油气地球化学(正构烷烃)调查研究方法综述

油气地球化学(正构烷烃)调查研究方法综述
油气地球化学(正构烷烃)调查研究方法综述

油气地球化学(正构烷烃)调查研究方法综述

摘要:正构烷烃是生油岩和原油的一种主要化学组分,具有多种成因和来源,其组成和碳数分布能反映有机质类型、沉积环境性质和热演化程度[]1。本文在参考大量国内外文献的基础上,对正构烷烃在原油中的分布特征及其地球化学意义进行了综合分析及浅显的阐述。

关键词:生物标志化合物、正构烷烃、分布特征、地球化学意义

1正构烷烃在原油中的分布特征

在没有遭受生物降解作用改造的情况下,正构烷烷烃系列无疑是原油中的主要组成部分[]9,其含量一般占原油的15~20%。高者:如我国华北地区高蜡原油正烷烃含量可高达38~40%(占饱和烃含量的87~91%)。低者:如华北地区、南海中均发现有正烷烃含量占饱和烃的1~4%的原油。

一般的沉积地层中正构烷烃多为奇碳数优势分布[]13

12-,我国大部分陆相生油岩及原油具有这样的地球化学特征。而咸水湖相及碳酸岩沉积环境有机质中正构烷烃碳数分布独特,常在C22~C30范围呈偶碳数优势[]14,我国的江汉盆地[]15和柴达木盆地[]16第三系咸水湖相生油岩及其所生原油正构烷烃中也见有这种分布模式。这类正构烷烃的偶碳数优势成因,一般被认为是由偶碳数正构脂肪酸和醇类的还原作用[]17。

据唐立杰对冀东油田部分区块原油正构烷烃的分析,冀东油田原油的正构烷烃相对质量百分含量分布趋势基本相同,但其碳数分布仍可分为3类:(1)原油正构烷烃分布主要表现为单峰分布,其主峰碳在C15附近,各原油样品的相同碳数的正构烷烃的相对质量百分含量相差不大,C15以后的正构烷烃相对质量百分含量随着碳数的增加成降低趋势;(2)主峰碳在C15附近,次主峰碳在C25附近,C15以后的正构烷烃相对质量百分含量随着碳数的增加成降低趋势;(3)M27—29和NPll一X116井的原油表现为生物降解原油特性,各碳数的正构烷烃相对质量百分含量较低且相差不大。

2地球化学意义

正构烷烷烃系列是原油中的主要组成部分,在没有遭受生物降解的情况下,且其分布与组成特征可以提供有关有机质类型、有机质成熟度及烃源岩形成的沉积环境的性质等地球化学信息。

2.1 确定有机质母源

烃源岩正构烷烃的组成可以用来反映母质来源,通常中低分子量正构烷烃主要反映低等水生生物来源,而以C27~C31为主峰的高分子量正构烷烃主要反映高等植物来源[]18。正构烷烃分布特点揭示,海相油页岩具有丰富的菌藻类输入,陆相油页岩原始母质以高份额的陆源高等植物输入为特征。奇碳数优势的C27~C29正构烷烃的碳同位素组成,被作为鉴别湖相和海相地层中起源于不同新陈代谢途径陆生植物的诊断性标志[]2019-,一般认为C3型植物,包

括树木、灌木和寒冷季节生长的水草,其正构烷烃C 13δ值为-25.0%~-38.0%,平均-28.0%;

C4型植物,主要是温暖季节生长的水草,其正构烷烃C 13δ值为-16.0%~-10.0%。

陆源高等植物:正构烷烃主要分布于高碳数部分,即nC27、nC29、nC31和nC33,且有高的奇偶优势;

低等水生生物:如藻类,正构烷烃集中分布于C25以下的低碳数部分,奇偶优势不明显。 低等水生生物富含类脂化合物,正构烷烃中低碳数成分占优势,轻重烃比大,而高等植物则富含蜡,高碳数成分占优势,轻重比小。

2.2 确定沉积环境

当原油或烃源岩的正构烷烃存在偶碳优势时,表明烃源岩形成盐湖或弱碱性的还原性很强的环境。此时的Pr/Ph 常明显低于1。

海相油页岩正构烷烃具有低碳数优势,nC15、nC16或nC17为主峰碳,无明显的奇偶碳数分布,Pr/Ph 比值显示,多数海相油页岩具有姥鲛烷优势,海相油页岩原始有机母质构成中,既有丰富的菌藻类等低等水生生物,还有一定比例的陆生高等植物混合输入的特点,属贫氧—缺氧、弱氧化—弱还原沉积环境;陆相油页岩正构烷烃具有高碳数优势,主峰碳数为nC23或nC29,奇碳数优势突出,属缺氧、强还原湖泊沉积环境[]21

咸水湖相生油岩中正构烷烃系列的偶碳数优势常被认为与其特有的强还原性沉积环境有关。Welteet al 认为偶碳数正构脂肪酸及醇类在这种强还原环境中所经受的还原成烃作用程度超过氧化脱羧作用,以致所形成的正构烷烃系列呈偶碳数优势分布[]17。

2.3 成熟度指标

自20 世纪60年代初期以来,人们一直将正构烷烃OEP 值(或CPI )视为经典的成熟度指标。

2.4 油源地球化学对比

正构烷烃的奇偶优势可以成为油源地球化学对比的有效辅助参数[]27。目前人们在油源对比研究中主要考虑甾、萜烷生物标志物参数的一致性,很少注意正构烷烃分布的相似性。 然而,朱扬明对于柴达木盆地西部第三系原油和生油岩的油源对比研究发现,后者显得尤为重要。其对盆地的油源区确定和油气资源评价具有重要的现实意义[]1

2.5判别正常原油与降解原油

由于生物降解作用,一些正构烷烃被降解损失,碳数较大的正构烷烃就被完全降解,蜡含量偏低,原油特性表现为粘度低和凝固点低,从而可以根据原油的粘度和凝固点来判断原油是

否遭受降解。但这只能起到辅助作用,因为导致原油的粘度和凝固点变低的因素有很多。

CPI =————————————+———————————nC 25+nC 27+nC 29+nC 31+nC 3312nC 25+nC 27+nC 29+nC 31+nC 33nC 24+nC 26+nC 28+nC 30+nC 32nC 26+nC 28+nC 30+nC 32+nC 34

3分析总结

1.正构烷烃是一种重要的生物标志化合物,其是生油岩和原油的一种主要化学组分,具有多种成因和来源。

2.不同来源的有机质,原油或烃源岩正构烷烃碳数范围不同,存在峰态分布特征。有机质的双重输入特征:前峰C15~C21范围的正构烷烃为低等生源的贡献,后峰C23~C35范围的正构烷烃为高等生源的贡献。当成熟度较高时,均表现为单峰态分布特征。

3.中等分子量(nC15~nC21)奇碳数正构烷烃,来源于低等浮游生物(包括细菌和藻类),其正构烷烃分布主要集中在C20以前,以C15 和C17 为主。高分子量(nC25~nC33)奇碳数正构烷烃,经常出现在富含陆源物质的碎屑岩层系中有机质中。其中正构烷烃多以C27、C29、 C31和C33为主,具有明显的奇偶优势。

4.陆源高等植物:正构烷烃主要分布于高碳数部分,即nC27、nC29、nC31和nC33 ,且有高的奇偶优势;低等水生生物:如藻类,正构烷烃集中分布于C25以下的低碳数部分,奇偶优势不明显。

参考文献

1. 朱扬明 苏爱国 梁狄刚等,柴达木盆地咸湖相生油岩正构烷烃分布特征及其成因,GEOCHIMICA,2003年3月,第32卷 第2期.

