第3章和第4章习题课
水力学第3章习题课

3.11
图1为射流泵的工作原理。工作流体Q0从 喷嘴高速喷出时,在喉管入口处因周围的 空气被射流卷走而形成真空,被输送的流 体Qs即被吸入。两股流体在喉管中混合并 进行动量交换,使被输送流体的动能增加 ,最后通过扩散管将大部分动能转换为压 力能。
射流泥浆泵用于河道疏浚、水下开挖和井 下排泥。射流泵没有运动的工作元件,结 构简单,工作可靠,无泄漏,也不需要专 门人员看管,因此很适合在水下和危险的 特殊场合使用。
例:
2 2 p1 1v1 p2 2v2 Z1 Z2 hw 应用能量方程式的条件: g 2g g 2g
(1)水流必需是恒定流; (2)作用于液体上的质量力只有重力;
(3)在所选取的两个过水断面上,水流应符合渐变流的条件,但 所取的两个断面之间,水流可以不是渐变流;
(4)在所取的两个过水断面之间,流量保持不变,其间没有流量 加入或分出。若有分支,则应对第一支水流建立能量方程式,例 1 如图示有支流的情况下,能量方程为:
p3 v p1 v Z1 Z3 hw13 g 2g g 2g
2 1 1 2 3 3
3
Q1
1 2
Q3 Q2
解:渐变进口段:
D 2 A 1 1.77m2 4
V1 Q 1.02m / s A1
1v12 0.05 m 2g
1v12 p 30.65m 2g
p1 A1 531KN
渐变出口段:
d2 A 2 0.785 m2 4
2
v2
Q 2.92 A2
v2 0.87
3
2
2 p3 3v32 p2 2v2 Z2 Z3 hw23 g 2g g 2g
工程流体力学习题课1-第2-3-4章-部分习题解答

2 2 d2
习题3-14解题示意图1
Dr W-X Huang, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
工程流体力学——习题课(1)——第 2-3-4 章部分习题解答
Fx1 =
y x
H1
D
H2
图 3-26 习题 3-11 附图
1 1 ρ gH1 × ( DL) = × 1000 × 9.8 × 4 × (4 × 10) = 784000 N=784kN 2 2 1 D 1 4 Fx 2 = ρ gH 2 × ( L) = × 1000 × 9.8 × 2 × × 10 = 196000 N=196kN 2 2 2 2
H
h
由此得: H ≥ 122mm + h ≥ 244mm (2) 结合以上正负压操作时结果有:
p / ρ g ≤ h ≤ H − | p| / ρ g
图 3-23 习题 3-8 附图
→ 122mm ≤ h ≤ 178mm
Dr W-X Huang, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
工程流体力学——习题课(1)——第 2-3-4 章部分习题解答
F1-6
习题 3-8 旋风除尘器如图 3-23 所示,其下端出灰口管段长 H,部分插入 水中,使旋风除尘器内部与外界大气隔开,称为水封;同时要求出灰管内液面 不得高于出灰管上部法兰位置。设除尘器内操作压力 ( 表 压 ) p = −1.2 kPa~ 1.2kPa。 净化空气 (1) 试问管段长 H 至少为多少 mm? (2) 若H=300mm,问其中插入水中的部分h应在 什么范围?(取水的密度 ρ =1000kg/m3) 含尘 解:(1) 正压操作时,出灰管内液面低于管外液 面,高差为 h′ = p / ρ g ;为实现水封,出灰管插入深 度 h 必须大于此高差,即
自动控制原理课后习题第四章答案

G(s)H(s)=
Kr s(s+1)(s+3)
σ根 s=3-K+ω轨r4-3-迹+p4s132ω1-3的+~3ω32分p===s2-离+001K点.p-3r=3:KK~0θrr===012+ωω6021,o=3,=0+±1810.7o
8
jω
1.7
s1
A(s)B'系(s)统=根A'轨(s迹)B(s)
s3 p3
s=sK2±r没=j24有.8.6位×于2K.r根6=×4轨80.迹6=上7,. 舍去。
2
第四章习题课 (4-9)
4-9 已知系统的开环传递函数,(1) 试绘制出
根轨迹图。
G(s)H与(s虚)=轴s交(0点.01s+1K)(系0.统02根s+轨1迹)
jω
70.7
解: GKK(rr=s=)10H5(0s)=ωω2s1,(3=s=0+±17000K.7)r(s+50)
s1
A(s)B'(系s)统=A根'(轨s)迹B(s)
s3 p3
p2
p1
-4
-2
0
((24))ζ阻=尼03.振5s2荡+1响2应s+s的81==K-r0值0.7范+围j1.2
s=s-s10=3=.-80-56.8+50K.7r×=20=s.82-=54×-.631..1155×3.15=3.1
-2.8
450
1080
360
0σ
0σ
第四章习题课 (4-2)
4-2 已知开环传递函数,试用解析法绘制出系
统的根轨迹,并判断点(-2+j0),(0+j1),
第4章 线性方程组与向量习题课

5b x1 = a (b + 1) 2 x2 = b+1 2(b 1) x3 = b + 1
1 0
1 b 2 2b
1 c 1 x2 x1 = a x1 = a x2 = c . x3 = 0 x =0 3
由
b 2 1 a A → 0 b1 1 0 0 0 1 b 2 2b
b 2 1 a b 2 1 a A = 0 b1 1 0 → 0 b1 1 0 a b 1 b 3 2b 0 0 1 b 2 2b
( 1) a ≠ 0, b ≠ ±1, 方程组有唯一解; 方程组有唯一解;
暨南大学珠海学院
( 2 ) a ≠ 0, b = 1, 方程组有无穷多解; 方程组有无穷多解;
α 1 , α 2 , L , α m 线性相关
α1 x1 + α 2 x2 + L + α m xm = ο 有非零解. 有非零解.
