肌电原理与应用

合集下载

肌电图在运动员训练监测中的应用

肌电图在运动员训练监测中的应用

肌电图在运动员训练监测中的应用摘要肌电图(Electromyography,简称EMG)是一种通过记录肌肉电活动来评估神经肌肉功能的技术。

近年来,随着科学技术的发展,肌电图在运动员训练监测中的应用越来越广泛。

本文旨在探讨肌电图在运动员训练监测中的具体应用,以期为运动员的训练提供科学依据。

1. 引言运动员在训练过程中,肌肉的疲劳、损伤和过度训练等问题时有发生。

为了确保运动员的训练效果和预防运动损伤,对运动员进行实时监测显得尤为重要。

肌电图作为一种无创、实时、定量的监测手段,在运动员训练监测中具有很高的应用价值。

2. 肌电图原理肌电图是通过表面电极或针电极记录肌肉电活动的一种技术。

肌肉在收缩时,神经末梢会释放出电信号,这些电信号通过肌纤维传递,最终引起肌肉收缩。

肌电图可以记录这些电信号,并通过计算机处理,得到肌肉活动的相关信息。

3. 肌电图在运动员训练监测中的应用3.1 评估肌肉疲劳肌肉疲劳是运动员训练过程中常见的问题。

肌电图可以通过分析肌肉电活动的变化,评估运动员的肌肉疲劳程度。

在训练过程中,当肌肉疲劳发生时,肌电图可以实时监测肌肉电活动的变化,为教练员提供调整训练计划的依据。

3.2 预防运动损伤运动损伤是运动员训练过程中的一大隐患。

通过肌电图监测,可以及时发现运动员肌肉功能异常,评估运动损伤风险。

在训练过程中,教练员可以根据肌电图监测结果,调整训练强度和方式,降低运动损伤的发生率。

3.3 提高训练效果肌电图可以帮助教练员了解运动员的肌肉活动情况,从而制定更加科学的训练计划。

通过肌电图监测,教练员可以了解运动员在训练过程中肌肉的发力情况、协调性以及肌肉力量等方面的信息,为运动员提供有针对性的训练建议。

3.4 评估神经肌肉功能肌电图可以评估运动员的神经肌肉功能,包括肌肉激活程度、肌肉协调性等。

通过肌电图监测,教练员可以了解运动员在训练过程中神经肌肉的适应情况,为运动员的训练提供科学依据。

4. 结论肌电图作为一种无创、实时、定量的监测手段,在运动员训练监测中具有很高的应用价值。

表面肌电的原理与应用

表面肌电的原理与应用

表面肌电的原理与应用1. 引言肌电图(electromyogram,EMG)是记录肌肉活动的一种方法,通过检测肌肉表面的电活动来分析肌肉的收缩情况。

表面肌电(surface EMG,sEMG)是指通过电极贴附在肌肉表面来获取肌电信号的一种方法。

本文将介绍表面肌电的原理和它在医学和科学研究中的应用。

2. 表面肌电的原理表面肌电是通过贴附在肌肉表面的电极来检测肌肉产生的电信号。

当肌肉收缩时,肌肉纤维会发生电活动,这些电活动可以在肌肉表面被电极捕捉到。

表面肌电信号主要包括两种类型的活动:肌电阶跃和肌电波形。

•肌电阶跃:肌电阶跃是指肌肉在开始收缩时的电信号变化,通常表现为一个电压阶跃。

肌电阶跃的幅度和速度可以反映肌肉收缩的强度和快慢。

•肌电波形:肌电波形是指肌肉收缩过程中的电信号变化,通常表现为一个周期性的波形。

肌电波形的形态可以反映肌肉收缩的时程和模式。

表面肌电信号在获取后可以进行信号处理和分析,以提取相关的特征参数和信息。

3. 表面肌电的应用3.1 生物医学研究表面肌电在生物医学研究中有广泛的应用。

它可以用于研究肌肉生理功能,如肌肉的力量和疲劳特性。

通过分析表面肌电信号,可以评估肌肉的力量和稳定性,并了解肌肉的疲劳程度。

表面肌电还可以用于研究肌肉运动控制和协调,如运动技能的学习和训练。

3.2 运动医学表面肌电在运动医学中有重要的应用价值。

它可以用于评估肌肉功能和运动性能,以及运动损伤的康复。

通过分析表面肌电信号,可以判断肌肉的活动模式和协调性,发现潜在的运动损伤风险。