2. 张海生 倪建宇 周怀阳等,太平洋中部低熟烃的生物标志化合物组成分布及其演化特征,热带海洋学报,2007年1月,第26卷 第1期.

3. 刘东生,郭正堂,韩家懋等.当前国际古全球变化研究的主要科学问题和任务:极地一赤道一极地大断面[J].地学前缘,1997,4:63—69.

4. SHAW P M ,JOHNS R B .The identification of organic in —put sources of sediments from the Santa Catalina Basin using factor analysis[J].Organic Geochemistry ,1986,10:951—958.

5. LU BING ,CHEN RONGHUA ,ZHOU HUAIYANG ,eta1.Oceanic environmental changes of subarctic Bering Sea in recent 100 years :Evidence from molecular fossils[J].Science in China Ser .D ,2005,48(4):555—564.

6. TAGUCHI K .A new conception in kerogen formation advanced recently and its relationships with a petroleum generation model proposed by the present 113414426+-????????+++++++=???? ??i i C i C i C i C i C OEP

puthor[J].Jap Assoc Petr Techn,1992,57(3):274 305.

7. 冯子辉孙春林刘伟等,松辽盆地基底浅变质岩的有机地球化学特征[J].地球化学,2005,34(1):73—78.

8. 李素梅王铁冠张水昌.塔北轮南地区油气成因与成藏探讨[J].西安石油大学学报,2004,19(4):13—23.

9. 包建国朱翠山汪立群,柴达木盆地西部原油地球化学特征对比,石油与天然气地质,2010年6月,第31卷第3期.

10. 索梅刘洛夫王铁冠.尕斯库勒渐新统下部油藏原油成因地球化学[J].石油与天然气地质,2004,25(6):666—670.

11. 建平马安来李贤庆.盐湖盆地未熟一低成熟油地球化学研究[M].北京,地质出版社,2006.

12. 傅家谟盛国英, 中国陆相原油的成因和生物标志物组成特征[J].沉积学报,1991,9(增刊):1~7.

13. 彭立才邵文斌张林等.尕斯库勒油田跃灰l井区E23灰层裂缝预测[J].石油与天然气地质,2003,24(4):391~395

14 卢鸿贾望鲁肖中尧孙永革彭平安.试论轮南地区原油类型多样性的主控因素[J].科学通报.2004年49(增刊1):17—24.

15 李小地.凝析气藏的成因类型与成藏模式[J].地质论评,1998,44(2): 200一206.

16 任拥军周瑶琪查明等.2006.东营凹陷古近系烃源岩成熟度研究及阶段划分[J].中国石油大学学报(自然科学版),30(2):6-10.

17 王永诗金强朱光有等.2003.济阳坳陷沙河街组有效烃源岩特征与评[J].石油勘探与开发,30(3):53-55.

18.任拥军杨景楠邱隆伟等,大王北洼陷烃源岩有机地球化学特征,高校地质学报,2010年3月第16卷第1期.

19.林金辉,伊海生,李勇,等.藏北高原双湖地区中侏罗统海相油页岩生物标志化合物分布

特征及其意义[J].沉积学报,2001,19(2):287~292.

20.王铁冠.生物标志物地球化学研究[M].武汉:中国地质大学出版社,1991年.55~66.

21. 林金辉伊海生邹艳荣,藏北高原海陆相油页岩生物标志化合物对比研究,地球化学,2004年1月,第33卷第1期.

22. Simoneit B R,Crisp P T,Rohrback B G,et al.Chiiean paraffin dirt-

II.Naturai gas seepage at an active site and its geochemicai conseguences [A].Dougias A G,Maxweii J R.Advances in Organic Geochemistry

1979[C].Oxford:Pergamon Press, 1980.171~176.

23. Goutx M,Saiiot A.Reiationship between dissoived and particuiate

fatty acids and hydrocarbons,chiorophyii!and zoopiankton biomass in Viiiefranche Bay,Mediterranean Sea[J].Marine Chem,1980,8:299~318.

24. Kennicutt II M C,Brooks J M.Unusuai normai aikane distributions in offshore New Zealand sediment[J].Org Geochem,1990,15(2):193~197.

25. ten Haven H L,De Leeuw J W,Ruiik tter J,et al.Restricted utiiity of the pristane/phytane ratio as a paleoenvironmentai indicator[J].Nature,

1987,330:641~643.

26.何生叶加仁徐思煌,石油天然气地质学,中国地质大学(武汉),2009年10月.

27.李守军, 正构烷烃、老鲛烷与植烷对沉积环境的指示意义,石油大学学报(自然科学版),1999.23.(5):14~16.

地球化学

题目油气地球化学(正构烷烃)调查研究方法综述

班级

专业

学生姓名

学号

指导教师

天然气水合物地球化学勘查方法

第35卷第3期物 探 与 化 探Vo.l35,N o.3 2011年6月GEOPHY SI CA L&GEOCHE M ICAL EX PLORAT I ON Jun.,2011 天然气水合物地球化学勘查方法 杨志斌,孙忠军 (中国地质科学院地球物理地球化学勘查研究所,河北廊坊 065000) 摘要:天然气水合物是一种潜在的新能源,广泛分布在大陆架边缘的深海沉积物和陆域多年冻土区。地球化学勘查技术作为天然气水合物勘探的重要手段之一,愈来愈受到极大的关注。笔者综合国内外研究现状,分别介绍海域和永久冻土带天然气水合物勘查中应用的主要地球化学方法,并详述各种方法的机理和研究进展。 关键词:天然气水合物;地球化学勘查;海底;永久冻土带 中图分类号:P632 文献标识码:A 文章编号:1000-8918(2011)03-0285-05 天然气水合物是由水和小客体气体分子(主要是甲烷)在低温、高压条件下形成的一种固态结晶物质,俗称 可燃冰 ,广泛分布于大陆架边缘的海底沉积物和陆上永久冻土带中。1967年,前苏联在西伯利亚麦索亚哈油气田区首次发现天然产出的天然气水合物,之后美国、加拿大也相继在阿拉斯加、马更些三角洲等陆上冻土区发现了天然气水合物,获得了大量极宝贵的数据和资料[1-3]。 20世纪70年代末,美国借助深海钻探计划(DSDP)在中美洲海槽9个海底钻孔中发现水合物,自此海洋水合物在科技界引起了日益增长的兴趣,一直保持着一种方兴未艾的势头[4]。 从80年代开始,随着深海钻探计划和大洋钻探计划(ODP)的进一步实施,海洋水合物研究进入了新的发展阶段,地球化学方法也开始运用于水合物的形成标志、赋存特征及成矿气体来源等研究方面。水合物进入了多学科、多方法的综合研究阶段。1995年11~12月,ODP在大西洋西部的布莱克海台专门组织了164航次水合物调查,在994、996、997钻孔均采集到水合物样品,地球化学家对布莱克海台水合物进行了广泛深入的研究[5-6]。 2007年5月我国首次在南海北部钻获水合物实物样品,2008年又在青海木里永久冻土带钻获天然气水合物,使得我国天然气水合物研究进入新的发展阶段。 地球化学作为一种勘查手段,在水合物勘探和开发中发挥着越来越重要的作用。笔者通过广泛调研,总结了目前地球化学在勘查海底和陆域冻土带天然气水合物,应用比较广泛的几种方法,并分别对其机理及研究进展进行了简单的介绍。 1 海底天然气水合物地球化学勘查 海底天然气水合物地球化学的研究范围,涉及水合物组成、沉积物气体及孔隙水的化学成分和同位素组成、气体成因、物质来源、成矿机制、资源量计算、环境变化等方面。 研究表明,海底已发现的天然气水合物中,气体分子以甲烷为主(约占总量的99%),还有少量的乙烷、丙烷、异丁烷、正丁烷、氮、二氧化碳和硫化氢等。因此存在天然气水合物的地区,底层海水、海底沉积物及孔隙水中的甲烷等烃类气体和H 2 S、CO 2 等非烃类气体的含量必然会出现异常[7-8]。根据水合物形成的异常特征,将海底天然气水合物地球化学识别技术分为底层海水烃类异常,海底沉积物气体、孔隙水异常,自生碳酸盐矿物异常,同位素组成异常等[9-10]。 1.1 底层海水的烃类异常 底层海水中甲烷的高异常可能是天然气水合物分解或深水常规油气渗漏所致。水合物的形成、赋存与下伏游离气体处于一种动态平衡状态。当有断裂切穿水合物稳定带,将下伏游离气体带与海底连通时,甲烷气体便会排至海底水体中形成气体羽[11],从而引起底层海水的甲烷浓度异常。例如在H ydrate R idge洋底喷溢的甲烷气体羽中,甲烷含量高达74000 10-9,然而正常底层海水的甲烷含量都小于20 10-9。同时,在底层海水柱状剖面中, 收稿日期:2010-03-30 基金项目:国土资源部公益性行业科研专项经费项目(201111019)和中央级公益性科研院所基本科研业务费专项资金项目(AS2009J04)联合资助