R ( A) < n , 其 中 A = ( α 1 , α 2 , L , α n ) .
n个m维列向量 α1 , α 2 ,L , α n 线性相关 个 维列向量
暨南大学珠海学院
解:方法一,对方程组的系数矩阵作行初等变换, 方法一 对方程组的系数矩阵作行初等变换, 对方程组的系数矩阵作行初等变换
1 1 q 1 1 q A = 1 2q 1 → 0 1 1 p p 1 1 0 0 q( p 1)
x1 = 0, x2 = 0, x3 = 0.
线性表示且表法唯一. 线性表示且表法唯一. 线性相关, 线性无关, 例⒋设 α1 , α 2 , α 3 线性相关,α 2 , α 3 , α 4 线性无关, 线性表出, α 问 α1 能否由 α 2 , α 3 线性表出, 4 能否由 α1 , α 2 , α 3 线性表出? 线性表出? Q 线性无关, 线性无关, 解: α 2 , α 3 , α 4 线性无关,∴α 2 , α 3 线性无关, 又 Qα1 , α 2 , α 3 线性相关, 线性相关,
高等数学第三章习题课答案

第三章 微分中值定理习题课一、判断题(每题3分)1.函数)(x f 在0x 点处可导,且在0x 点处取得极值,那么0)(0='x f .( √ )2.函数)(x f 在0x 点处可导,且0)(0='x f ,那么)(x f 在0x 点处取得极值.( × )3.若0x 是()f x 的极值点,则0x 是()f x 的驻点. ( × )4.函数()x f 在区间()b a ,内的极大值一定大于极小值 . ( × )5.若()0,(,)f x x a b ''>∈,则()f x '在(,)a b 内单调增加 .( √ )6.0()0f x '=且0()0f x ''<是函数()y f x =在0x 处取得极大值的充要条件. ( × )7.函数()arctan f x x x =的图形没有拐点. ( √ )8.因为函数y =0x =点不可导,所以()0,0点不是曲线y =.( × )二、选择题(每题3分)1.下列函数中,在闭区间[-1,1]上满足罗尔定理条件的是( D ). A .xe B .ln x C .x D .21x - 2.对于函数()211f x x=+,满足罗尔定理全部条件的区间是( D ). (A )[]2,0-;(B )[]0,1;(C );[]1,2-(D )[]2,2-3. 设函数()()()12sin f x x x x =--,则方程()0f x '=在 (0,)π内根的个数( D )(A) 0个 ; (B)至多1个; (C) 2个; (D)至少3个.4.已知函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的条件,使得该定理成立的ξ=( D ).(A )13 (B (C )12 (D 5.若函数)(),(x g x f 在区间),(b a 上的导函数相等,则该两函数在),(b a 上( C ). A.不相等 B .相等 C.至多相差一个常数 D.均为常数6.arcsin y x x =- 在定义域内( B ).A. 单调减函数B.单调增函数C. 有单调增区间也有单调减区间D. 没有单调性7. 函数2129223-+-=x x x y 的单调减少区间是 ( C ). (A )),(+∞-∞ (B ))1,(-∞(C ))2,1((D )),2(+∞8.设(),a b 内()0f x ''>,则曲线()y f x =在(),a b 内的曲线弧位于其上任一条切线的( A ). (A )上方;(B )下方; (C )左方; (D )右方.9.曲线32y ax bx =+的拐点为(1,3),则 ( A ). (A )3,30a b a b +=+= (B )0,30a b a b +=+= (C )2,320a b a b +=+=(D )0,340a b a b +<+=10. 设函数()y f x =在开区间(,)a b 内有()'0f x <且()"0f x <,则()y f x =在(,)a b 内( C )A.单调增加,图像是凹的B.单调减少,图像是凹的C.单调减少,图像是凸的D. 单调增加,图像是凸的11.函数2y ax c =+在区间()0,+∞内单调增加,则a 和c 应满足( C ).(A )0a <且0c =; (B )0a >且c 是任意实数; (C )0a <且0c ≠;(D )0a <且c 是任意实数.12. 函数23++=x x y 在其定义域内( B ) (A )单调减少 (B) 单调增加 (C) 图形是凹的(D) 图形是凸的13.若()()00,x f x 为连续曲线()y f x =上凹弧与凸弧的分界点,则( A ). (A )()()00,x f x 必为曲线的拐点; (B )()()00,x f x 必为曲线的驻点; (C )0x 点必为曲线的极值点;(D )0x x =必为曲线的拐点.14.函数()2ln f x x x =-的驻点是( B ).(A )1x = (B )12x =(C )(1,2) (D) 1(,1ln 2)2+15.函数2ln(1)y x x =-+的极值( D ). A .是1ln 2-- B .是0D.不存在 C.是1ln216.设()[0,1]()f x x f x ''=在上有<0,则下述正确的是( A )( A ) (1)f '<)0()1(f f -<(0)f '; ( B ) (0)f '<)0()1(f f -<(1)f '; ( C ) (1)f '<(0)f '<)0()1(f f -; ( D ) (0)f '<(1)f '<)0()1(f f -17.