表面肌电还可以用于指导运动康复训练,根据肌电信号的变化调整训练计划,促进康复效果。

3.3 人机交互表面肌电在人机交互领域也有广泛的应用。

通过捕捉肌电信号,可以实现人体姿势和手势的识别。

通过分析表面肌电信号,可以识别人体肌肉的活动模式,并将其转化为相应的控制指令,实现与计算机、智能设备的交互。

3.4 生物反馈训练表面肌电也可以被应用于生物反馈训练中。

肌电原理与应用

肌电原理与应用
肌电技术可用于肌肉疾病、神经损伤等疾病的 诊断和评估。
康复治疗
通过肌电信号的监测和反馈,帮助患者进行有 针对性的康复训练。
运动科学
在运动训练和比赛中,肌电技术可用于分析运动员的肌肉活动和疲劳状况。
未来发展方向
便携化与智能化
研发更小型、便携的肌 电设备,集成智能化分 析功能,提高用户体验 。
多模态融合
将肌电与其他生物电信 号(如心电、脑电等) 进行融合,提高信号的 准确性和应用范围。
个性化与定制化
针对不同个体和需求, 定制个性化的肌电设备 和方案,提高应用效果 。
THANKS
感谢观看
信号处理
采集到的肌电信号需要进 行放大、滤波和数字化处 理,以便进一步分析和应 用。
干扰排除
在测量过程中,需要排除 其他干扰信号的干扰,如 电磁噪声和电极接触噪声 等。
02
CATALOGUE
肌电的应用
医学诊断
肌肉疾病诊断
肌电图可以检测肌肉的电活动,对于诊断肌肉疾病如肌无力、肌萎 缩等具有重要意义。
了解肌电原理有助于理解肌肉活动的机制,为医学、体育等领
域提供重要依据。
肌电原理的应用领域
医学诊断
通过检测和分析肌电信号,可 以对神经肌肉疾病进行诊断。
康复医学
利用肌电信号评估肌肉功能, 指导康复训练,促进患者恢复 。
运动科学
在运动训练中,肌电信号可以 用于监测肌肉疲劳、力量和爆 发力等指标。
人机交互与假肢控制
神经传导检测
通过测定神经传导速度和潜伏期,可以评估神经功能和诊断神经性 疾病。
疼痛评估
肌电信号可以反映肌肉的紧张度和疼痛程度,有助于评估疼痛和治疗 疼痛。
生物反馈

肌电图的基本原理及临床应用 PPT

肌电图的基本原理及临床应用 PPT
肌纤维数量减少 肌细胞膜损害 。。。。
➢ 常在神经损害后2-3周出现
测定指标
➢ 插入电位 ➢ 自发电位(静息) ➢ 运动单位电位(MUP,小力收缩) ➢ 募集电位(大力收缩)
自发电位
正常的自发电位:终板噪音及终板电位
特点:Sea shell声音;疼痛但动针后消失 机制:非传导的终板除极, 单个Ach 量子随机释放引起的
➢ MCV异常,不一定就是神经性损害
➢ 肌源性损害:能够出现CMAP波幅降低 ➢ 肌无力综合症(Lamber-Eaton):全身性CMAP波幅降低
➢ 上下肢运动传导都异常,考虑是全身性疾病
➢ 周围神经病 ➢ 运动神经元病
➢ 双上肢运动传导异常,一定要做下肢。 ➢ 一侧肢体传导异常,一定要做对侧 ➢ 单侧肢体一条N异常,除了做同侧的其她神经
观察指标
➢ 潜伏期/传导速度 ➢ 波幅
判断标准
➢ 传导速度降低超过正常值的20%,潜伏期延 长超过正常值的高限。
➢ 波幅下降,低于正常值的低限 ➢ 意义:
➢ 髓鞘损害:传导速度降低、潜伏期延长 ➢ 轴索损害:CMAP波幅降低
感受神经的测定
➢ 顺向性检测:刺激远端神经,在近端神经干记 录动作电位(SNAP)
异常自发电位:
纤颤电位 正锐波 肌强直放电
临床意义
➢ 纤颤电位:
➢ 见于失神经后两周。正常人1处自发电位占4、2%。 ➢ 意义:失神经;肌营养不良:肌肉坏死继发的失神经所致;
肌炎:肌膜的应激性↑。
➢ 正锐波:意义同纤颤波 ➢ 肌强直放电:见于先天性肌强直
运动单位电位(MUAP)
肌肉轻度自主收缩时的电活动
➢ 逆向性检测:
正中神经感受检测:刺激指I、III、IV,在腕部记录