石蜡-(NP-正构烷烃)-MSDS

化学品安全技术说明书 第一部分化学品及企业标识 化学品中文名称:正构烷烃 化学品俗名或商品名:液体石蜡、液蜡、轻蜡、重蜡、正十三烷、PETREPAR C14 PURE;PETREPAR 147,PETREPAR 185 化学品英文名称:NORMAL PARAFFIN 企业名称: 地址: 电话: 传真: 企业应急电话: 技术说明书编码:047 生效日期:1996年6月1日(2003年6月第三版) 第二部分成分/组成信息 化学品名称:正构烷烃 化学分子式:CH3-(CH2)n-CH3, (n: 10-15) 有害物成分:正构烷烃浓度:99.5% CAS No. 90622-47-2 第三部分危险性概述 危险品类别:有害品 侵入途径:眼睛:接触高浓度蒸汽可导致不适 皮肤:长时间接触可导致皮肤干燥、过敏,直至皮肤发炎 吸入:通常情况下,由于本品挥发性小,没有吸入危险。但长时间暴露于高浓度的蒸汽中可导致头晕和头痛 误食:误食本品液体,会影响胃粘膜 健康危害:长时间与本品密集接触可导致过敏、头晕和头痛;慢性危害没有报告 爆燃危险:很低,本品可燃,需加热到本品的闪火点或以上温度,燃烧时会有有毒气体(烟雾和一氧化碳)产生 第四部分急救措施 眼睛:用大量水冲洗15分钟 皮肤:用水和肥皂清洗 吸入:将受害人移到有新鲜空气处,如需要,进行人工呼吸或吸氧并寻求医生意见 误食:不要催吐,应看医生 第五部分消防措施 有害燃烧产物:烟雾和一氧化碳 消防方法:水喷、干化学灭火剂、二氧化碳或泡沫灭火剂 消防防护:在密闭环境下灭火,消防人员应装备带有自呼吸设施和消防服 第六部分泄漏应急处理 陆上泄漏:隔离火源,尽量回收泄漏物,可用沙土吸收,吸收物可按当地规定焚烧或咨询专家处理; 水上泄漏:向其它船舶发出警示,通知港口部门和当地主管政府部门。隔离泄漏区域以避免环境损害。尽可能封堵泄漏并撇取或用适当溶剂吸附泄漏物。 第七部分操作处置与储存 操作:常规操作即可,推荐在通风环境下操作

考试试卷参考答案及评分标准_油气地球化学

一、名词解释(每个2分,20分) 1、沉积有机质 2、稳定同位素分馏 3、有机圈 4、有效烃源岩 5、门限温度 6、氯仿沥青“A” 7、生物标志化合物 8、干酪根 9、大型气田 10、油气源对比 二、填空题(每题1分,10分) 1、原油中很难检测到糖类化合物是因为。 a、被细菌分解; b、进入干酪根无法查其原始面貌; c、原油中含氧化合物很少; d、连结糖类的醚键容易断裂。 2、下列过程属于油藏中原油次生变化的有。 a、聚合作用; b、生物降解; c、蒸馏作用; d、注气开发。 3、奥利烷的主要生源是。 a、高等植物; b、海洋植物; c、被子植物; d、原生动物。 4、正常情况下有机成因天然气中甲烷及其同系物的碳同位素表现为。 a、δ13C1<δ13C2<δ13C3<δ13C4; b、δ13C1>δ13C2<δ13C3>δ13C4 c、δ13C1>δ13C2>δ13C3>δ13C4; d、δ13C1<δ13C2>δ13C3>δ13C4。 5、鉴别生物成因天然气的主要标志是。 a、在天然气组成上主要是CH4,δ13C1重; b、在天然气组成上主要是CH4,δ13C1轻; c、在天然气组成上主要是CO2,δ13C1轻; d、在天然气组成上主要是CH4和CO2,δ13C1重。 6、Pr/Ph是反映。 a、烃源岩沉积环境的指标; b、原油成熟度指标; c、原油次生改造程度的指标; d、母质类型参数。 7、卟啉作为石油有机成因的重要证据之一,它是从原油中分离鉴定出第一个具有 生物成因的化合物。 a、Treibs(1934); b、Serfert(1978); c、Tissot(1974); d、Smith(1954)。 8、年青沉积物中甾类化合物的主要构型是。 a、5α(H)14α(H)17α(H)20R; b、5α(H)14α(H)17α(H)20S; c、5α(H)14β(H)17β(H)20R; d、5α(H) 14β(H)17β(H)20S。 9、在同等条件下,最先进入生烃门限的是干酪根。 a、I型; b、II型; c、III型; d、IV型 10、同一成熟度条件下干酪根的H/C原子比值。 a、III>II>I型; b、II>III>I型; c、II>I>III型; d、I>II>III型。 三、判断改错题(每题1分,共8分) 1、烃源岩评价主要是评价有机质的丰度和类型。 2、镜质体反射率的测定是将样品浸入油中所测得的反射率值。 3、在油气源对比中,样品间的正相关性是样品具有成因联系的必要证据,而负相关性却 是样品之间缺乏亲缘关系的有力证据。 4、油藏受气浸时将产生两极分化,一方面形成凝析气藏,另一方面产生固体沥青沉淀, 从而使储层孔隙度和渗透率降低。 5、III型干酪根只能生气不能生油。 6、随着烃源岩成熟度的增高,生成的油气越来越多,导致可溶烃(残余油气或吸咐烃) 逐渐增多,而热解烃却逐渐减少。 7、凝析油是有机质在高演化阶段所特有的产物。 8、通常情况下,成熟度相当或相近的煤型气碳同位素组成比油型气轻。 四、回答题(每题8分,共40分) 1、论述干酪根分类方法及优缺点?(至少列举3种方法) 2、有机质成烃演化阶段及产物特征? 3、生物标志化合物的主要类型及其在地质研究中的作用? 4、油藏中原油的次生变化类型及其结果? 5、应用化学动力学原理,阐述影响油气生成的主要因素? 五、图谱识别(7分) 标出图示原油饱和烃气相色谱图中Pr、Ph和正构烷烃的碳数分布、指出主峰碳,判断