设()f x 具有二阶连续的导数,且20()lim3,ln(1)x f x x →=-+则(0)f 是()f x 的( A )(A )极大值; (B )极小值; (C )驻点; (D )拐点.18.设函数()y f x =在0x x =处有()0f x '=0,在1x x =处导数不存在,则( C ). A. 0x x =,1x x =一定都是极值点 B.只有0x x =可以是极值点C. 0x x =, 1x x =都可能不是极值点D. 0x x =,1x x =至少有一个是极值点三、解答题(求极限每题4分其余每题 8分) 1.求极限220000011sin sin 1cos 2(1)lim lim lim lim lim 0sin sin 22→→→→→---⎛⎫-===== ⎪⎝⎭x x x x x x x x x x x x x x x x x x (2)11lim 1ln x xx x →⎛⎫⎪⎝⎭-- =()()11ln 1ln 11limlim 11ln ln x x x x x x x x x x x→→--+-=--+11ln ln 11limlim ln 1ln 22x x x x x x x x x →→+===+-+0(3)11lim 1→⎛⎫ ⎪⎝⎭--x x x e 01lim (1)→--=-xx x e x x e 0011lim lim 12xxx x x x x x x e e e xe e e xe →→-===-+++ (4)200011ln(1)ln(1)lim()lim lim ln(1)ln(1)x x x x x x x x x x x x →→→-+-+-==++0011111limlim lim 22(1)2(1)2x x x x x x x x x →→→-+====++20sin (5)limtan →-x x xx x 2200sin 1cos lim limtan 3x x x x x x x x →→--==0sin 1lim 66x x x →==222201(6)lim(1)→---x x x e xx e 22401lim→--=x x e xx 2232002211lim lim 42x x x x xe x e x x →→--==12=2223220000tan tan sec 1tan 1(7)lim lim lim lim ln(1)333→→→→---====+x x x x x x x x x x x x x x x1ln 1(8)lim cot →+∞⎛⎫+ ⎪⎝⎭x x arc x 1lim cot →+∞=x x arc x 222211lim lim 111x x x x x x x →+∞→+∞-+===+-+sin sin cos (9)limlim cos 1→→-==-x a x a x a xa x a22200021sec 77ln tan 7tan 2sec 77tan 7(10)lim lim lim 11ln tan 2tan 7sec 22sec 22tan 2+++→→→⋅⋅⋅===⋅⋅⋅x x x x x x x x x x x x x(11)lim arctan 2→+∞⎛⎫- ⎪⎝⎭x x x π22221arctan 12lim limlim 1111→+∞→+∞→+∞--+====+-x x x x x x x xxπ2lim ln(arctan )2(12)lim arctan →+∞→+∞⎛⎫= ⎪⎝⎭x xx x x x e ππ2lim ln(arctan )→+∞x x x π222211ln arctan lnln arctan arctan 1limlimlim 111→+∞→+∞→+∞+⋅+===-x x x x x x x xxxππ2222lim 1x x x ππ→+∞=-=-+ 22lim arctan -→+∞⎛⎫∴= ⎪⎝⎭xx x e ππ .()tan 21(13)lim 2→-x x x π解:()()()11sin ln 22limlim tan ln 2cos tan 2221lim 2x x x x x x xx x x eeππππ→→--→-==1122sinlim22x xx e eπππ→---⋅==tan 0(14)1lim +→⎛⎫⎪⎝⎭xx x 0011lim tan lnlim ln++→→⋅⋅==x x x x xxee2001110ln limlim1x x x xx xe ee++→→---====2. 验证罗尔中值定理对函数32452y x x x =-+-在区间[]0,1上的正确性.解:()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,()()012f f ==-满足罗尔定理条件.(3分)令()2121010f x x x '=-+=,得()0,1x =,满足罗尔定理结论.3. 试证明对函数2y px qx r =++应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明:在区间[],a b 上,()()()f b f a f b aξ-'=- 代入:()()222pb qb r pa qa r p q b aξ++-++=+-解得:2a bξ+=. 