肌电图临床应用课件

肌电图临床应用课件

肌电图临床应用课件肌电图(Electromyography,简称EMG)是一种用于检测肌肉电活动的生理学方法,通过记录肌肉收缩时产生的电位变化,可以帮助医生判断肌肉、神经系统或神经-肌肉连接是否存在异常。

在临床诊断和治疗中,肌电图具有广泛的应用,可以帮助医生准确诊断疾病、评估治疗效果以及指导康复训练。

一、肌电图原理肌电图是通过将导电粘贴电极或针电极插入患者肌肉组织中,记录肌肉发出的生理电位来反映肌肉的活动情况。

正常肌肉在休息状态下也会有一定的电活动,称为静息电位。

当肌肉受到神经冲动或自发激活时,会产生动作电位,表现为一系列电位波形。

通过测定这些波形的形状、幅度、时程等参数,可以判断肌肉活动的异常情况。

二、肌电图临床应用1. 神经肌肉疾病诊断:肌电图可以帮助医生鉴别运动神经元疾病、神经-肌肉传导障碍和神经-肌肉连接疾病等不同类型的疾病。

例如,通过检测运动神经元疾病患者的肌电图波形变化,可以明确诊断肌无力、肌肉病变等疾病。

2. 评估神经肌肉功能:肌电图可以在手术前后或治疗过程中对患者的神经肌肉功能进行动态监测,评估治疗效果以及疾病的进展情况。

例如,对于脊髓损伤患者,可以通过肌电图检测患者的肌肉功能恢复情况,指导康复训练方案。

3. 针灸治疗效果评估:肌电图还可以用于评估针灸治疗效果,通过监测患者接受针灸治疗后的肌电图变化,可以客观反映针刺对肌肉功能的影响,指导针灸治疗的方向和进程。

4. 运动损伤康复监测:对于运动员或者运动损伤患者,肌电图可以帮助医生了解受损肌肉的康复情况,指导运动康复训练的方案设计,以提高运动员的康复速度和效果。

5. 重症监护患者神经肌肉功能监测:在重症监护病房中,肌电图可以用于监测患者的神经肌肉功能情况,及时评估并预防并发症的发生,提高患者的生存率和康复率。

三、肌电图的局限性尽管肌电图在临床应用中有着广泛的用途,但也存在一定的局限性。

例如,肌电图检测结果受到多种因素的影响,如操作技术、测量环境、患者情绪状态等因素会影响测试结果的准确性。

肌电图的原理及应用

肌电图的原理及应用

肌电图的原理及应用1. 什么是肌电图肌电图(Electromyogram,简称EMG)是记录肌肉电活动的一种检查方法。

它通过采集肌肉收缩产生的电信号,并将其转化成可视化的波形。

肌电图可以帮助医生判断肌肉功能异常以及相关的神经疾病。

2. 肌电图的原理肌电图的原理基于肌肉收缩时产生的电生理活动。

肌肉收缩时,肌纤维中的神经冲动会引发肌纤维的膜电位变化,即产生肌电信号。

这些肌电信号通过电极采集并放大,最后转换成肌电图。

2.1 肌电信号的采集肌电信号的采集需要使用肌电电极,通常分为表面电极和插入电极两种。

表面电极通过贴在皮肤上收集肌电信号,适用于浅表肌肉的检测;插入电极则需要插入到肌肉组织内部,适用于深层肌肉的检测。

2.2 肌电信号的放大采集到的肌电信号通常非常微弱,需要经过放大才能被准确地记录和分析。

放大器可以将微弱的电信号放大成适合于测量和分析的幅度。

2.3 肌电信号的转换放大后的肌电信号通过模数转换器(A/D转换器)转换成数字信号,并以数字形式存储在计算机或数据记录仪中。

这样,肌电图就可以通过软件进行进一步的处理和分析。

3. 肌电图的应用肌电图在医学和生理学研究中有着广泛的应用。

下面列举了几个常见的应用领域:3.1 临床医学肌电图在临床医学中用于评估肌肉功能和神经疾病的诊断。

例如,对于患有肌无力、多发性硬化症和帕金森病等疾病的患者,肌电图可以帮助医生判断病情和疾病的进展。

3.2 运动科学肌电图被广泛应用于运动科学领域。

通过对运动过程中肌肉活动的监测和分析,可以了解肌肉的疲劳程度、运动姿势的正确性以及改进运动技术的方法。

3.3 生物反馈治疗肌电图还可以应用于生物反馈治疗。

生物反馈治疗通过监测和反馈肌肉活动,帮助患者学会控制肌肉的紧张程度和放松技巧。

这种治疗方法常用于减缓焦虑、缓解头痛和治疗运动障碍等领域。

3.4 运动康复肌电图在运动康复中也扮演着重要的角色。