正构烷烃

正构烷烃 正构烷烃(液体石蜡)是以没有或者柴油馏分为原料,受国际油价及国内成品油价格影响很大。市场上报价的多是重质液蜡,轻质液蜡多自用。主要用来生产直链烷基苯和氯化石蜡、二元酸。主要下游氯化石蜡也是影响正构烷烃价格的主要因素。目前来看,我国进口正构烷烃数量逐年增加,进口价格也在逐年递增,出口数量比较平稳,维稳在1万吨以内。重质液蜡国内市场比较成熟,但轻质液蜡下游市场有待继续开发,近几年国家对环保事业着重关注,化工企业产能扩建有限。 1.1 正构烷烃的基本概念 中文名:正构烷烃、直链烷烃; 俗名或商品名:液体石蜡、液蜡、轻蜡、重蜡等; 英文名:Normal alkane、Normal paraffins; 化学分子式:CH3-(CH2)n-CH3, (n: 10-15); CAS No. 90622-47-2 正构烷烃就是指没有碳支链的饱和烃。正构烷烃主要来源于生物体的脂肪酸、蜡质及烃类物质;碳数小于C20的短链正构烷烃大都来源于水生藻类和微生物,而C22~C32范围的高碳数正构烷烃源于陆源高等植物。 高碳数(C21~C33)奇碳优势正构烷烃常出现于富含陆源高等植物有机质的生油岩中,在C21~C33范围具有明显的奇偶优势。一般认为它们来源于高等植物中的蜡质。 具有偶碳优势的正构烷烃常出现于咸水湖相生油岩和原油中,其偶碳优势成因,一般认为是由偶碳数正构脂肪酸和醇类的还原作用或经碳酸盐矿物催化发生β断裂而来,此外可能还有其它成因。 1.2 正构烷烃的分类及应用 分类 正构烷烃也称液体石蜡(简称液蜡)是指以煤油或柴油馏分为原料,经分子

筛吸附分离或异丙醇-尿素脱蜡,得到的含正构烷烃的石蜡,因常温下呈透明无色或浅黄色液体,故称液体石蜡。根据馏分,可以分为轻质液体石蜡(简称轻蜡)和重质液体石蜡(简称重蜡),烷烃中碳原子数C9~C13者为轻蜡,C14~C16者为重蜡。 应用 主要作为制造直链烷基苯(LAB)的中间体单烯烃。分子筛吸附分离脱蜡的轻蜡产品,正构烷烃含量96%以上。异丙醇-尿素脱蜡的轻蜡产品,正构烷烃含量90%以上。两者的芳烃含量均在1%以下。轻蜡主要作为制造直链烷基苯(LAB)的中间体单烯烃,也可用于增塑剂、氯化石蜡、石油蛋白的生产原料。 目前,我国市场上正构烷烃主要有轻蜡、重蜡等。 正构烷烃适用于生产直链烷基苯、氯化石蜡、月桂二酸、巴西二酸、长链二元酸或高级香料、尼龙塑料等等。 正构十碳烷烃(其它名称:正癸烷、十碳烷、C10、俗称:200#),外观与性状:无色透明液体,有微量气味。不溶于水,可混溶于乙醇、乙醚。主要用作催化剂、溶剂、高档洗涤剂、无毒绿色环保油漆、皮革、橡胶及十碳二元酸用于有机合成,也用于燃料研究,是目前高档绿色电子干洗剂的首选产品。 正构十一碳烷烃(C11)无色液体,不溶于水,可混溶于乙醇、乙醚。是生产十一碳二元酸的主要原料,可作为高档电子行业中清洗剂,主要用于聚酰胺高档工程塑料,是尼龙1011、尼龙1010的主要原料,还可作为高档热熔胶、高档润滑剂和合成橡胶的重要原料,也可应用于设备除锈剂、乳胶制品溶胶剂等、氯化石蜡添加剂、有毒产品隔离剂。 正构十二碳烷烃(月桂烷、C12)无色液体,不溶于水,可混溶于乙醇、乙醚。应用于气雾杀虫剂、农药、高档洗涤日化产品的添加主要原料。衍生产品:十二碳二元酸主要用于聚酰胺高档工程塑料,是尼龙1212、尼龙612的主要原料,还可以制备高级中间体、高档润滑油、高档防锈剂、粉末涂料、热熔胶、合成纤维及其它聚合物、高级油墨制剂中最主要的成分、氯化石蜡添加剂、木材防虫剂,防腐剂、有毒产品隔离剂。 正构十三碳烷烃(C13)无色液体,不溶于水,可混溶于乙醇、乙醚。应用于油漆、橡胶、乳胶生产等行业的溶剂类原料油,是润滑油表面活性剂的主要添

油气地球化学

油气地球化学 1、油气地球化学的定义 应用化学原理,研究地质体(沉积盆地)中生成油气的有机物、石油、天然气及其次生产物的组成、结构、形成、运移、聚集和次生变化的有机地球化学机理及其在勘探中的应用。 2、地球化学的分支学科 (1)元素地球化学; (2)同位素地球化学; (3)流体地球化学; (4)地球化学热力学和动力学; (5)各种地质作用地球化学; (6)有机地球化学; (7)环境地球化学; (8)气体地球化学。 (9)海洋地球化学(10)区域地球化学 3、油气地球化学的研究对象 沉积盆地或地壳中油气、生成油气的有机物及相关物质。 4、油气地球化学研究的主要内容 ? 与沉积作用有关的活性生物有机质及其在沉积、保存和埋藏条件下的演化; ? 石油成因和演化; v 干酪根地球化学 v 可溶有机质地球化学 ? 天然气地球化学; ? 油气地球化学在油气勘探、开发中的应用; v 盆地的油气勘探远景和资源预测 v 油气地球化学勘探 v 油田水地球化学 v 油田开发地球化学