4. 证明方程531xx -=在()1,2之间有且仅有一个实根.证明:令()531f x x x =--,()11310f =--<, ()522610f =-->所以 ()0f x =在()1,2上至少一个根,又()4'53f x x =-,当()1,2x ∈时()'0f x >,所以单增,因此在()1,2上至多有一个根.()0f x =在()1,2上有且仅有一个根.5. 设()f x 在[,]a b 上连续,在(,)a b 内可导,且()()0f a f b ==,证明:至少存在一个(,)a b ξ∈,使得()()0f f ξξ'+=. 提示:令()()x F x e f x =证明:令()()xF x e f x =,显然()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()()()x F x e f x f x ''=+ (3分)由Larange 中值定理,则至少(,)a b ξ∈,使得()()()F b F a F b aξ-'=-又()()0f a f b == ∴()()0f f ξξ'+=6. 设()f x 在[0,]a 上连续,在(0,)a 内可导,且()0f a =,证明存在一点(0,)a ξ∈,使得()()0f f ξξξ'+=.提示:令 ()()F x xf x =.证明:构造辅助函数()()F x xf x =, ()f x 在[0,]a 上连续,在(0,)a内可导∴()F x 在[0,]a 上连续,在(0,)a 内可导,()()()F x f x xf x ''=+且(0)()0F F a ==由Rolle 定理,至少(0,)a ξ∃∈,有()0F ξ'= 即()()0f f ξξξ'+=7. 证明:不论b 取何值,方程033=+-b x x 在区间[]1,1-上至多有一个实根证:令()()()()323,33311f x x x b f x x x x '=-+=-=+-()1,1x ∈-时,0,,f f'<故()f x 在区间[]1,1-上至多有一个实根.8. 证明:当1x >时,xe x e >⋅.证明: 令()xf x e x e =-⋅,显然()f x 在[1,]x 上满足Lagrange 中值定理的条ξ∈,使得件,由中值定理,至少存在一点(1,)x()(1)(1)()(1)()f x f x f x e e ξξ'-=-=--即()(1)0f x f >=又即x e x e >⋅9. 证明:当0x >时,112x +>证:()()111022f x x f x '=+==>()()00f x f >=,即有112x +>10. 求证:1,(0,)>+∈+∞xex x证明:令()1,,[0,)xf x e x x =--∈+∞当(0,)x ∈+∞时,()10x f x e '=->故在区间[0,)+∞上,()f x 单调递增从而当(0,)x ∈+∞时,()(0)0f x f >=即1x e x >+或者:证明:()221112!2xf e e x x x x x ξξ''=++=++>+……8分11. 当1>x 时,证明:13>-x. 答案参看课本p148 例6 12. 证明:当0x >时, ln(1).1xx x x<+<+ 答案参看课本P132 例1 13. 设0,1a b n >>>, 证明:11()()n n n n nba b a b na a b ---<-<-.证明:令()nf x x =,显然()f x 在[,]b a 上满足lagrange 定理条件,故至少存在一点(,)b a ξ∈,使得()()()()f a f b f a b ξ'-=- 即1()n n n a b n a b ξ--=-又由b a ξ<<及1(1)n n n ξ->的单增性,得11()()n n n n nba b a b na a b ---<-<-14. 设0a b >>,证明:ln a b b a ba a b--<< 证明:令()ln f x x =,在区间[],b a 上连续,在区间(,)b a 内可导,有拉格朗日中值定理,至少存在一点(),b a ξ∈,使得1ln ln ()a b a b ξ-=-,又因为1110,a b ξ<<<因此,ln a b a a ba b b--<<. 15. 证明恒等式()arcsin arccos ,112x x x π+=-≤≤.证:令()arcsin arccos f x x x =+ 则()f x 在[]1,1-上连续.在()1,1-内有:()0,f x f C '=≡≡令0,,arcsin arccos 22x C x x ππ==+=在()1,1-内成立.再根据()f x 在[]1,1-上的连续性,可知上式在[]1,1-上成立.16. 求函数2y x =的极值点和单调区间. 解:132(1)y x-'=-因此,2y x =在定义域(,)-∞+∞内有不可导点10x =和驻点21x =17. 求函数32535y x x x =-++的单调区间,拐点及凹或凸的区间. 解:23103y x x '=-+,易得函数的单调递增区间为1(,)(3,)3-∞+∞,单调减区间1(,3)3.610y x ''=-,令0y ''=,得53x =. 当53x -∞<<时,0y ''<,因此曲线在5(,]3-∞上是凸的;当53x <<+∞时,0y ''>,因此曲线在5[,)3+∞上是凹的,故520(,)327是拐点18. 