通过监测受伤运动员康复过程中的肌肉活动情况,可以评估康复进展并设计个体化的康复方案。

肌电生物反馈疗法

肌电生物反馈疗法

肌电生物反馈疗法肌电生物反馈疗法是一种非常有效的治疗方法,可以帮助人们控制身体的自主神经系统,缓解或改善各种心身疾病。

它通过监测和反馈肌肉活动的电信号,帮助患者调整自己的身体反应,从而带来身心的舒适和健康。

在本文中,我们将探讨肌电生物反馈疗法的原理、应用和益处。

肌电生物反馈疗法的原理是基于人体肌肉活动的电信号。

人的肌肉活动会产生微弱的电信号,这些信号可以通过肌电传感器捕捉到。

通过将这些信号转化为可视化或听觉化的反馈,患者可以观察到自己肌肉活动的变化,并尝试调整或控制这些活动。

通过长时间的训练,患者可以锻炼自己的肌肉控制能力,从而改善身体各个系统的功能。

肌电生物反馈疗法的应用范围非常广泛。

它可以用于治疗焦虑症、抑郁症和其他心理疾病。

通过监测患者的肌肉活动,医生可以帮助他们找到放松的方法,减轻紧张和焦虑的症状。

此外,肌电生物反馈疗法还可以用于治疗头痛、慢性疼痛和睡眠障碍。

通过调整患者的肌肉活动,可以减轻疼痛和改善睡眠质量。

肌电生物反馈疗法的益处不仅限于身体健康,还可以改善个体的心理健康和生活质量。

当我们感到紧张或焦虑时,身体会做出一系列自主神经系统的反应,例如心率加快、肌肉紧张和呼吸加快。

通过肌电生物反馈疗法,我们可以学会自我调节和放松身体,减轻这些身体反应。

这种方法不仅有助于改善心理健康,还可以提高个人的应对能力和应对压力的能力。

肌电生物反馈疗法的训练是一个渐进的过程。

在最初的阶段,患者通常会在医生或治疗师的指导下进行肌肉活动的监测和调节。

他们会通过观察反馈信号的变化来学习如何调整肌肉的活动。

随着训练的进行,患者可以逐渐学会自我调节,不再需要外部反馈。

这种自我调节的能力可以在日常生活中应用,帮助患者更好地处理各种应激情况。

虽然肌电生物反馈疗法在治疗许多疾病和症状方面表现出色,但它并不适用于所有人。

有些人可能对肌电传感器敏感或反应不佳,无法准确地捕捉肌肉活动。

此外,肌电生物反馈疗法需要耐心和坚持,训练的效果可能在个体之间有所差异。

3-肌电图

3-肌电图
柯 菲 因 (Chaffin) 等 人 发 现 当 肌 肉 用 40%MVC以下强度收缩时,肌力与肌电呈 线性关系。60%MVC以上强度时,肌力与 肌电也呈线性关系,但此时的直线斜率较大。 而 肌 力 在 40%-60%MVC 时 , 肌 力 与 肌 电 之间的线性关系往往就不存在了。
在匀速屈肘运动中肌张力与IEMG的关系 A 的心收缩 B 离心收缩
频率范围:0 500 Hz
主要频率范围: 50 – 150 Hz
二、利用肌电图研究肌肉疲劳
肌肉疲劳对其肌电活动也会发生变化, 因此可以用肌电来研究肌肉疲劳的发生 及机制。
(1)肌肉工作过程中肌电幅值的变化 肌电幅值是指肌电信号的振幅大小。在
肌电研究过程中,反应肌电幅值的指标 有积分肌电(EMG)和均方根振幅(RMS)。
《中国运动医学杂志》1990年03期 8—17岁儿童少年股外肌肌纤维组成最大等长伸膝力量、
相对肌力及肌围的研究 尹吟青,王立山,王玮,田野,刘沙, 高强 本文用活检一组化方法对153名8~17岁儿童少年(男80 人,女73人)做了股外肌快肌纤维%(FT%)的研究,并同时 测定了最大等长伸膝力量(MVC)、相对肌力(RMVC)及 肌围(活检处腿围,C)。实验发现男、女儿童及全体FT% 均呈近似常态分布。且性别间也无显著差异(P>0.05)。 还发现8~17岁儿童少年的MVC、RMVC及C均随年龄 增长而增大。肌力(MVC及RMVC)与股外肌FT%间只 有低度相关(r=0.23,r=0.30;P<0.05),而肌力(MVC)与肌围 间却有密切相关(r=0.69,P<0.01)。
在肌肉等长收缩至疲劳的研究过程中发现,在一定的范 围内,肌电幅值随着肌肉疲劳程度的加深而增加。
不同持续时间股直肌、股外肌IEMG的增长情
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