11、有机圈(organosphere):系指地球上古今生物及其形成的有机物,分布和演变的空间。有机碳的循环: (1)生物化学亚循环:为较小的亚循环(碳总量约为3×1012吨) ,其循环周期不超过一百年,包括三个次一级循环: (2)地球化学亚循环:为大的亚循环(碳总量约为12×1015吨),包括沉 积圈中有机质的演化途径,其循环周期以百万年计算,其中也包括三个次级循 环 11、旋光异构 当一个碳原子同时和四个不同的原子或原子团键合时,四个基团在碳原子 的周围会有两种排列方式,它们互为镜像但不能重合,这种立体异构体叫对映体,它们可使偏振光的偏振面发生反向旋转,因而被称为旋光异构。 11、沉积有机质的概念 分布在沉积物或沉积岩中的分散有机质。它们来源于生物的遗体及其分泌 物和排泄物。直接或间接进入沉积物中;或经过生物降解作用和沉积埋藏作用 被掩埋在沉积物中;或经过缩聚作用演化生成新的有机化合物。 11、富沉积有机质的沉积环境 生物高产和缺氧环境共存是富有机质沉积形成的必要条件。 一、.大型深水缺氧湖泊 存在永久性的分层,才能形成湖泊的缺氧环境. (1)富营养、贫营养湖泊 (2)深水是缺氧湖泊发育的重要条件(3)缺氧湖泊的发育与纬度有关。 2.海相缺氧环境(1)上升流形成的缺氧环境 3.沼泽环境沼泽沉积环境是一种成煤的环境 1温暖潮湿的气候和长期停滞的水体条件。 2地形一般比较平坦、低洼;构造上处于缓慢持续下沉状态。 二、有机质的沉积受控于多种因素 主控因素:原始生物产率(营养物、水体分层、光等)和缺氧环境(降雨量、距河口距离、河流的搬运能力)

网湖沉积物正构烷烃分布特征及其记录的环境变化_沈贝贝

网络出版时间:2017-04-24 10:20:27 网络出版地址:https://www.360docs.net/doc/3e6674721.html,/kcms/detail/11.1895.X.20170424.1020.016.html 网湖沉积物正构烷烃分布特征及其记录的 环境变化 沈贝贝1, 2,吴敬禄1,曾海鳌1,张永东1,金苗1 (1. 中国科学院南京地理与湖泊研究所,湖泊与环境国家重点实验室, 南京210008; 2. 中国科学院大学, 北京100049) 摘要:通过对网湖沉积岩芯中正构烷烃含量和组成特征的分析,探讨了网湖近百年来的湖泊环境变化。结 果表明,网湖沉积岩芯中正构烷烃的碳数范围在n-C14 ~ n-C33之间,其中以高碳数组分为主,并具有明显的 奇偶优势,反映了沉积物有机质以大型水生植物和陆生植物贡献为主,较低的2n-C31/(n-C27 + n-C29)比值 指示陆源输入中以木本植物输入为主。根据正构烷烃参数指示的沉积物有机质来源变化特征,近百年来网 湖水体环境变化具有如下3个阶段:1950s以前,网湖与长江水体交换频繁,湖泊水体处于低营养环境状态, 沉积物正构烷烃高/低分子量正构烷烃比值(H/L)和陆/水生类脂物比值(TAR)较高,沉积物有机质主要 来源于陆生植物和大型水生植物,湖泊浮游藻类贡献少;1950~1980年,H/L和TAR值明显下降,中、短链 正构烷烃的比例略有升高,表明陆源植被对沉积物有机质的贡献降低,水生植物和浮游藻类贡献的有机质 增加,但较低的2n-C17 /(n-C23 + n-C25)值表明浮游藻类有机质较低,此时湖泊水体较为稳定,湖泊受长江 水位影响减小,湖泊营养水平有所升高;1980s以来,总体上湖泊受流域人类活动影响明显,湖泊水体营养 水平升高,沉积物正构烷烃表现为H/L和TAR值升高后下降,正构烷烃总量和2n-C17 /(n-C23 + n-C25)比值 显著升高,2000年后尤其明显,表明湖泊沉积物有机质输入增加,其中湖泊浮游藻类贡献明显增加。 关键词:长江中游;网湖;沉积岩芯;正构烷烃;有机质来源;环境变化 中图分类号:P593;X142文献标识码:A 文章编号:0250-3301(2017) DOI:10.13227/j.hjkx.201702062 Distribution of n-alkanes from Lake Wanghu Sediments in Relation to Environmental Changes SHEN Bei-bei1, 2, WU Jing-lu1, ZENG Hai-ao 1, ZHANG Yong-dong1, JIN Miao 1 (1. State Key Laboratory of Lake and Environmental Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China) Abstract: Concentrations and distributions of n-alkanes in Lake Wanghu sediment core were analyzed to investigate the lake environmental changes during the past ~100 years. n-alkanes in the sediments mainly ranged from n-C14to n-C33. The relatively higher concentrations of mid- and long-chain n-alkenes with a strong odd-over-even carbon number predominance indicated organic matter contributions dominated by aquatic macrophytes and terrestrial plants. The lower values of 2n-C31/(n-C27+ n-C29) recorded a kind of landscape dominated by woody plants. Over the past 100 years, the environmental changes of Lake Wanghu can be divided into three stages, based on the organic matter sources inferred from changes of n-alkane parameters in the sediments. Before the 1950s, higher values of terrigenous/aquatic ratio (TAR) and high-/low molecular weight n-alkane (H/L) indicated vascular plant-derived sediments deposited during a low-nutrient, clear-water phase with frequently water exchange between the lake and the Yangtze River. Between the 1950s and 1980s, decrease in values of H/L and TAR, and increase in proportion of mid- and short-chain n-alkanes indicated a shift towards mid and shorter chain components which is probably associated with increasing contribution from macrophytes and 收稿日期:2017-02-14;修订日期:2017-04-14 基金项目:国家自然科学基金项目(41373017,41576171) 作者简介:沈贝贝(1988~),女,博士研究生,主要研究方向为湖泊环境化学,E-mail:shenbeibei0308@https://www.360docs.net/doc/3e6674721.html,