试确定,,a b c 的值,使曲线32y x ax bx c =-++在(1,1-)为一拐点,在0x =处有极值,并求曲线的凹凸区间.解:232y x ax b '=-+ 62y x a ''=-(1,1)-为拐点,则062a =- 3a ∴=由0y '=,则2360x x b -+= , 代入0x =,则0b =.11,1a b c c -++=-=曲线为3231y x x =-+, 66y x ''=-. 凸区间为(,1)-∞-, 凹区间为(1,)+∞.19. 求函数()7ln 124-=x x y 的单调区间,拐点及凹或凸的区间.解: 34314(12ln 7)124(12ln 4)y x x x x x x'=-+⋅⋅=-, 易得函数的单调递增区间为13(,)e +∞,单调减区间13(0,)e . ()232112(12ln 4)412144ln 0y x x x x x x x''=-+⋅⋅=>, 令0y ''=,得1x =.当01x <<时,0y ''<,因此曲线在(0,1]上是凸的;当1x <<+∞时,0y ''>,因此曲线在[1,)+∞上是凹的,故(1,7)-是拐点 20. 求函数arctan xy e=的单调区间,拐点及凹或凸的区间.解:arctan 211x y e x '=⋅+>0,因此单调增区间是R , arctan arctan arctan 2222221212(1)(1)(1)xx x x x y e e e x x x ⎡⎤⎡⎤-''=+-=⎢⎥⎢⎥+++⎣⎦⎣⎦, 令0y ''=,得12x =. 当12x -∞<<时,0y ''>,因此曲线在1(,]2-∞上是凹的; 当12x <<+∞时,0y ''<,因此曲线在1[,)2+∞上是凸的,故1arctan 21(,)2e是拐点 21. 求函数1234+-=x x y 的拐点和凹凸区间. 解:3246y x x '=- 2121212(1)y x x x x ''=-=- 令0y ''=,得10x =,21x = 列表 (4分)22. 求函数32391=+-+y x x x 的极值.解:2'3693(1)(3)y x x x x =+-=-+ ''66y x =+ 令0'=y 得驻点:121,3x x ==-.当21x =时,''0,y >取得极小值,其值为4-. 当33x =-时,''0y <,取得极大值,其值为28.23. 求函数23(1)1=-+y x 的极值.解: 226(1)y x x '=-22226(1)24(1)y x x x ''=-+-令0y '=,得1231,0,1x x x =-==(0)60y ''=>,故20x =是极小值点.(1)0y ''±=, 无法用第二充分条件进行判定.在11x =-的附近的左右两侧取值均有0y '<,故11x =-不是极值点. 在21x =的附近的左右两侧取值均有0y '>,故21x =不是极值点. 极小值(0)0y =24. 求函数32(1)(23)=-+y x x 的极值点和单调区间.解:22323(1)(23)4(1)(23)(1)(23)(105)0y x x x x x x x '=-++-+=-++=所以,驻点11x =,232x =-,312x =- 列表∴()f x 在32x =-处取得极大值3()02f -= ()f x 在12x =-处取得极小值127()22f -=- 单调递增区间31(,],[,)22-∞--+∞,单调递增区间31[,]22-- 25. 试问a 为何值时,函数1()sin sin 23=+f x a x x 在3π处取得极值?它是极大值还是极小值?并求此极值.解:2()cos cos23f x a x x '=+()f x在3π处取得极值22121()coscos 03333232f a a πππ'∴=+=⋅-⋅= 23a ∴=即 ()2()cos cos 23f x x x '=+ ()2()sin 2sin 23f x x x ''∴=--222()sin 2sin 2033333f πππ⎛⎫''∴=--=-⋅+< ⎪⎝⎭⎝⎭所以它是极大值,极大值为212()sin sin 33333f πππ∴=+=26. 求函数3223y x x =-在区间[]1,4上的最大值与最小值.解:212660,0,1y x x x x '=-===(舍去x =)()()11,480,f f =-=,故最大值为80,最小值为-1.27.、某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20m 长的墙壁.问应围成怎样的长方形才能使这间小屋的面积最大?解:设小屋长 x m ,宽 y m ,220,102xx y y +==-.2101022x x S x x ⎛⎫=-=- ⎪⎝⎭,100,10S x x '=-==故小屋长10米,宽5米时,面积最大.28.某厂每批生产产品x 单位的总费用为()5200C x x =+(元), 得到的收入是()2100.01R x x x =-(元).问每批生产多少个单位产品时总利润()L x 最大?解:()()()22100.0152000.015200L x x x x x x =--+=-+-()0.0250,250L x x x '=-+==(单位)()0.020L x ''=-<,故250x =单位时总利润最大.-----精心整理,希望对您有所帮助!。
集合论-第三四章习题

价关系又是A上的偏序关系吗?