影响运动单位电位的因素: ② 运动单位中的肌纤维的密度和运动单位的 大小 电位的幅度不仅和活动的肌纤维的距离有关, 而且也取决于参与活动的肌纤维的数量。因此, 运动单位电位的波幅是肌纤维密度大小的尺度。 运动单位电位的幅度还同运动单位的大小有关。
影响运动单位电位的因素: ③ 肌肉的收缩程度 肌肉的收缩程度不同运动单位电位的电压也不同, 轻度肌肉收缩时肌电电压较低,收缩程度加大时,电 压增加。这是由于肌肉轻度收缩时,一般只动员少数 兴奋阈值较低的运动单位参与工作。这些运动单位一 般属于慢肌运动单位,兴奋时其电位幅值较低。收缩 程度加大时,往往可动员阈值较高的运动单位参与工 作。这些运动单位一般是快肌运动单位,兴奋时其电 位幅值较高。另外,肌肉进行较大强度收缩时,肌纤 维往往产生同步活动,而使肌电电位幅值加大。
影响运动单位电位的因素: ⑦ 年龄 随着年龄的增长运动单位电位时限增大。 ⑧ 肌肉的机能状态 肌肉疲劳时肌电幅度升高,疲劳初期运动单 位电位时限缩短,这是因为疲劳时运动单位同步 放电的结果。在肌肉过度疲劳时,肌肉内环境紊 乱,机能下降,可使动作单位的产生与传导受阻, 造成运动单位的时限增大。
2 骨骼肌电活动的引 导与测试
针电极(也叫插入电极) 由于记录肌电的目的不同,针电极又分为许 多种,即同心针电极、双心针电极、单针电极、 多道针电极。 ⑴ 同心针电极 这种电极的直径一般为0.3-1mm。用于记录骨 骼肌动作电位的针电极直径一般为0.5-0.6mm,主 电极的斜面积为0.07平方毫米。如果进行单肌纤维 的肌电检查,所用的针电极的主电极面积要求为 0.005-0.001平方毫米。
猫的骨骼肌肌纤维的静息电位为-79.5毫伏; 鼠的骨骼肌肌纤维的静息电位为-99.8毫伏; 豚鼠的骨骼肌肌纤维为-85.5毫伏; 小白鼠的骨骼肌肌纤维为-61.0~-88.9毫伏; 人类骨骼肌肌纤维为-65~-87.4毫伏。
1.1.2 动作电位
肌纤维兴奋时,产生的可传导的电位变化称为动作电位。
动作电位的幅度为100~120毫伏,持续时间为2~4毫秒。 细胞内记录的动作电位为单相负波,波幅为100-120mv
针电极 ⑵ 双心针电极 用这种电极可记录较小范围内的肌肉电变化。 可引导单个运动单位的电位。用双心针电极所测 出的运动单位电位一般比用同心针电极引导的范 围更小。所记录的电位在两电极间的距离小于 0.5mm时,波幅比同心针电极为小,如果间距大于 0.5mm,则大于同心针电极。由于两引导电极的表 面积相等,在测量时这种电极可获得较好的共膜 抑制比。
影响运动单位电位的因素: ④ 电极的种类 用双心针电极所引导的动作电位电压较同心 针电极高。 ⑤ 电极离活动肌纤维的距离 电极离活动的肌纤维越近电压越高,反之就 越低。 ⑥ 缺氧和低温 温度下降和缺氧时,肌电电压下降。增加运 动单位电位时限。温度改变1°C时运动单位电位 时限可增加10--30%。
埋入电极 将一细的金属细丝埋入肌肉内就可进行肌 电记录。这种电极的优点是,可引导出深层肌 肉的电位变化,引导的范围比同心针电极广, 而比表面电极的引导范围小。用埋入电极可引 导出多个运动单位电位。