试析烷烃异构化在我国的发展前景

试析烷烃异构化在我国的发展前景 王敏 (辽宁省辽中辽河化工厂,110200) 为适应环境保护的要求,汽油中应增加异构烷烃的量,增加异构烷烃的方法有多种,而异构化则是一种理想的选择,我国炼油工业中尚无异构化装置,应及早的开发和工业化。 3 X% Y. k' w( E关键词:炼油工业烷烃异构化辛烷值% t+ R8 [. }6 _8 O/ | I. A 环境保护的呼声越来越高,汽油无铅化变成现实,炼油企业为此作出了极大的努力。“七五”至“八五”期间,中国石油化工集团公司建设了不少高辛烷值组分生产装置。如催化裂化(主要是催化剂的改进,使催化裂化汽油的研究法辛烷值(RON)达到90以上)、催化重整、烷基化、催化叠合、甲基叔丁基醚(MTBE)等,使我国汽油的辛烷值上了一个台阶,由十几年前的马达法辛烷值(MON)70(相当于RON 76~80)提高到80(相当于RON 90)以上,汽油发动机的压缩比由6左右提高到8左右,汽车百公里油耗下降了20%。汽油的无铅化,使先进的电喷装置和三元催化剂转化器能可靠地应用于现代汽车中,汽车尾气对城市大气的污染得到了初步的解决。但是电喷装置和催化转化器不能解决所有问题,因为发动机采用电喷装置后,燃烧室温度提高,汽油容易在喷嘴、进气阀、甚至燃烧室形成积炭,产生局部高温,尾气中NOx增加。烯烃极容易影响喷油和排放,解决的方法可以有两种,其一是汽油中加入清净分散剂,这已经在国内外大量采用了;其二是减少汽油中烯烃和芳烃的含量。国外新配方汽油都对烯烃和芳烃含量进行了限制,例如美国(各州略有不同)一般新配方汽油要求芳烃不大于25%,烯烃不大于5%。现在一般国内外生产的汽油均达不到此要求,如美国炼油厂重整装置和催化裂化装置多,美国重整汽油和催化汽油各占三分之一,其余三分之一是烷基化油、异构化油(占汽油组分的10%)、加氢裂化汽油,还有2.5%的MTBE。重整汽油含芳烃较多而催化汽油含烯烃较多,所有新配方汽油达不到对烯烃和芳烃的要求。我国汽油组分中催化汽油占75%,直馏汽油约占18%,其余是加氢裂化、重整、焦化汽油、烷基化油和MTBE。我国汽油辛烷值主要由烯烃和芳烃供给。由于理想的汽油组分棗异构烷烃的含量较少,汽油的“绿色度”不高,尾气对环境的污染仍然较大。$ ^# M' B! \: W* T O- k$ {: ?) Q 为了适应环境保护的要求,就要增加汽油中的异构烷烃含量,而异构化是一种理想的选择。通过异构化可以使石脑油的辛烷值提高20~30个单位,如果将正已烷异构化为2,3-二甲基丁烷,辛烷值可以增加74个单位(见表1)。国外C5/C6异构化工艺开展很早,已有近100套装置运行或在建,采用的工艺主要有:①英国石油公司的BP法;②壳牌石油公司和联合碳化物公司的完全异构化法(TIP);③环球油品公司(UOP)的Penex法。采用异构化反应与分离过程联合的所谓“完全异构化”时,产物的研究法辛烷值(RON)可以达到90~92。我国中国石化金陵分公司炼油厂研究所和华东理工大**合开发的GI-50Pd /氢型丝光沸石,C5/C6异构化催化剂性能与美国Hysomer和UOP1-7催化剂类似,1990年通过1 kt/a 中试装置考察,填补了我国在这一领域的空白。在此基础上又研制出CI-154非金属异构化催化剂,其价格仅为贵金属催化剂的四分之一,说明异构化装置的工业化已经基本具备条件。 7 j7 r& P: w; Q8 T4 L 表1 各烷烃辛烷值 组分 RON

第6章 烷烃

第六章烷烃Alkanes 第一节烷烃Alkanes 学习目标Learning objectives ■什么是烷烃? ■如何给烷烃命名? ■烷烃有何特性? 大纲参考:3.1.6 烷烃是饱和的碳氢化合物;这些化合物仅含有碳-碳和碳-氢单键。这些化合物是化学性质最不活泼的有机化合物。它们可被用作燃料和润滑剂,同时也可用作其他多种化合物的起始合成原料。这意味着它们对于工业很重要。烷烃的主要来源是原油。 ■通式(The general formula) 所有链式烷烃的通式是C n H2n+2。碳氢化合物可能是无分支的链式烷烃、有分支的链式烷烃或环状烷烃。 无分支的链式烷烃(Unbranched chians) 例如,戊烷——C5H12: (结构式)(结构简式) 通常将无分支的链式烷烃称为“直链”烷烃,但其C-C-C角度为109.50(见3.9小节)。这意味着碳链实际上并不是直的。在某种无分支的烷烃中,每个碳原子带有两个氢原子,但末端碳原子除外,其上还有一个多余的氢原子。 有分支的链式烷烃(Branched chains) 例如,甲基丁烷——C5H12,这是戊烷的一个异构体: (结构式)(结构简式) 环式烷烃(Ring alkanes) 环式烷烃的通用分子式为C n H2n,因为在环状烷烃中不需要“末端”氢原子。

■如何给烷烃命名(How to name alkanes) 直链烷烃(Straight chain) 烷烃名称来自词根,可告诉我们碳原子的数量,同时后缀-ane表示是一种烷烃,见表1。支链烷烃(branched chain) 当你命名一种带有直链的碳氢化合物时,你必须首先找出最长的无分支链——有时还需要一点智慧,见下面的实例。这里给出了词根名,然后按将前缀:methyl-、ethyl-、propyl-等来命名分支或侧链。最后,添加编号,以表明侧链与哪个碳原子相连。 例如 下面两种碳氢化合物相同,尽管乍一看它们似乎是不同的。 在以上两个结构图中,最长的未分支链(红色)为五个碳原子,因此其词根为pentane。仅有一个碳原子构成的侧链,因此其应命名为methyl-。该侧链与3号碳原子相连,因此其名称应为3-甲基戊烷(3-methylpentane)。 ■结构(Structure) 异构现象(Isomerism) 甲烷、乙烷和丙烷没有异构体,但其后面的烷烃,随着分子中碳原子的数量增加,其可能出现的异构体数量也会增加。例如,丁烷有四个碳原子,就有两种异构体,而戊烷则有三种异构体。 戊烷甲基丁烷2,2-双甲基丙烷 异构体的数量随碳链长度增加而快速增加。葵烷(C10H22)有75种异构体,而C30H62的异构体则超过4百万种。 表1前六种烷烃的名称

正构烷烃管道施工方案

山东######有限公司 正构烷烃项目 工艺管道施工方案 建设单位:山东#########有限公司审核: 批准: 施工单位:山东############有限公司编制: 批准: 山东#####有限公司 201##年##月##日

目录 一、工程概况 (3) 二、编制说明 (3) 三、施工特点 (3) 四、编制依据 (3) 五、总体施工方法 (4) 六、施工技术措施 (7) 七、安全技术措施 (16) 八、施工机具及手段用料 (19)

一、工程概况: 山东######—正构烷烃项目为扩建项目,工艺技术来源于####工程有限公司。火灾报警及消防设施、静电接地和防雷设计均依托原有设施。本装置位于山东#####车间常减压装置西邻,车间办公司南,主框架东西8米,南北10米,管廊在常减压混凝土框架基础底部新增。本项目由#####工程设计有限公司设计。我公司承担其中的钢结构、设备、管道安装、电器仪表安装工程。本工程于20##年##月份开工,于20##年##月份安装完成。 二、编制说明: 本方案是在调研了现有的设计图纸、装置现场、预制场场地,综合考虑其它区域的施工安排,并结合本公司实际情况编制而成的。 本装置区域较小,共有塔器两台,换热器4台,动设备10台。管道主要材质包括不锈钢(022Cr17Ni12Mo2)碳钢(20#),根据现有图纸情况,工作量预计见下表: 三、施工特点: ?施工作业面狭小,由于在管廊底部新增管排,管道安装有较大难度 ?不锈钢管道较多,质量要求高 ?工期紧张,安装高峰期恰逢夏季高温季节,施工难度大。 ?与检修工程处于同一施工时间段,交叉作业多,施工人员需求量大 四、编制依据 ?《工业金属管道工程施工规范》 GB50235-2010 ?《工业金属管道工程施工质量验收规范》 GB50184-2011 ?《石油化工有毒、可燃介质钢制管道工程施工及验收规范》 SH3501-2011 ?《现场设备、工业管道焊接工程及验收规范》 GB50236-2011 ?《石油化工异种钢焊接规程》 SH/T3526-2004 ?《压力容器无损检测》 JB4730-2005 ?《阀门检验及管理规程》 SH3518-2000

