关键.13、在0,1,2,3中,_______是方程2x–1=–5x+6的解.答案:1分析:根据解一元一次方程的方法移项合并,把x系数化为1,即可求出解.解:2x–1=–5x+6移项,得2x+5x=1+6,合并同类项,得7x=7,系数化为1,得x=1,所以答案是:1.小提示:本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.14、若x|m|﹣10=2是关于x的一元一次方程,则m的值是 _____.答案:±1分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解:根据题意,有|m|=1,∴m=±1,所以答案是:±1.小提示:本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.15、已知5x2−5x−3=7,利用等式的基本性质,x2−x的值为___________.答案:2分析:首先根据等式的性质1,两边同时+3得5x2−5x=10,再根据等式的性质2,两边同时除以5即可得到答案.解:5x2−5x−3=7,根据等式的性质1,两边同时+3得:5x2−5x−3+3=7+3,即:5x2−5x=10,根据等式的性质2,两边同时除以5得:5x2−5x5=105,∴x2−x=2,故填:2.小提示:此题主要考查了等式的性质,关键是掌握等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.解答题16、粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.答案:(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.分析:(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出式子即可求出答案;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程,求解即可.解:(1)依题意得:50×(1-50%)=25(万元)(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260-x)辆,依题意得:50×(260−x)+25x=9000解得:x=160答:(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.小提示:本题考查了一元一次方程的实际应用问题,解题的关键是找到数量关系,列出方程.17、解下列方程:(1)x−1=1−x;(2)2x+13+1=x+32.答案:(1)x=1;(2)x=1分析:(1)按照移项、合并同类项、系数化为1的步骤解方程即可得;(2)按照去分母、去括号、移项、合并同类项的步骤解方程即可得.解:(1)x−1=1−x,移项,得x+x=1+1,合并同类项,得2x=2,系数化为1,得x=1;(2)2x+13+1=x+32,方程两边同乘以6去分母,得2(2x+1)+6=3(x+3),去括号,得4x+2+6=3x+9,移项,得4x−3x=9−2−6,合并同类项,得x=1.小提示:本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.18、阅读材料:我们把绝对值符号内含有未知数的方程叫做“含有绝对值的方程”.如:|x|=2,|2x﹣1|=3,…都是含有绝对值的方程.怎样求含有绝对值的方程的解呢?基本思路是:含有绝对值的方程→不含有绝对值的方程.我们知道,由|x|=2,可得x=2或x=﹣2.【例】解方程:|2x﹣1|=3.我们只要把2x﹣1看成一个整体就可以根据绝对值的意义进一步解决问题.解:根据绝对值的意义,得2x﹣1=3或2x﹣1=﹣3.解这两个一元一次方程,得x=2或x=﹣1.根据以上材料解决下列问题:(1)解方程:|3x﹣2|=4;(2)拓展延伸:解方程|x﹣2|=|3x+2|.答案:(1)x=2或x=−23(2)x=-2或x=0分析:先去绝对值转化成一元一次方程求解.(1)解:根据绝对值的意义得:3x-2=4或3x-2=-4.解得:x=2或x=−23;(2)由绝对值的意义得:x-2=3x+2或x-2+3x+2=0.解得:x=-2或x=0.小提示:本题考查含绝对值的一元一次方程的解法,理解绝对值的意义是求解本题的关键.。