1.3ቤተ መጻሕፍቲ ባይዱ运动单位电位 运动单位电位的波形 根据运动单位电位离开基线的次数 可将其分为单相、双相、三相及多相波。 正常肌电图的三相波占80%,单相波占 15%,多相波占5%。
影响运动单位电位的因素: ① 电极与肌纤维的相对距离、方向和位置 运动单位电位的波形与针电极和活动的肌纤维的相对距 离、方向及位置不同有关。
针电极 ⑶ 普通针电极 记录时将电极插入肌肉中作双极引导,无关电极 可用一表面电极并接地即可。也可用两个针电极同时 插入肌肉内进行双级引导。 ⑷ 多导针电极 在一个针管内装有许多根相互绝缘的金属丝。每 根金属丝的末端间隔相等的距离排列在针管开放的一 侧。各金属丝作为引导电极,针管作为辅助电极。
针电极的优点是: ①可引导运动单位甚至单个肌纤维的电位变化; ②能研究肌肉内深部某一束肌纤维的功能。 不足是: ①所测试的区域小,不能反应整块肌肉的机能状 态; ②会造成一定程度的损伤,并会产生疼痛; ③不适合测量运动时的肌电变化。
持续时间较长;细胞外记录的动作电位为双相波,波幅为 1.8mv,明显低于细胞内记录。
1.2 正常的肌电活动 1.2.1 电静息 正常骨骼肌完全放松时没有电活 动,所描记出的肌电图表现为一条直 线,称为电静息。
1.2.2 插入电位(插入电活动) 插入电位--当插入电极或移动已插入肌肉的电极 时,可出现一些持续时间很短、波幅很低的电位变化。 这种电位变化称为插入电位或插入电活动。 插入电位的时限为1-3ms,波幅为100μv。插入电 活动的持续时间较短,平均持续时间为300ms。当电 极停止移动后插入电位即消失。
1.2.3 终板电位
在终板区进行肌电记录,肌肉不受到刺激也可出现自发电 活动。这些电活动以终板噪声和终板电位的形式出现。
终板噪声的特点是基线不稳定。出现终板噪声时,如果轻 轻移动电极常可出现单个的终板电位。终板电位呈单相或双 相。终板电位的幅度可达250μv,其时限为1-5ms。终板噪声 就是来源于远距离的终板电位。
肌电原理与应用
肌电与肌电图的概念
肌电--骨骼肌兴奋时,由于肌纤维动作 电位的产生、传导和扩布,而发生电位变化 称为肌电。
肌电图--用适当的方法将骨骼肌兴奋时 发生的电位变化引导、记录所得到的图形, 称为肌电图(electromyogram, EMG)。
1 骨骼肌的电活动
1.1 骨骼肌的静息电位与动作电位 1.1.1 静息电位 正常骨骼肌纤维在静息状态下肌纤维膜内外 存在电位差,膜内为负,膜外为正,这一电位差 称为静息电位。
2.1 肌电的引导
Piper用表面电极引导出了骨骼肌随意收缩时的肌电 Adrian和Bronk(1926)发明了同心针电极,并引导出了 运动单位电位。 在此基础上Basmajian等又发展为诱导型针电极。 Buchthal等再进一步发展为多导电极。 另外,用微电极引导单肌纤维的电活动也被广泛应用。 引导肌电的电极可分为两大类,一类是针电极,另一 类是表面电极。
相关文档
最新文档