油气地球化学复习

一、海相原油的地球化学特征 1、原油的化学性质 国外公认的碳酸盐岩生成的石油特征是:高硫(> 1.0 %), 低API度(20~30),Pr/Ph<1.0,Ph/nC18>1.0,偶碳优势CPI<1.0 2、生物标志化合物特征 ①正构烷烃碳数分布呈单峰态, ②广泛检出C13~C20规则无环类异戊二烯烷烃和C21~C45规则和不规则无环类异戊二烯烷烃。 ③规则甾烷以C29甾烷占优势,一般占40%~60 ④C31~C35升藿烷系列相对较发育,且明显受盐度控制。 ⑤伽马蜡烷为常见的非藿烷骨架型五环三萜烷。 ⑥三环萜烷含量较高 二、陆相原油的地球化学特征 1、原油的性质:原油普遍高含蜡,硫酸盐含量低,具有低钒/镍比(一般小于1)的特点 2、原油的烃类族组成:原油的烃类族组成以烷烃为主,环烷烃次之,芳香烃较少,多属石蜡基原基。 3、生物标志化合物特征 ①饱和烃馏分 检测出C13~C20规则无环类异戊二烯烷烃,并有丰富的甾烷、萜烷类化合物 甾烷类生要由C27~C29甾烷、重排甾烷及4-甲基甾烷组成,此外还有少量的孕甾烷和升孕甾烷。甾类化合物主要为藻类生源产物,但C29

甾烷可能来源于高等植物。在陆相原油中,C29甾烷明显高于C27甾烷 ②芳烃馏分 陆相原油芳经馏分中含有丰富的芳构化生物标志化合物,主要类型有: 芳构化倍半萜类与二萜类:前者只检测出卡达烯,后者仅见惹烯和海松烯,属被子植物树脂生源完全芳构化的生物标志化合物。 芳构化三环萜烷:主要包括m/z181 及m/z209的两个C24~C26二芳三环萜烷和m/z205的C26 ~C28三芳三环萜烷.芳构化三环萜烷是常规三环萜烷芳构化的产物,属于细菌、藻类生源,但它是在酸性氧化环境中形成的,常与陆源有机质有关。 芳构化三萜类:主要是陆生被子植物生源的奥利烷、乌散烷及羽扇烷芳构化的产物,也有微量细菌生源的芳构化藿烷。它们大都是在酸性氧化作用较强的湖相沉积中形成的,与陆源有机质有关。 苯并藿烷:指示细菌生源,是在酸性氧化环境中形成的,在煤系地层及湖相腐殖—偏腐殖泥岩中分布较广泛。 芳构化甾类:仅见C26~C28三芳甾、C27~C29甲基三芳甾及其它微量甾类芳构化产物.陆相原油各类生物标志化合物的形成大都与陆源有机质输入有关。在有大量陆源有机质输入的淡水湖泊中,不仅腐殖质组分急剧增多,而且水介质的酸性氧化作用也明显增强,这种沉积环境的演变既有利于形成陆游生物标志化合物,也有利于各种生物标志化合物的芳构化,甾烷与藿烷的重排现象也较普遍。当然,生物标志化合物的芳构化和重排作用也与有机质的热演化程度有关。 三、生标物应具备的基本特征 1.化合物的结构表明它曾经是或者可能是生物体的一种成分,存在于沉积物中,尤其是在原油、煤、岩石中能够检测到 2.其母体化合物有较高的浓度,其主要结构特征在沉积和早期埋藏过程中具有化学稳定性 3.分子结构有明显的特异性,即具有特殊的碳骨架

正构十三碳烷烃

正构十三碳烷烃、正构十四碳烷烃正构烷烃产品应用: 我公司产品正构烷烃为无色、透明液体,单组分纯度极高,达98%以上,并具有硫含量低、芳烃含量少、溴指数小、稳定性好、无水分和机质等特点。四:正构十三碳烷烃外观与性状无色液体,溶解性不溶于水,可混溶于乙醇、乙醚应用于油漆、橡胶、乳胶生产等行业的溶剂类原料油,是润滑油表面活性剂的主要添加剂。衍生产品十三碳二元酸:主要用于制备高级香料及麝香T、热熔胶及其它黏合剂、也是高档尼龙1313的主要原料。五:正构十四碳烷烃外观与性状无色液体,溶解性不溶于水,可混溶于乙醇、乙醚是生产十四碳烷烃的主要原料,其它应用包括:液体蚊香、大型冲压机的液压油、氯化石蜡、防腐涂料、粉末涂料也可用作高档热熔胶,其衍生产品十四碳二元酸的直链聚酐,是一种非常有用的化工及医药中间体,可用于环氧及丙烯树脂固化剂、聚酯改性添加剂等等。是尼龙1214的主要原料还可用作军用器械、机械部件、汽车管材等。 以上是正构十三碳烷烃、正构十四碳烷烃的详细信息,如果您对正构十三碳烷烃、正构十四碳烷烃的价格、厂家、型号、图片有什么疑问,请联系我们获取正构十三碳烷烃、正构十四碳烷烃的最新信息。 - 类别直链烷烃产品等级优级品

产地/厂商日本含量≥98(%) 包装规格156 密度0.78(g/cm3) 执行质量标准GB 异构十二烷 性能特点: *高度支链化的合成烃类产品,清亮、无色、无味,几乎不含芳烃和硫,对人体无害,易生物降解,无残留感,肤感清爽;蒸发速度非常快,能完全代替挥发性硅油,防水、防汗,适用于干爽型护肤、护发品;相溶性非常好,能溶于硅油、矿物油及其他碳氢化合物和异构烷烃中,密度、粘度小,油感极轻,可改善肤感和油溶性,促进产品的辅展性及涂抹感;作为乳液、醇水体系以及无水体系的滑爽柔软剂;能增进不同体系间的相容性;异构化程度高,安全环保。 推荐应用: *推荐用于各类护肤、防晒、彩妆产品,如眼影、眼线、唇部产品以及其他需要改善涂抹性而又不会有残留感的产品, *适用于卸妆类产品,提供卸妆后的无油和清爽肤感。 技术数据: 项目技术规范典型数据分析方法

正构烷烃消费与需求分析预测

正构烷烃消费与需求分析预测 4.1 正构烷烃消费分析 正构烷烃(通常称为液体石蜡)是一种无色、无味的粘稠液体,是一种重要的化工原料,可以制得一系列化工产品,如氯化石蜡、农药乳化剂、脂肪醇、可被降解的合成洗涤剂、塑料增塑剂、化肥添加剂及化妆品、蛋白浓缩物等。目前还有许多新用途正在开发或即将开发之中。由于新用途的不断出现,加上我国经济的快速发展,其市场潜力巨大。… 我国重液体石蜡主要用于生产氯化石蜡、T50增塑剂、高级洗涤剂、化肥添加剂、皮革加酯剂、阻燃剂及润滑油添加剂等。目前国内重蜡26%用于生产氯化石蜡,22%用于T50增塑剂和PVC润滑剂,4%用于高级洗涤剂、13%用于化肥添加剂、17%用于皮革加酯剂,18%用于妨缎油墨、化妆品、阻燃剂及润滑油添加剂等,其中用于氯化石蜡、T50增塑剂的重液蜡消耗占48%。 轻液体石蜡主要作为制造直链烷基苯(LAB)的中间体单烯烃,也可用于增塑剂、氯化石蜡、石油蛋白的生产原料。 目前我国轻蜡… 目前我国正构烷烃… 目前,我国正构烷烃生产能力约… 2006~2011年我国正构烷烃产、供、需情况见下表和图。 表4.1 2006~2011年我国正构烷烃产、供、需情况表 图4.1 2006~2011年我国正构烷烃产、供、需增长图 4.2 正构烷烃市场需求前景预测 正构烷烃主要作为制造直链烷基苯(LAB)的中间体单烯烃,也可用于增塑剂、氯化石蜡、石油蛋白的生产原料。