人教版数学七年级上册第三章《一元一次方程》复习巩固专讲专练

人教版数学七年级上册第三章《一元一次方程》复习巩固专讲专练

人教版数学七年级上册第三章《一元一次方程》复习巩固专讲专练章 末 知 识 复 习类型一 灵活解一元一次方程要点简介:1.方程解的意义;2.解一元一次方程.经典例题1 解方程:13[x -12(x -1)]=23(x -12). 解析:此题中括号外的系数是分数,小括号外的系数也是分数,这种类型的方程解法比较灵活,可以先去括号,再去分母;也可以先去分母,再去括号.解:去中括号,得13x -16(x -1)=23(x -12). 去小括号,得13x -16x +16=23x -13. 去分母,得2x -x +1=4x -2.移项,得2x -x -4x =-2-1.合并同类项,得-3x =-3.系数化为1,得x =1.类型二 方程的解的应用要点简介:方程的解与绝对值等有理数知识的综合求值.经典例题2 若|a -3|+(b +1)2=0,代数式2b -a +3m 的值比b -a +m 多1,求m 的值. 解析:利用非负数的性质求出a 与b 的值,根据题意列出方程,求出方程的解即可得到m 的值. 解:因为|a -3|+(b +1)2=0,|a -3|≥0,(b +1)2≥0,所以a -3=0,b +1=0,解得a =3,b =-1.由题意,得2b -a +3m =b -a +m +1,把a =3,b =-1代入方程,得2×(-1)-3+3m =-1-3+m +1,-5+3m =-3+m ,解得m =1.点拨:目前我们已经学习了两种常见的非负数:绝对值和偶数次方.类型三 一元一次方程的应用经典例题3 某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)若购买以上两种牲畜50头,共需资金9.4万元,求甲、乙两种牲畜各购买多少头?解析:(1)设甲种牲畜的单价为x 元,列出方程3x +2x +200=5700,求出甲种牲畜的单价,再求出乙种牲畜的单价;(2)设购买甲种牲畜y 头,由题意可列方程1100y +2400(5-y )=94000,即可求出甲、乙两种牲畜的数量.解:(1)设甲种牲畜的单价是x 元/头,则乙种牲畜的单价是(2x +200)元/头,根据题意,得3x +2x +200=5700,解得x =1100.乙种牲畜的单价是2x +200=2400(元).答:甲种牲畜的单价是1100元,乙种牲畜的单价是2400元.(2)设购买甲种牲畜y 头,则购买乙种牲畜(50-y )头,根据题意,得1100y +2400×(50-y )=94000,解得y =20.购买乙种牲畜:50-y =50-20=30(头).答:甲种牲畜购买20头,乙种牲畜购买30头.综 合 检 测一、选择题1. 下列方程:①x =3;②x +2y =1;③1x +2=0;④x 2-1=x ;⑤x 2-4=3x .其中是一元一次方程的有( )A. 2个B. 3个C. 4个D. 5个2. 关于x 的方程2x -m 3=1的解为2,则m 的值是( ) A. 2.5 B. 1 C. -1 D. 33. 下列方程的变形中,正确的是( )A. 方程3x -2=2x +1,移项,得3x -2x =-1+2B. 方程3-x =2-5(x -1),去括号,得3-x =2-5x -1C. 方程23x =32,未知数系数化为1,得x =1 D. 方程x -12-x 5=1化成5(x -1)-2x =10 4. 对于实数a ,b ,规定a ※b =a -2b ,若4※(x -3)=2,则x 的值为( )A. -2B. -12C. 52D. 4 5. 一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折大拍卖,那么该商品三月份的价格比进货价( )A. 高12.8%B. 低12.8%C. 高28%D. 高40%6. 已知方程2-x -13=1-x 2+3-x 与方程4-kx +23=3k -1-x 2的解相同,则k 的值为( ) A. 0 B. 2 C. 1 D. -17. 制一张桌子要用一个桌面和4条桌腿,1立方米木材可制作20个桌面,或者制作400条桌腿.现有12立方米木材,应安排多少立方米木材制作桌面才能使桌子配套( )A. 2B. 6C. 8D. 108. “国际购物中心”在国庆节期间举行优惠活动,规定一次购物不超过500元的不优惠;超过500元的,全部按8折优惠.小丽买了一件服装,付款480元,这件服装的标价是( )A. 480元B. 500元C. 600元D. 480元或600元9. 某电信公司的一种计费标准是:通话时间不超过3分钟,收话费0.2元,以后每分钟收话费0.1元,若小张的话费仅有2.4元,则他能持续通话的最长时间为( )A. 23分钟B. 24分钟C. 25分钟D. 26分钟10. 甲计划用若干个工作日完成某项工作,以第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是( )A. 8天B. 7天C. 6天D. 5天二、填空题11. 方程2+▲=3x ,▲处被墨水盖住了,已知方程的解是x =2,那么▲处的数字是 .12. 我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20000元,设每人向旅行社缴纳x 元费用后,共剩5000元用于购物和品尝台湾美食,根据题意,列出方程为 .13. 方程|x +3|-|x -1|=x +1的解是 (直接写出答案).14. 一个水池装有甲、乙两个水管,甲是进水管,用2小时可以将水池装满,乙是放水管,用3小时可以将一池水放尽,现在先将空水池进水(打开甲管)1小时后,再打开乙水管放水.问若水池装满,需打开乙水管的时间是 .15. 某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为 .16. 某文具厂生产某种型号的文具盒,每个成本为2元,利润率为15%,工厂通过改进工艺,降低了成本,在售价不变的情况下,利润率增加了10%,则这种文具盒的成本降低了 元.17. 某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活用电实行阶梯价,如下表:= .三、解答题18. 解下列方程:(1)6x -2(1-x )=7x -3(x +2);(2)2x +13-5x -16=1.19. 已知x =1是方程2-13(a -x )=2x 的解,求关于y 的方程a (y -5)-2=a (2y -3)的解.20. 小李在解方程3x +52-2x -m 3=1去分母时方程右边的1没有乘以6,因而得到方程的解为x =-4,求出m 的值并正确解出方程.21. 某地为了打造风光带,将一段长为360m 的河道整治任务交给甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m ,求甲、乙两个工程队分别整治了多长的河道.22. 某个体商贩在一次买卖中同时卖出两件上衣,每件都以135元出售,按成本计算,其中一件盈利25%,另一件亏本25%,请分析在这次买卖中该个体商贩的盈利情况.23. 某城市按以下规定收取每月的燃气费:用气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费.已知某用户4月份燃气费平均每立方米0.88元,那么4月份这位用户应交燃气费多少元?24. 小刚和小强从A,B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,两人的行进速度分别是多少?相遇后经过多少时间小强到达A地?24. 解:设小刚的速度为x km/h,则相遇时小刚走了2x km,小强走了(2x-24)km,由题意得2x-24=0.5x,解得x=16,则小强的速度为(2×16-24)÷2=4(km/h),2×16÷4=8(h).答:两人的行进速度分别是16km/h,4km/h,相遇后经过8h小强到达A地.参考答案1. A2. B3. D4. D5. C6. C7. D8. D9. C 10. B11. 412. 3x+5000=2000013. x=-5或x=-1或x=314. 3小时15. 90%16. 0.1617. 15018. 解:(1)去括号,得6x -2+2x =7x -3x -6.移项、合并同类项,得4x =-4.系数化为1,得x =-1.(2)去分母,得2(2x +1)-(5x -1)=6.去括号,得4x +2-5x +1=6.移项、合并同类项,得-x =3.系数化为1,得x =-3.19. 解:把x =1代入关于x 的方程中,得2-13(a -1)=2×1,解得a =1.把a =1代入关于y 的方程中,得1×(y -5)-2=1×(2y -3),解得y =-4.20. 解:由题意:x =-4是方程3(3x +5)-2(2x -m )=1的解,所以3(-12+5)-2(-8-m )=1,解得m =3,所以原方程为3x +52-2x -33=1,所以3(3x +5)-2(2x -3)=6,5x =-15,所以x =-3. 21. 解:设甲工程队整治了x m 河道,则乙工程队整治了(360-x )m.由题意,得x 24+360-x 16=20,解得x =120,360-120=240. 答:甲工程队整治了120米河道,乙工程队整治了240米河道.22. 解:设其中一件上衣的进价为x 元,另一件上衣的进价为y 元,由题意得:(1+25%)x =135,解得x =108;(1-25%)y =135,解得y =180.因为2×135-(108+180)=-18<0,所以在这次买卖中该个体商贩赔了,赔了18元.23. 解:由4月份煤气费平均每立方米0.88元,可得4月份用煤气一定超过60m 3,设4月份用了煤气x 立方米,由题意得:60×0.8+(x -60)×1.2=0.88×x ,解得x =75,则所交煤气费为:75×0.88=66(元). 答:4月份这位用户应交煤气费66元.。