解:存在,A上的恒等关系就满足。
例2在A={1,2,3,4,6,8,12,24}和B={2,3,4,8,9,10,
11}上定义的整除关系“|”,画出Hasse图,指出最大
(小)元,极大(小)元。
解:如图(a)所示
24
8
最大元:24 最小元:1 8 极大元:24 极小元:1 4
[若|X|=n,结果又如何?]
例4 设X是一个集合,|X|=n,求: (1) X上的二元关系有多少? (2) X上的自反的二元关系有多少? (3) X上的反自反的二元关系有多少? (4) X上的对称的二元关系有多少? (5) X上的反对称的二元关系有多少? (6) X上既是自反的也是反自反的关系有多少?(0) (7) X上既不是自反的也不是反自反的关系有多少? (8) X上自反的且对称的关系有多少? [ “反自反的且对称的关系有多少?”是一样多] (9) X上自反的或对称的关系有多少? (10)X上既是反自反的也是反对称的关系有多少? (11)X上既是对称的也是反对称的关系有多少? (12)X上既不是对称的也不是反对称的关系有多少?
§3 基数及其比较
在抽象地研究集合时,最根本的是考虑集合的
“大小”,而集合中元素的性质是可以不加考虑的。 对给定的集合A和B,它们的“大小”是否相同?哪 一个集合元素“较多”?
对于有限集合来说,集合的“大小”就是集合中
元素的个数,称为集合的基数。基数越大的集合所含 元素的个数越多,也就是说这个集合越大。
1.写出R的关系矩阵; 2.验证(A,R)是偏序集; 3.画出Hasse图; 4.若A上的关系如下:
R={(a,a),(a,b),(a,c),(a,d),(a,e),(b,b),(b,c),(b,e), (c,c), (c,d),(c,e),(d,d),(d,e),(e,e)},则有如何?
电路分析第3、4章习题课

图5
6. 图6 所示线性网络N只含电阻,若IS1=8A, IS2=12A,Ux为80V,若IS1=8A,IS2=4A,Ux为0.求: IS1=IS2=10A时,Ux是多少?
图6
7. 用戴维南定理求图7 电路中流过 20 kΩ电阻的电 流及 a 点电压 Ua.
图7
8. 图8(a)所示电路,输入电压为20V,U2=12.5V, 若将网络N短路,如图(b)所示,短路电流I为10mA, 试求网络N在AB端的戴维南等效电路
+
2U1
- 2V
(a)
-
(b )
图11
12. 如图12所示,RL为何值时能获得最大功率,并 求最大功率。 10 + a + Uoc
2A
UR 20
UR 20 – + - 20V – b
图12
练习
1. 列出图1-1所示电路的网孔方程、节点方程。
+ uS 6 -
R6 2
uS2 +
1 R1
uS1 +
电路分析习题课(3—4章)
1. 电路如图1 所示 用网孔分析法求 I A 并求受控源 提供的功率 PK .
图1
2. 电路如图所示,用网孔分析法求4Ω电阻的功率。
图2
3. 试用结点分析法求解图3中的 U1及受控源的功率。
图3
4. 试列出为求解图4 所示电路中 Uo所需的结点方程。
图4
5. 电路如图5 所示,用叠加定理求Ix
图8
9. 求图9 所示电路的戴维南等效电路。
图9
10. 用戴维南定理求图10所示电路中2A电流源上的电 压U 。
15Ω 5Ω I
15Ω
5I
+
胡寿松《自动控制原理》(第7版)笔记和课后习题(含考研真题)详解(第3~4章)【圣才出品】

第3章线性系统的时域分析法3.1复习笔记本章考点:二阶欠阻尼系统动态性能指标,系统稳定性分析(劳斯判据、赫尔维茨判据),稳态误差计算。
一、系统时间响应的性能指标1.典型输入信号控制系统中常用的一些基本输入信号如表3-1-1所示。
表3-1-1控制系统典型输入信号2.动态性能与稳态性能(1)动态性能指标t r——上升时间,h(t)从终值10%上升到终值90%所用的时间,有时也取t=0第一次上升到终值的时间(对有振荡的系统);t p——峰值时间,响应超过中值到达第一个峰值的时间;t s——调节时间,进入误差带且不超出误差带的最短时间;σ%——超调量,()()%100%()p c t c c σ-∞=⨯∞(2)稳态性能稳态误差e ss 是系统控制精度或抗扰动能力的一种度量,是指t→∞时,输出量与期望输出的偏差。
二、一阶系统的时域分析1.一阶系统的数学模型一阶系统的传递函数为:()1()1C s R s Ts +=2.一阶系统的时间响应一阶系统对典型输入信号的时间响应如表3-1-2所示。
表3-1-2一阶系统对典型输入信号的时间响应由表可知,线性定常系统的一个重要特性:系统对输入信号导数的响应,就等于系统对该输入信号响应的导数;或者,系统对输入信号积分的响应,就等于系统对该输入信号响应的积分,而积分常数由零输出初始条件确定。