七年级数学上册第三章一元一次方程全部重要知识点

七年级数学上册第三章一元一次方程全部重要知识点

(名师选题)七年级数学上册第三章一元一次方程全部重要知识点单选题1、甲在乙后12千米处,甲的速度为7千米/小时,乙的速度为5千米/小时,现两人同向同时出发,那么甲从出发到刚好追上乙所需要时间是( )A.5小时B.1小时C.6小时D.2.4小时答案:C分析:设甲从出发到刚好追上乙所需要时间x小时,可得7x-5x=12,即可解得答案.解:设甲从出发到刚好追上乙所需要时间x小时,根据题意得:7x-5x=12,解得x=6,答:甲从出发到刚好追上乙所需要时间是6小时.故选:C.小提示:本题考查一元一次方程的应用,解题的关键是读懂题意,掌握追击问题的等量关系列方程.2、对于等式:|x−1|+2=3,下列说法正确的是()A.不是方程B.是方程,其解只有2C.是方程,其解只有0D.是方程,其解有0和2答案:D分析:根据方程的定义及方程解的定义可判断选项的正确性.方程就是含有未知数的等式,方程的解是能使方程左右两边相等的未知数的值.解:|x-1|+2=3符合方程的定义,是方程,(1)当x≥1时,x-1+2=3,解得x=2;(2)当x<1时,1-x+2=3,解得x=0.故选:D.小提示:本题主要考查了方程的定义及方程解的定义,关键在于讨论x的取值情况,从而通过解方程确定方程的解.3、已知y=2x+513−3x−217−32x+2.当x=1.5时,y>0;当x=1.8时,y<0.则方程2x+513−3x−217−32x+2=0的解可能是()A.1.45B.1.64C.1.92D.2.05答案:B分析:由题意估算得出方程的解的取值范围在1.5与1.8之间,据此即可求解.解:对于y=2x+513−3x−217−32x+2来说,∵当x=1.5时,y=2x+513−3x−217−32x+2>0;当x=1.8时,y=2x+513−3x−217−32x+2<0;∴方程2x+513−3x−217−32x+2=0的解的取值范围在1.5与1.8之间,观察四个选项,1.64在此范围之内,故选:B.小提示:本题考查了一元一次方程的解,关键是根据题意得出方程2x+513−3x−217−32x+2=0的解的取值范围在1.5与1.8之间.4、小明在某月的日历上圈出了三个数a、b、c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A.B.C.D.答案:D分析:日历中的每个数都是整数且上下相邻是7,左右相邻差1,根据题意列方程可解.A:设最小的数是x,则x +(x +1)+(x +2)=39,解得:x=12,故本选项不符合题意;B:设最小的数是x,则x+(x+1)+(x+8)=39,解得x=10,故本选项不符合题意;C:设最小的数是x,则x+(x+8)+(x+16)=39,解得x=5,故本选项不符合题意;D:设最小的数是x,则x+(x+8)+(x+14)=39,解得x=17,故本选项符合题意.3故选:D.小提示:本题考查了一元一次方程在日历问题中的应用,明确日历中上下行及左右相邻数之间的关系是解题的关键.5、宋元时期,中国数学家创立了“天元术”,用“天元”表示未知数,解题先要“立天元为某某”,相当于“设x为某某”.“天元术”是中国数学史上的一项杰出创造,它指的是我们所学的()A.绝对值B.有理数C.代数式D.方程答案:D分析:根据数学发展常识作答.解:中国古代列方程的方法被称为天元术,故选:D.小提示:本题主要考查了方程,代数式,数学常识,方程是刻画现实世界的一个有效的数学模型的数学模型.6、关于x的方程3(★−9)=5x−1,★处被盖住了一个数字,已知方程的解是x=5,那么*处的数字是()A.-1B.-17C.15D.17答案:D分析:把x=5代入已知方程,可以列出关于★的方程,通过解该方程可以求得★处的数字.解:将x=5代入方程,得:3(★-9)=25-1,解得:★=17,即★处的数字是17,故选:D.小提示:此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.7、如图,表中给出的是某月的日历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现此月这7个数的和可能的是()A.106B.98C.84D.78答案:C分析:设7个数中最小的数为x,则另外6个数分别为x+2,x+7,x+9,x+14,x+15,x+16,进而可得出7个数之和为7x+63,然后再验证每一个选项即可.解:设7个数中最小的数为x,则另外6个数分别为x+2,x+7,x+9,x+14,x+15,x+16,由题意得x+x+2+x+7+x+9+x+14+x+15+x+16=7x+63,当7x+63=106时,解得x=437,故选项A不合题意;当7x+63=98时,解得x=5,故选项B不符合题意;当7x+63=84时,解得x=3,故选项C符合题意;当7x+63=78时,解得x=157,故选项D不合题意;故选:C小提示:本题考查了列代数式及一元一次方程的应用,用含最小数的代数式表示出7个数之和是解题的关键.8、下列方程中:①x﹣2=2x ;②x=6;③2−y4=y−15;④x2﹣4x=3;⑤0.3x=1;⑥x+2y=0,其中一元一次方程的个数是()A.3B.4C.5D.6答案:A分析:根据一元一次方程的定义:一元一次方程只含有1个未知数,并且未知数的次数是1的整式方程,进行逐一判断即可.解:①x﹣2=2x不是整式方程,不是一元一次方程,故不符合题意:②x=6是一元一次方程,故符合题意:③2−y4=y−15和⑤0.3x=1符合一元一次方程的定义,故符合题意;④x2﹣4x=3未知数的最高次不是1,不是一元一次方程,故不符合题意;⑥x+2y=0含有两个未知数,不是一元一次方程,故不符合题意;故选:A.小提示:本题主要考查一元一次方程的定义,需注意定义里的每一个条件都要满足,理解掌握定义是解答关键.9、为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为()A.14B.15C.16D.17答案:B分析:设小红答对的个数为x个,根据抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分,列出方程求解即可.解:设小红答对的个数为x个,由题意得5x−(20−x)=70,解得x=15,故选B.小提示:本题主要考查了一元一次方程的应用,正确理解题意是列出方程求解是解题的关键.10、下列解方程去分母正确的是( )A.由x3−1=1−x2,得2x﹣1=3﹣3xB.由x−22−x4=−1,得2x﹣2﹣x=﹣4C.由y3−1=y5,得2y-15=3yD.由y+12=y3+1,得3(y+1)=2y+6答案:D分析:根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.A.由x3−1=1−x2,得:2x﹣6=3﹣3x,此选项错误;B.由x−22−x4=−1,得:2x﹣4﹣x=﹣4,此选项错误;C.由y3−1=y5,得:5y﹣15=3y,此选项错误;D.由y+12=y3+1,得:3(y+1)=2y+6,此选项正确.故选D.小提示:本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.填空题11、关于x的方程5m+3x=1+x的解比方程2x=6的解小2,则m=_____.答案:−15##-0.2分析:先求出方程2x=6的解为x=3,可得方程5m+3x=1+x的解为x=1,把x=1代入5m+3x=1+x可得关于m的一元一次方程,解方程即可得出m的值.解方程2x=6,得x=3,∵关于x的方程5m+3x=1+x的解比方程2x=6的解小2,∴方程5m+3x=1+x的解为x=1,∴5m+3=1+1,解得:m=−15.所以答案是:−15.小提示:本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.12、篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.答案:9分析:设该队胜x场,则负14-x场,然后根据题意列一元一次方程解答即可.解:设该队胜x场由题意得:2x+(14-x)=23,解得x=9.故答案为9.小提示:本题考查了一元一次方程的应用,弄清题意、设出未知数、找准等量关系、列出方程是解答本题的关键.13、若(m−1)x+1=0是关于x的一元一次方程,则m的值可以是______(写出一个即可)答案:2(答案不唯一)分析:只含有一个未知数,并且未知数的次数是一次的整式方程叫一元一次方程,利用一元一次方程的定义得出m−1≠0,即可得出答案.解:∵(m−1)x+1=0是关于x的一元一次方程,∴m−1≠0,解得m≠1,∴m的值可以是2.所以答案是:2(答案不唯一).小提示:此题主要考查了一元一次方程的定义,正确掌握一元一次方程定义是解题关键.14、已知方程5y+x=2,用含y的代数式表式x的形式为______.答案:x=2−5y分析:根据等式基本性质,等式两边同时减去5y,即可得出答案.解:∵5y+x=2,∴x=2−5y.所以答案是:x=2−5y.小提示:本题主要考查了等式的基本性质,解题的关键是熟练掌握等式基本性质,等式两边同时加上或减去一个整式,等式仍然成立.15、“某数与6的和的一半等于12”,设某数为x,则可列方程________.=12答案:x+62分析:根据题目中的等量关系列出方程即可求解.解:∵某数与6的和的一半等于12,∴可列方程为x+6=12.2=12.所以答案是:x+62小提示:此题考查了列一元一次方程,解题的关键是找到题目中的等量关系并表示出来.解答题16、小韩和同学们在一家快餐店吃饭,下表为快餐店的菜单:x杯饮料和5份小菜.(1)他们共点了______份B餐;(用含x的式子表示)(2)若他们套餐共买6杯饮料,求实际花费多少元;(3)若他们点餐优惠后一共花费了256元,请通过计算分析他们点的套餐是如何搭配的.答案:(1)(x−5)(2)264元(3)A套餐6份,C套餐5份或A套餐3份,B套餐3份,C套餐5份,见解析分析:(1)由三种套餐中均包含盖饭且只有C套餐中含小菜,即可得出他们点了(x−5)份B套餐;(2)依题意知:C套餐5份,B套餐1份,A套餐5份,据此即可解答;(3)依题意知:C套餐5份,B套餐(x−5)份,A套餐(11−x)份,再分两种情况,列方程即可分别求得.(1)解:因为三种套餐中均包含盖饭且只有C套餐中含小菜,有5份小菜,所以共点了5份C套餐,因为只有B和C套餐中有饮料,一共点了x杯饮料,C套餐有5份,所以他们点了(x−5)份B套餐.所以答案是:(x−5);(2)解:依题意:C套餐5份,B套餐1份,A套餐5份,所以5×20+1×28+5×32=288(元),因为满150元,减24元,所以实际花费为:288−24=264(元);(3)解:因为只有C套餐含小菜,所以依题意C套餐点了5份;因为有x份饮料,所以B套餐共(x−5)份,因为共11份盖饭,所以A套餐(11−x)份.当满150优惠时:32×5+28(x−5)+20(11−x)−24=256,解得:x=5,故A套餐6份,C套餐5份;当满300优惠时:32×5+28(x−5)+20(11−x)−48=256,解得:x=8,故A套餐3份,B套餐3份,C套餐5份.综上,他们点的套餐是A套餐6份,C套餐5份或A套餐3份,B套餐3份,C套餐5份.小提示:本题考查了应用类问题,列代数式,一元一次方程的实际应用,根据各数量之间的关系,正确列出一共的花费及方程是解题的关键.17、【我阅读】解方程:|x+5|=2.解:当x+5≥0时,原方程可化为:x+5=2,解得x=−3;当x+5<0时,原方程可化为:x+5=−2,解得x=−7.所以原方程的解是x=−3或x=−7.【我会解】解方程:|3x−2|−5=0,x=-1答案:x=73分析:根据题目中的方法,分两种情况讨论:当3x-2≥0时;当3x-2<0时;化为一元一次方程,然后求解即可得.解:|3x-2|-5=0,原方程可化为:|3x-2|=5当3x-2≥0时,原方程可化为:3x-2=5,移项,得3x=7;解得x=73当3x-2<0时,原方程可化为:3x-2=-5,移项,得3x=-3,解得x=-1,x=-1.所以原方程的解是x=73小提示:题目主要考查绝对值化简及解一元一次方程,理解题目中的求解方法,准确计算是解题关键.18、如图1,在长方形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间;(1)当t为何值时,线段AQ的长度等于线段AP的长度?(2)当t为何值时,AQ与AP的长度之和是长方形周长的14(3)如图2,P、Q到达B、A后继续运动,P点到达C点后都停止运动.当t为何值时,线段AQ的长等于线段CP的长的一半?答案:(1)当t=2时,线段AQ的长度等于线段AP的长度(2)当t=3时,AQ与AP的长度之和是长方形周长的14(3)当t=15时,线段AQ的长等于线段CP的长的一半2分析:(1)由长方形的特征可知AD=BC=6cm,由题意易得DQ=t cm,AP=2t cm,则有AQ=(6-t)cm,进而问题可求解;(2)由(1)可知6-t+2t=9,然后问题可求解;(3)由题意易得AQ=(t-6)cm,CP=(18-2t)cm,进而问题可求解.(1)解:∵AB=12cm,BC=6cm,∴在长方形ABCD中,AD=BC=6cm,由题意得:DQ=t cm,AP=2t cm,则有AQ=(6-t)cm,∴6−t=2t,解得:t=2,∴当t=2时,线段AQ的长度等于线段AP的长度;(2)解:由(1)可得:6−t+2t=1×2×(12+6),4解得:t=3,∴当t=3时,AQ与AP的长度之和是长方形周长的1;4(3)解:由题意得:AQ=(t-6)cm,CP=(18-2t)cm,∴t−6=1(18−2t),2;解得:t=152∴当t=15时,线段AQ的长等于线段CP的长的一半.2小提示:本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.。