三、二阶系统的时域分析1.二阶系统的数学模型二阶系统的传递函数的标准形式为:222()()()2n n n C s s R s s s ωζωωΦ++==其中,ωn 称为自然频率;ζ称为阻尼比。
2.欠阻尼二阶系统(重点)(1)当0<ζ<1时,为欠阻尼二阶系统,此时有一对共轭复根:21,2j 1n n s ζωωζ=-±-(2)单位阶跃响应()()d 211e sin 01n t c t t t ζωωβζ-=-+≥-式中,21arctanζβζ-=,或者β=arccosζ,21dn ωωζ=-各性能指标如下:t r =(π-β)/ωd2ππ1p d n t ωωζ==-2π1%e100%ζζσ--=⨯3.5(0.05)s nt ζω=∆=4.4(0.02)s nt ζω=∆=3.临界阻尼二阶系统(1)当ζ=1时,为临界阻尼二阶系统,此时s 1=s 2=-ωn 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
5.冷凝器中,蒸汽压力为4kPa,x=0.95,试求vx,hx, sx的值;若在此压力下蒸汽凝结为水,试求其容积变 化。
解:查饱和蒸汽表 p=0.004MPa
v ' 0.0010041m3 / kg v '' 34.796m3 / kg
0.26103 J/(kg K)
395.8K
127.2103 J 127.2kJ
(3)对罐内气体共加入总热量
Q Qv Qp 56.84 127 .2 184 .04kJ
讨论:
(1) 对于一个实际过程,关键要分析清楚所进行的过程是什么过程, 即确定过程指数,一旦了解过程的性质,就可根据给定的条件, 依据状态参数之间的关系,求得未知的状态参数,并进一步求 得过程中能量的传递与转换量。
xi
Mi wi
Mi
对成分一定的混合气体,分母为常数,因此摩尔分数取决于其
质量分数和摩尔质量的比值,对于质量分数较大的组元,如果
摩尔质量也很大,那么它的摩尔分数可能并不大。
3
3. 理想混合气体的比热力学能是否是温度的单值函数? 其cp-cv是否仍遵循迈耶公式?
答:不是。因为理想混合气体的比热力学能为: u wiui
由于活塞无摩擦,又能充分与外界进行热交换,故当重新达到热 力平衡时,气缸内的压力和温度应与外界的压力和温度相等。则有
T2 T1 300 K
p2
pb
F2 A
(771 133 .32)Pa
95kg 100 10-4 m2
9.807 m/s
1.96 105 Pa
10
由理想气体状态方程pV=mRgT及T1=T2,可得
p2= 0.20MPa,t2= 260℃时
v2 1.22233m3/kg h2 2990.5kJ/kg s2 7.7457kJ /(kg K)
查h-s图核对
21
V1 mv1 0.5kg 0.48404m3 / kg 0.24202m3 V2 mv2 0.5kg 1.22233m3 / kg 0.61116m3 Q mT s
i
i
4
三、推导题
某理想气体的比定容热容cv=a+bT,其中,a,b为常数, 试导出其热力学能、焓和熵的计算式。
解: cp cv Rg a bT Rg
u
T2 T1
cvdT
T2 (a bT )dT
T1
a(T2
T1 )
b 2
(T22
T12
)
h
T2 T1
c
pdT
T2 T1
(a
bT
Rg
由于,当p<p2=0.7MPa时,阀门不会打开,因而储气罐中的气体质量不 变,有储气罐总容积V不变,则比体积为定值。而当p≥p2=0.7MPa后,阀 门开启,氧气会随着热量的加入不断跑出,以便维持罐中最大压力 0.7MPa不变,因而此过程又是一个质量不断变化的定压过程。
15
(1) 1-2为定容过程 根据定容过程状态参数之间的变化规律,有
h ' 121.30kJ/kg
h '' 2553.45kJ/kg
s ' 0.4221kJ/(kg K) s '' 8.4725kJ/(kg K)
vx 1 x v ' xv '' 33.063m3 / kg sx 1 x s ' xs '' 8.0721kJ/(kg K) hx 1 x h ' xh '' 2432.5kJ/kg
求得: V1 m1v1 0.5kg 0.143m3/kg 0.0715m3
m2
V2 v2
2 v
3 p 1
s6
2.比较:
q123 q143
p2 1
3
T
2
3
4
4
1
v
s7
3.比较
q234 q214
w234 w214
p2
T2
3
3
1 4 v
1
4
s8
四、计算题