新人教版初中数学七年级上册知识点汇总附典型练习题

新人教版初中数学七年级上册知识点汇总附典型练习题

新人教版初中数学七年级上册知识点汇总附典型练习题第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数, 和 统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是 ;a+b 的相反数是 ; (3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m 4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

河南省七年级数学上册第三章一元一次方程重点知识点大全

河南省七年级数学上册第三章一元一次方程重点知识点大全

河南省七年级数学上册第三章一元一次方程重点知识点大全单选题1、若x=3是关于x的方程ax−b=5的解,则6a−2b−2的值为()A.2B.8C.-3D.-8答案:B分析:将x=3代入ax-b=5中得3a-b=5,将该整体代入6a-2b-2中即可得出答案.解:将x=3代入ax-b=5中得:3a-b=5,所以6a-2b-2=2(3a-b)-2=2×5-2=8.故选:B.小提示:本题考查了一元一次方程的解,求代数式的值,熟练掌握整体法是解题的关键.2、小江去商店购买签字笔和笔记本(其中签字笔和笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱还缺25元;若购买19支签字笔和12本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则()A.他身上的钱还缺65元B.他身上的钱会剩下65元C.他身上的钱还缺115元D.他身上的钱会剩下115元答案:B分析:设签字笔的单价为x元,则笔记本的单价为x元,根据小江身上的钱不变得出方程20x+15x﹣25=19x+12x+15,整理得x=10,由小江购买17支签字笔和9本笔记本的钱为17x+9x,得出19x+12x +15﹣(17x+9x)=5x+15,代入计算即可.解:设签字笔的单价为x元,则笔记本的单价为x元,根据题意得:20x+15x﹣25=19x+12x+15,整理得:4x=40,解得:x=10,∵小江购买17支签字笔和9本笔记本的钱为17x+9x=26x,∴19x+12x +15﹣26x=5x+15∵x=10,∴5x+15=5×10+15=65,即小江身上的钱会剩下65元;故选:B.小提示:本题考查了一元一次方程的应用,分析题意,找到关键描述语,得出方程是解题的关键.3、若关于x的一元一次方程12022x+3=2x+b的解为x=−3,则关于y的一元一次方程12022(y+1)+3=2(y+1)+b的解为()A.y=1B.y=−2C.y=−3D.y=−4答案:D分析:运用整体思想,得到方程12022(y+1)+3=2(y+1)+b中,有y+1=−3,即可答案.解:∵关于x的一元一次方程12022x+3=2x+b的解为x=−3,∴关于y的一元一次方程12022(y+1)+3=2(y+1)+b中,有y+1=−3,∴y=−4;即方程12022(y+1)+3=2(y+1)+b的解为y=−4;故选:D小提示:本题考查了解一元一次方程和一元一次方程的解,能得出一元一次方程y+1=−3是解此题的关键.4、甲在乙后12千米处,甲的速度为7千米/小时,乙的速度为5千米/小时,现两人同向同时出发,那么甲从出发到刚好追上乙所需要时间是( )A.5小时B.1小时C.6小时D.2.4小时答案:C分析:设甲从出发到刚好追上乙所需要时间x小时,可得7x-5x=12,即可解得答案.解:设甲从出发到刚好追上乙所需要时间x小时,根据题意得:7x-5x=12,解得x=6,答:甲从出发到刚好追上乙所需要时间是6小时.故选:C.小提示:本题考查一元一次方程的应用,解题的关键是读懂题意,掌握追击问题的等量关系列方程.5、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则y﹣x的值是()A.1B.17C.﹣1D.﹣17答案:A分析:根据题意可得关于x、y的等式,继而进行求解即可得答案.由题意得:-3+y+2=-3+3+x,即y-1=x,则y﹣x=1.故选:A.小提示:本题考查了三阶幻方,涉及方程,移项等知识,弄清题意,找准数量关系是解题的关键.6、将连续奇数1,3,5,7,9,…排成如图所示的数表,若将十字形框上下左右移动,可框出另外五个数,则框出的五个数之和可以是()A.2020B.2022C.2023D.2025答案:D分析:先设中间的数为2x+1(x为整数),进而得到该数上方、下方、左边、右边的数分别为(2x+1)-10、(2x+1)+10、(2x+1)-2、(2x+1)+2,然后求得框出的五个数之和,即可得到答案.解:设中间的数为2x+1(x为整数),则该数上方、下方、左边、右边的数分别为(2x+1)-10、(2x+1)+10、(2x+1)-2、(2x+1)+2,∴框出的五个数之和为(2x+1)+(2x+1)-10+(2x+1)+10+(2x+1)-2+(2x+1)+2=10x+5,∵x为整数,∴10x+5是5的倍数,且个位数字为5,故选:D.小提示:本题考查了代数式的表示,属于数字的变化规律类题型,解题的关键是会用含有未知数的式子表示框出的5个数.7、小明解方程x+12−1=x−23的步骤如下:解:方程两边同乘6,得3(x+1)−1=2(x−2)①去括号,得3x+3−1=2x−2②移项,得3x−2x=−2−3+1③合并同类项,得x=−4④以上解题步骤中,开始出错的一步是()A.①B.②C.③D.④答案:A分析:按照解一元一次方程的一般步骤进行检查,即可得出答案.解:方程两边同乘6,得3(x+1)−6=2(x−2)①∴开始出错的一步是①,故选:A.小提示:本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解决问题的关键.8、关于x的方程3(★−9)=5x−1,★处被盖住了一个数字,已知方程的解是x=5,那么*处的数字是()A.-1B.-17C.15D.17答案:D分析:把x=5代入已知方程,可以列出关于★的方程,通过解该方程可以求得★处的数字.解:将x=5代入方程,得:3(★-9)=25-1,解得:★=17,即★处的数字是17,故选:D.小提示:此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.9、若关于x的方程5x−m=2(x−2)+1的解是x=−2,则m的值为()A.-3B.-5C.-13D.5答案:A分析:把x=−2代入方程即可得到一个关于m的方程,解方程即可求解.解∶把x=−2代入方程5x−m=2(x−2)+1得∶5×(−2)−m=2×(−2−2)+1,解得m=-3.故选∶ A.小提示:本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是解题的关键.10、某校手工社团30名学生制作纸飞机模型,每人每小时可做20个机身或60个机翼,一个飞机模型要一个机身配两个机翼,为了使每小时制作的成品刚好配套,应该分配多少名学生做机身,多少名学生做机翼?设分配x 名学生做机身,则可列方程为()A.20x=60(30−x)B.20x=2×60(30−x)C.2×20x=60(30−x)D.60x=20(30−x)答案:C分析:设分配x名学生做机身,根据一个飞机模型要一个机身配两个机翼,则飞机模型的个数乘以2等于机翼的个数,据此列出一元一次方程即可求解.