1.如图所示的气缸,其内充以空气。气缸截面积A=100cm2,活 塞距底面高度H=10cm。活塞及其上重物的总重量G1=195kg。 当地的大气压力p0=771mmHg,环境温度t0=27℃。若当气缸内 气体与外界处于热力平衡时,把活塞重物取去100kg,活塞将 突然上升,最后重新达到热力平衡。假定活塞和气缸壁之间无 摩擦,气体可以通过气缸壁和外界充分换热,试求活塞上升的 距离和空气对外作的功及与环境的换热量。
第3章和第4章习题课
1
一、判断对错题 1.各种气体的气体常数都相同。 (×) 2.在相同的温度和压力下,各种气体的摩尔体积相同。(√) 3.理想气体热力学能和焓都是温度的单值函数。 (√)
4.理想气体的定压摩尔热容与定容摩尔热容的差值与状态
无关,与气体种类有关。 (×)
5.理想气体的比热容都是常数。 (×)
)dT
(a
Rg
)(T2
T1)
b 2
(T22
T12
)
s
T2 T1
cv
dT T
Rg
ln
v2 v1
T2 (a bT ) dT
T1
T
Rg
ln
v2 v1
a ln
T2 T1
b(T2
T1)
Rg
ln
v2 v1
5
三、作图练习题
1.比较: u12 u13 h12 h13
p2
T
s
1
3
v
s12 s13
q12 q13
0.5kg 260 273 K 7.7457 7.3091 kJ /(kg K) 116.35kJ W Q U m q u m q h pv L
112.73kJ
W Q ? 水蒸汽的热力学能不是温度的单值函数
22
7.如图所示,汽柜和气缸经阀门相连接,汽柜与汽缸壁 面均绝热,汽柜内有0.5kg,2.0MPa,370℃的水蒸气。 开始时活塞静止在气缸底部,阀门逐渐打开后,蒸汽缓 慢地进入气缸,汽缸中的蒸汽始终保持0.7MPa的压力, 推动活塞上升。当汽柜中压力降到与汽缸中的蒸汽压力 相等时立即关闭阀门,分别求出汽柜和汽缸中蒸汽的终 态温度。
压力为0.7MPa。问当罐中温度为285℃,对罐内氧气共加入 了多少热量?设氧气的比热容为定值,cv=0.657kJ/(kg·K)、 cp=0.917kJ/(kg·K)。
解: 这一题目包括了两个过程,一是由p1=0.55MPa,t1=38℃被定容加热 到p2=0.7MPa;二是由p2=0.7MPa被定压加热到p3=0.7MPa,t3=285℃。
1
ln 60 273 300 273 1 1.494
ln V1
ln 1
V2
3
T2 T1
V1 V2
n1
得:
由多变过程计算功公式:
W
m
n
1
1
Rg
(T1
T2
)
100kJ
故
Rg
W (n 1) m(T1 T2 )
100 (1.494 1) 2(573 333)
0.1029kJ/(
kg K)
T2
T1
p2 p1
(273
38) 0.7 0.55
395 .8K
该过程吸热量为:
Qv
m1cv T
p1V RgT1
cv (T2
T1)
0.55106 Pa 0.15m3 0.26103 J/(kg K) 311K
0.657103 J/(kg
K)
(395.8K-
311K)
56.84103 J 56.84kJ
h3
m1u1 m1
m2u2 m2
24
25
查h-s图
p1 2.0MPa t1 370oC h1 3175kJ/kg v1 0.143m3/kg s1 7.01kJ/(kg K)
p2 0.7MPa t2 230oC h2 2910kJ/kg v2 0.320m3/kg s2 7.01kJ/(kg K)
相对容积变化率
vx 33.063 32931 v' 0.001004
20
6. 汽缸-活塞系统内有0.5kg,0.5MPa,260℃的水蒸 气,试确定缸内蒸汽经可逆等温膨胀到0.20MPa作的功 与热量。 解:查过热蒸汽表 p1= 0.5MPa,t1= 260℃时
v1 0.48404m3 / kg h1 2980.8kJ/kg s1 7.3091kJ /(kg K)
12
2. 2kg的气体从初态按多变过程膨胀到原来的3倍,温度从
300℃ 下 降 至 60℃ , 已 知 该 过 程 膨 胀 功 为 100kJ 自 外 界 吸 热
20kJ,求气体的cp和cv各是多少?
解法1:由题已知:V2=3V1,由多变过程状态方程式
ln T2 n 1 T1
ln V1 V2
n
ln T2 T1
23
解: 取全部蒸汽为系统: 流入=0;流出=W ;内增= Δ U
0 W U
U m2u2 m1u1 m1 m2 u3 0
W pV pm1 m2 v3
m1u1 m2u2 m1 m2 u3 m1 m2 pv3
m1u1 m2u2 m1 m2 u3 pv3 m1 m2 h3
V2
V1
p1 p2
10-3 m3 294100 Pa 196000 Pa
1.510 3 m3
(3)活塞上升距离
H (V2 V1) / A (1.5103 1.0103) /(100104 ) 5102 m 5cm