设分配x名学生做机身,则可列方程为, 2×20x=60(30−x)故选C.小提示:本题考查了一元一次方程的应用,找到等量关系是解题的关键.11、有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排住4人,就会空出5间宿舍;如果每间宿舍安排住3人,就有100人没床位,那么在学校住宿的学生有多少人?设在学校住宿的学生有x人,根据题意可列方程为()A.x4+5=x−1003B.x4+5=x3−100C.x+54=x−1003D.x4−5=x−1003答案:A分析:根据宿舍间数一定即可列出方程.解:根据题意得:x4+5=x−1003故选:A.小提示:本题考查了一元一次方程的实际应用,理解题意,找准等量关系,列出方程是解决本题的关键.12、下列解方程去分母正确的是( )A.由x3−1=1−x2,得2x﹣1=3﹣3xB.由x−22−x4=−1,得2x﹣2﹣x=﹣4C.由y3−1=y5,得2y-15=3yD.由y+12=y3+1,得3(y+1)=2y+6答案:D分析:根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.A.由x3−1=1−x2,得:2x﹣6=3﹣3x,此选项错误;B.由x−22−x4=−1,得:2x﹣4﹣x=﹣4,此选项错误;C.由y3−1=y5,得:5y﹣15=3y,此选项错误;D.由y+12=y3+1,得:3(y+1)=2y+6,此选项正确.故选D.小提示:本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.13、已知一项工程,甲单独完成需要5天,乙单独完成需要10天,现先由甲单独做2天,然后再安排乙与甲合作完成剩下的部分,则完成这项工程共耗时( )A.1天B.2天C.3天D.4天答案:D分析:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x﹣2)天,根据总工作量=甲完成的工作量+乙完成的工作量,即可得出关于x的一元一次方程,解之即可得出结论.解:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x﹣2)天,根据题意得:x5+x−210=1,解得:x=4.即完成这项工程共耗时4天.故选:D小提示:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14、已知x=y,字母m为任意有理数,下列等式不一定成立的是()A.x+m=y+m B.x−m=y−m C.mx=my D.x1+m =y1+m答案:D分析:根据等式的基本性质对各选项分析判断后利用排除法求解.解:A、等式两边同时加上m,依据等式的基本性质1,∴所得等式成立;B、等式两边同时加上﹣m,依据等式的基本性质1,∴所得等式成立;C、等式两边同时乘以m,依据等式的基本性质2,∴所得等式成立;D、等式两边同时除以1+m,而1+m有可能为0,则所得等式无意义,∴此等式不一定成立.故选:D.小提示:本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.15、将方程y+24+2y−16=1去分母得到3y+2+4y−1=12,错在()A.分母的最小公倍数找错B.去分母时,漏乘了分母为1的项C.去分母时,分子部分没有加括号D.去分母时,各项所乘的数为各分母的最小公倍数12答案:C分析:根据去分母法解一元一次方程进行判断即可.解:y+24+2y−16=1去分母,得3(y+2)+2(2y-1)=12去括号,得3y+6+4y-2=12∴选项A,B,D正确.故选:C.小提示:本题考查解一元一次方程——去分母,解题关键是掌握解一元一次方程的步骤.填空题16、如果△+△=★,〇=□+□,△=〇+〇+〇+〇,那么★÷□的值为_____.答案:16分析:根据题意可知★=2个△=8个〇=16个□,再代入★÷□即可计算求解.解:∵△+△=★,∴★=2个△,∵△=〇+〇+〇+〇,∴★=8个〇,∵〇=□+□,∴★=16个□,∴★÷□=16.所以答案是:16.小提示:本题考查了等式的性质与有理数的混合运算,由题得出★=16个□是解题关键.17、若关于x的方程2k−3x=4与方程12x−3=0的解相同,则k的值为____________.答案:11分析:先求出12x−3=0的解,再将解代入2k−3x=4中,即可求得k的值.解:解12x−3=0可得:x=6,将x =6代入2k −3x =4可得:2k −18=4,解2k −18=4得:k =11,所以答案是:11.小提示:本题考查了解一元一次方程及同解方程,熟练掌握解一元一次方程的方法是解题的关键.18、在数轴上,点A,O,B 分别表示−10,0,6,点P,Q 分别从点A,B 同时开始沿数轴正方向运动,点P 的速度是每秒3个单位,点Q 的速度是每秒1个单位,运动时间为t 秒.若点P,Q,O 三点在运动过程中,其中两点为端点构成的线段被第三个点三等分,则运动时间为_____秒.答案:2、92、6、383分析:根据运动的规则找出点P 、Q 表示的数,分P 、O 、Q 三点位置不同考虑,根据三等分点的性质列出关于时间t 的一元一次方程,解方程即可得出结论.解:设运动的时间为t (t >0),则点P 表示3t −10,点Q 表示t +6,① 点O 在线段PQ 上时,如图1所示.此时3t −10<0,即t <103,∵点O 是线段PQ 的三等分点,∴PO =2OQ 或2PO =OQ ,即10−3t =2(t +6)或2(10−3t )=t +6,解得:t =-25(舍去)或t =2;② 点P 在线段OQ 上时,如图2所示.此时0<3t −10<t +6,即103<t <8.∵点P 是线段OQ 的三等分点,∴2OP =PQ 或OP =2PQ ,即2(3t −10)=t +6−(3t −10)或3t −10=2[t +6−(3t −10)],解得:t =92或t =6; ③当点Q 在线段OP 上时,如图3所示.此时t +6<3t −10,即t >8.∵点Q 是线段OP 的三等分点,∴OQ =2QP 或2OQ =QP ,即t +6=2[3t −10−(t +6)]或2(t +6)=3t −10−(t +6),解得:t =383或无解.综上可知:点P ,Q ,O 三点在运动过程中,其中两点为端点构成的线段被第三个点三等分,则运动时间为2、92、6、383.所以答案是:2、92、6、383. 小提示:本题考查了一元一次方程的应用以及数轴,解题的关键是按P 、O 、Q 三点位置不同分类讨论.本题属于中档题,难度不大,解决该题型题目时,根据运动的过程分情况考虑,再根据三等分点的性质列出方程是关键.19、某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.答案:2000分析:设这种商品的进价是x 元,根据提价之后打八折,售价为2240元,列方程解答即可.设这种商品的进价是x 元,由题意得,(1+40%)x×0.8=2240,解得:x =2000,故答案为2000.小提示:本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.20、若x |m |﹣10=2是关于x 的一元一次方程,则m 的值是 _____.答案:±1分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解:根据题意,有|m|=1,∴m=±1,所以答案是:±1.小提示:本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.11。

初中七年级数学上册《一元一次方程》知识点+练习题

初中七年级数学上册《一元一次方程》知识点+练习题

七上数学第三章一元一次方程一、一元一次方程的概念:只含有一个未知数(元)且未知数的指数是1(次)的方程叫做一元一次方程。

一般形式:ax+b=0(a≠0)注意:未知数在分母中时,它的次数不能看成是1次。

如x x =+31,它不是一元一次方程。

【名师推荐你做】1.下列关于x 的方程一定是一元一次方程的是()A.1x 1x -= B.(a 2+1)x =bC.ax =b3=2.下列方程中是一元一次方程的是()A.x +3=y +2B.x +3=3-xC.11x = D.x 2-1=03.在方程①3y -4=1;②414m =;③5y -2=1;④3(x +1)=2(2x +1)中,解为1的是()A.① B.② C.③D.④4.x =2是下列方程()的解.A.2x=6B.(x-3)(x+2)=0C.x2=3D.3x-6=05.下列说法中,正确的是()A.代数式是方程B.方程是代数式C.等式是方程D.方程是等式6.下列说法:①若a+b=0,且ab≠0,则x=1是方程ax+b=0的解;②若a-b=0,且ab≠0,则x= -1是方程ax+b=0的解;③若ax+b=0,则x=ba-;④若(a-3)x|a-2|+b=0是一元一次方程,则a=1.其中正确的结论是()A.只有①②B.只有②④C.只有①③④D.只有①②④7.已知方程(a-2)x|a|-1+7=0是关于x的一元一次方程,求a的值.【名师为你解惑】1.【答案】B.【解析】A、不是一元一次方程,故本选项错误;B、是一元一次方程,故本选项正确;C、当a=0时,不是一元一次方程,故本选项错误;D、不是一元一次方程,故本选项错误.故选B.2.【答案】B.【解析】A、含有两个未知数,是二元一次方程;B、符合一元一次方程的定义;C、分母中含有未知数,是分式方程;D、未知数的最高次数是2次,为一元二次方程.故选B.3.【答案】D.【解析】①把1代入,左边=3-4= -1,左边≠右边,因而1不是方程的解;②把1代入,左边=41= 4,左边≠右边;因而1不是方程的解;③把1代入得到,左边=5-2=3,左边≠右边,因而1不是方程的解;④把1代入方程,左边=3×(1+1)=6,右边=2×(2+1)=6,左边=右边,因而1是方程的解.综上可知:只有④正确,故选D.4.【答案】D.【解析】将x=2代入各个方程得:A.2x=2×2= 4≠6,所以,A错误;B.(x-3)(x+2)=(2-3)(2+2)= -4≠0,所以,B错误;C.x2=22= 4≠3,所以,C错误;D.3x-6=3×2-6=0,所以,D正确.故选D.5.【答案】D.【解析】方程的定义是指含有未知数的等式,A、代数式不是等式,故不是方程;B、方程不是代数式,故B错误;C、等式不一定含有未知数,也不一定是方程;D、方程一定是等式,正确.故选D.6.【答案】D.【解析】①ab≠0,所以一次项系数不是0,则x=1是方程ax+b=0的解;同理,②若a-b=0,且ab≠0,则x= -1是方程ax+b=0的解;③若ax+b=0,则x=ba-,没有说明a≠0的条件;④若(a-3)x|a-2|+b=0是一元一次方程,则a=1也是正确的.其中正确的结论是只有①②④.故选D.7.【答案】-2.【解析】根据一元一次方程的定义,得出|a|-1=1,a-2≠0,解得:a= -2.二、解一元一次方程1.方程的解:能使方程左右两边相等的未知数的值叫做方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点知识点综合练一、单选题1.下列各式中,是一元一次方程的是( ).A .32x y -=B .210xC .22x =D .12x= 2.已知(1)310a a x -+=是一元一次方程,则a 的值为( )A .1B .0C .﹣1D .±13.下面各式的变形正确( )A .由2732x x -=+,得2327x x -=+B .由56%19%33%0.35x x -=+,得5619330.35x x -=+C .由248539x x -=-,得6485x x =-- D .由()()583365x x -+=-+,得5403365x x -+=--4.已知a 为整数,关于x 的方程2200a x -=的根是质数,且满足27ax a ->,则a 等于( )A .2B .2或5C .2±D .-25.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( )A .1404050x x +=+ B .41404050x +=⨯ C .414050x += D .41404050x x ++= 6.如图,点A ,B 在直线l 上,下列说法错误的是( )A .线段AB 和线段BA 是同一条线段B .直线AB 和直线BA 是同一条直线C .图中以点A 为端点的射线有两条D .射线AB 和射线BA 是同一条射线7.已知平面上A ,B ,C 三点,过每两点画一条直线,那么直线的条数有( )A .3条B .1条C .1条或3条D .0条8.济青高铁北线,共设有5个不同站点,要保证每两个站点之间都有高铁可乘,需要印制不同的火车票( )A .20种B .42种C .10种D .84种9.用度、分、秒表示31.21°为( )A .311236︒'"B .3121︒'C .311223︒'"D .31201︒'"10.下列结论:①射线OP 和射线PO 是同一条射线;①如果线段AM =MC ,则M 是线段AC 的中点;①在同一平面内,已知①AOB =60°,①AOC =30°,则①BOC =30°;①等角的余角相等.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题11.已知x 1a -=3,y 2a +=5,则用含x 的代数式表示y =______. 12.若5x =是关于x 的方程427x k +=的解,则k =___________.13.图1是图2正方体的展开图,现将图2中的正方体按所示的位置依次翻到第1格、第2格、第3格,这时正方体朝上一面的字是______.14.把4个棱长为2分米的正方体拼成长方体,拼成的长方体的表面积可能是_________平方分米,也可能是__________平方分米.15.一个小立方体块的六个面分别标有字母A ,B ,C ,D ,E ,F ,如图是从三个不同方向看到的情形,则字母A 的对面是字母________.16.如图,辰辰同学根据图形写出了四个结论:①图中有两条直线;①图中有5条线段;①射线AC 和射线AD 是同一条射线;①直线BD 经过点C .其中结论正确..的结论是______.17.数轴上A ,B 两点表示的数分别是-1和5,数轴上的点C 是AB 的中点,数轴上点D 使 1.5AD AC =,则线段BD 的长是________.18.上午6点20分,钟面上的时针与分针的夹角是__________.19.已知12512'∠=︒,22512∠=︒.,32475'∠=︒,则1∠、2∠、3∠的大小关系是_______(用“>”连接).20.已知①A 与①B 互补,①A =35°24′,则①B 的大小是______.三、解答题21.解下列方程;(1)()()18327x x -+=- (2)12334x x -+=- 22.计算:(1)45°10′﹣21°35′20′′;(2)48°39′+67°31′﹣21°17′;(3)42°16′+18°23′×2.23.已知222,A x mx m B x m =+-=+(1)求A -2B .(2)若3x =是关于x 的方程25A B x m -=+的解,求m 的值.24.某车间32名工人生产桌子和椅子,每人每天平均生产15张桌子或50张椅子,一张桌子要配两张椅子.已知车间每天安排x 名工人生产桌子.(1)求车间每天生产桌子和椅子各多少张?(用含x 的式子表示)(2)当每天安排多少名工人生产桌子时,生产的桌子和椅子刚好配套?25.一项工程,甲单独做要18小时完成,乙单独做要12小时完成.若甲先做1小时,然后由乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作.问完成任务时,共用了多长时间?26.线段AB 和CD 在同一直线上,M ,N 分别是线段AB ,CD 的中点,已知AB =6cm ,CD =8cm .(1)当A ,C 两点重合时,如图1,求MN 的长;(2)当C 点在线段AB 上时,如图2,如果线段AB ,CD 的公共部分BC =2cm ,求MN 的长;(3)在(2)的情况下,MN 与AB ,CD ,BC 有怎样的数量关系?(直接写出结果)27.如图,OE为①AOD的平分线,①COD=14①EOC,①COD=15°,求:(1)①EOC的大小;(2)①AOC的大小.参考答案:1.CA 、32x y -=,有两个未知数,不符合题意;B 、210x ,未知数最高次数不是1,不符合题意;C 、22x =,是一元一次方程,符合题意; D 、12x=,不是整式方程,不符合题意, 2.C解:①方程(1)310a a x -+=是关于x 的一元一次方程, ①1a =且10a -≠,解得1a =-,3.A解:A 、由2732x x -=+,得2327x x -=+,原变形正确,故此选项符合题意; B 、由56%19%33%0.35x x -=+,得56193335x x -=+,原变形错误,故此选项不符合题意; C 、由248539x x -=-,得64845x x =--,原变形错误,故此选项不符合题意; D 、由()()583365x x -+=-+,得54033630x x -+=--,原变形错误,故此选项不符合题意.4.D解:当=2a 时,=5x 是质数,但725734||ax -=⨯-=<,所以不选A ,C .当=5a 时,4=5x 不是质数,所以不选B . 当2a =-时,=5x 是质数,同时满足7257174||ax -=-⨯-=>,所以选D .5.D解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为: 41404050x x ++=. 6.D7.C解:当A 、B 、C 三点在同一直线上时,如图1所示,过每两点画一条直线,只能画1条直线,当A 、B 、C 三点不在在同一直线上时,如图2所示,过每两点画一条直线,可以画3条直线,8.A解:如图,图中有5个站点.往同一个方向(从1站点往5站点的方向),需要印制不同的火车票种类的数量有4+3+2+1=10(种).①保证任意两个站点双向都有车票,需要印制车票种类的数量为21020⨯=(种).9.A10.D解:①根据射线定义,即可确定①错误;①根据线段中点定义,只有A M C 、、三点共线结论才成立,对于折线就不成立,故①错误; ①根据角的定义及角度计算,若OC 在①AOB 内部,则①BOC =30°;若OC 在①AOB 外部,则①BOC =90°,故①错误;①根据余角的性质,等角的余角相等,故①正确,11.112x -解:①x 1a-=3, ①13x a=-,①y 2a +=5, ①()235y x +-=,①265y x +-=,①112y x =-.故答案为:112x -.12.132- 解①5x =是关于x 的方程427x k +=的解,①4527k ⨯+=, ①132k =-,故答案为:132-. 13.江 14. 72 64解:8×2×4+2×2×2,=64+8,=72(平方分米),4×2×4+4×4×2,=32+32,=64(平方分米);答:拼成的长方体的表面积可能是72平方分米,也可能是64平方分米.故答案为:72,64.15.C16.①①解:①直线是没有端点,向两边无限延伸,图中有两条直线,分别是:直线BC 和直线BD ,故①说法正确;①直线上两点及两点之间的部分是线段,图中有6条线段,分别是:线段AB 、线段BC 、线段BD 、线段AC 、线段CD 、线段AD ,故①说法错误;①射线AC 和射线AD 是同一条射线,都是以点A 为端点,同一方向的射线,故①说法正确; ①直线BD 和直线BC 相交于点B ,直线BD 经过点B ,不经过点C ,故①说法错误, 故答案为:①①.17.1.510.5或解:如下图所示:①数轴上A ,B 两点表示的数分别是-1和5,①AB =6.又①数轴上的点C 是AB 的中点, ①132AC AB ==. 又① 1.5AD AC =,① 1.53 4.5AD =⨯=.当点D 在点A 右侧时,如图中D 所示,则有6 4.5 1.5BD AB AD =-=-=;当点D 在点A 左侧时,如图中D 所示,则有6 4.510.5BD AB AD =+=+=.综上所述:线段BD 的长是1.510.5或.故答案为:1.510.5或.18.70°解:6点20分,分针走了30°×4=120°,时针走了120°÷12=10°,30°×2+10°=70°,①钟面上的时针与分针的夹角是70°,故答案为:70°.19.312∠>∠>∠解:22512=250.1260=25712.'''∠=︒︒+⨯︒,32475=2515''∠=︒︒,①2515251225712>>'''''︒︒︒,①312∠>∠>∠.故答案为:312∠>∠>∠.20.144°36′解:由题意得,①A +①B =180°.①①B =180°﹣35°24′=144°36′.故答案为:144°36′.21.(1)2(2)26-(1)解:()()18327x x -+=-去括号得:18621x x --=-,移项合并同类项得:714x -=-,将未知数系数化为1得:2x =.(2)解:12334x x -+=- 去分母得:()()413632x x -=-+,去括号得:443636x x -=--,移项合并同类项得:26x -=,未知数系数化为1得:26x =-.22.(1)23°34′40′′(2)94°53′(3)79°2′23.(1)3mx m -; (2)35m =-(1)解:①222,A x mx m B x m =+-=+,①A −2B()2222x mx m x m =+--+22222x mx m x m =+---3mx m =-;(2)由(1)知,A −2B =mx −3m ,①mx −3m =x +5m ,①(m −1)x −8m =0.把x =3代入,得()3180m m ⨯--=. 解得35m =-. 24.(1)每天生产桌子15x 张,椅子(1 600-50x )张(2)当每天安排20名工人生产桌子时,生产的桌子和椅子刚好配套(1)每天生产的桌子数为:15x (张),每天生产的椅子数为:50(32-x )=1600-50x (张),所以每天生产桌子15x 张,椅子(1600-50x )张.(2)由题意,得2×15x =1600-50x ,解得x =20,①当每天安排20名工人生产桌子时,生产的桌子和椅子刚好配套.25.14.5小时设工程总量为x , 则根据题意可知:甲的工作效率为18x ,乙的工作效率为12x , ①甲乙是间隔1小时交替工作,①甲和乙在2个小时内的工作效率和为:1812536x x x +=, ①57.236x x ⨯=, ①则甲乙共进行交替工作的次数为:7.2(次),去尾法取整为:7,即甲乙相互交替共计7次, 此时剩余的工作量为:57363618x x x x -⨯=<, 剩余的工作,按照交替顺序,将由甲完成, 此时甲还需工作的时间为:0.53618x x ⨯=(小时), ①完成工作需要的时间为:720.514.5⨯+=(小时),答:完成任务共计用时14.5小时.26.(1)1cm(2)5cm (3)1122MN AB CD BC =+-(1)解:①M ,N 分别是线段AB ,CD 的中点,AB =6cm ,CD =8cm ,A ,C 两点重合 ①AM =3cm ,AN =4cm ,①MN =AN -AM =1cm ;(2)①M ,N 分别是线段AB ,CD 的中点,AB =6cm ,CD =8cm ,①AM =3cm ,DN =4cm ,①线段AB ,CD 的公共部分BC =2cm ,①AD =AB +CD -BC =6+8-2=12cm ,①MN =AD -AM -DN =12-3-4=5cm ;(3)①M ,N 分别是线段AB ,CD 的中点,11,22AM AB DN CD ∴== , AD AB CD BC =+- ,11112222MN AD AM DN AB CD BC AB CD AB CD BC ∴=--=+---=+- , 即:1122MN AB CD BC =+-.27.(1)60°;(2)105°. (1)解:①①COD =14①EOC ,①COD =15°, ①①EOC =4①COD =4×15°=60°;(2)解:①①EOC =60°,①COD =15°,①①EOD =①EOC -①COD =60°-15°=45°.①OE 为①AOD 的平分线,①①AOD =2①EOD =2×45°=90°,①①AOC =①AOD +①COD =90°+15°=105°.。

相关文档
最新文档