4.2.1 用于生产直链烷基苯 直链烷基苯(LAB)为无色液体,相对密度为0.85~0.87;沸点为330℃。工业上所称直链烷基苯(LAB)在习惯上是指适用于作为洗涤剂原料的烷基苯。几乎所有的LAB均通过磺化而转化成直链烷基苯磺酸盐(LAS)用作洗涤剂活性组分。 直链烷基苯的生产首先是制取直链烷烃(又称正构烷烃,俗称轻蜡),然后和苯进行烷基化,制成直链烷基苯。 直链烷基苯主要应用于表面活性剂--烷基苯磺酸盐(LAS ) 的生产,是洗涤剂行业的主要生产原料。直链烷基苯由于其生产成本低,加工、配方和应用性能好及环境安全性高,一直受到洗涤剂行业的青睐。 C10~C13轻液体石蜡(轻蜡)的市场需求目前完全取决于直链烷基苯(LAB)的市场需求,而进入九十年代后,全世界洗涤用烷基苯基本转向使用直链烷基苯,LAB几乎全部转化为直链烷基苯磺酸盐(LAS),成为家用和工业洗涤剂最主要的原材料。据预测全球LAB的需求将以3.7%以上的平均年增长率递增。因此,从世界洗涤剂原料市场的现状和增长趋势看,LAB的主导地位将保持相当长的时间。相应地,C10~C13轻蜡作为LAB的原料,在全球范围内也将保持相应的增长需求。 4.2.2 用于生产氯化石蜡 以正构烷烃为原料,经热氯化法制得氯化石蜡。氯化石蜡可代替部分增塑剂,价廉,且使制品具有阻燃性,广泛用于电缆中,也可用作制水管、地板、薄膜、人造革塑料制品和日用品等。 氯化石蜡是液蜡(轻蜡或重蜡)最主要用途之一,60年代开始以轻蜡或重蜡为原料,间歇热氯化法生产氯化石蜡-52,因产品对PVC的相容性优于氯化石蜡-42,逐步取代氯化石蜡-42用作PVC软制品的辅助增塑剂,也用作润滑油添加剂。 氯化石蜡用于油漆、氯化橡胶和苯乙烯-丁二烯树脂类涂料中,在塑料中,作为增塑剂、阻燃剂、粘结剂、胶结剂和填充剂,另可作为润滑添加剂,同时也

油气地球化学(正构烷烃)调查研究方法综述

油气地球化学(正构烷烃)调查研究方法综述 摘要:正构烷烃是生油岩和原油的一种主要化学组分,具有多种成因和来源,其组成和碳数分布能反映有机质类型、沉积环境性质和热演化程度[]1。本文在参考大量国内外文献的基础上,对正构烷烃在原油中的分布特征及其地球化学意义进行了综合分析及浅显的阐述。 关键词:生物标志化合物、正构烷烃、分布特征、地球化学意义 1正构烷烃在原油中的分布特征 在没有遭受生物降解作用改造的情况下,正构烷烷烃系列无疑是原油中的主要组成部分[]9,其含量一般占原油的15~20%。高者:如我国华北地区高蜡原油正烷烃含量可高达38~40%(占饱和烃含量的87~91%)。低者:如华北地区、南海中均发现有正烷烃含量占饱和烃的1~4%的原油。 一般的沉积地层中正构烷烃多为奇碳数优势分布[]13 12-,我国大部分陆相生油岩及原油具有这样的地球化学特征。而咸水湖相及碳酸岩沉积环境有机质中正构烷烃碳数分布独特,常在C22~C30范围呈偶碳数优势[]14,我国的江汉盆地[]15和柴达木盆地[]16第三系咸水湖相生油岩及其所生原油正构烷烃中也见有这种分布模式。这类正构烷烃的偶碳数优势成因,一般被认为是由偶碳数正构脂肪酸和醇类的还原作用[]17。 据唐立杰对冀东油田部分区块原油正构烷烃的分析,冀东油田原油的正构烷烃相对质量百分含量分布趋势基本相同,但其碳数分布仍可分为3类:(1)原油正构烷烃分布主要表现为单峰分布,其主峰碳在C15附近,各原油样品的相同碳数的正构烷烃的相对质量百分含量相差不大,C15以后的正构烷烃相对质量百分含量随着碳数的增加成降低趋势;(2)主峰碳在C15附近,次主峰碳在C25附近,C15以后的正构烷烃相对质量百分含量随着碳数的增加成降低趋势;(3)M27—29和NPll一X116井的原油表现为生物降解原油特性,各碳数的正构烷烃相对质量百分含量较低且相差不大。

油气地球化学 总结 复习资料

油气地球化学总结复习资料 1、C15~C21主要源于水生生物,C25~C33,成熟度低、高等陆源植物 2、类异戊二烯烃:盐湖相石油形成于强还原环境,具植烷优势和正烷烃的偶碳优势,Pr/Ph< 1、0;湖相烃源岩生成的石油形成于还原环境,Pr/Ph为 1、0~ 3、0;湖沼相的石油形成于弱氧化环境,姥鲛烷优势明显,Pr/Ph> 3、0。在煤系地层中Pr/Ph值很高,Pr/Ph =5~10随着有机质热成熟Pr/Ph值增大,异构烷烃与相应的正构烷烃含量比值下降,Pr/nC17,Ph/nC18明显降低; 3、在石油中最常见的萜烷有m/z191的五环三萜烷(藿烷与非藿烷)。奥利烷被认为是白垩系或更年青时代高等植物的标志物,可能来源于桦木醇和被子植物中的五环三萜烯 4、生物标志化合物的应用 1、母源输入和沉积环境C15~C21主要源于水生生物, C25~C33,成熟度低、高等陆源植物 2、类异戊二烯烃:盐湖相石油形成于强还原环境,具植烷优势和正烷烃的偶碳优势,Pr/Ph< 1、0;湖相烃源岩生成的石油形成于还原环境,Pr/Ph为

1、0~ 3、0;湖沼相的石油形成于弱氧化环境,姥鲛烷优势明显,Pr/Ph> 3、0。在煤系地层中Pr/Ph值很高,Pr/Ph =5~10随着有机质热成熟Pr/Ph值增大,异构烷烃与相应的正构烷烃含量比值下降,Pr/nC17,Ph/nC18明显降低; 2、确定时代 3、成熟作用CPI、OEP/2nC29/(nC28+nC30)P8 74、生物降解利用生物标志化合物能判断原油的生物降解程度,随着生物降解程度的增加,原油的物性将发生明显的变化,原油的密度、粘度增大,胶质和沥青质含量增加,饱和烃遭受生物降解的顺序为:正构烷烃>无环异戊二烯类烷烃>藿烷(有25-降藿烷存在)>规则甾烷>藿烷(无25-降藿烷存在)>重排甾烷>芳香甾类化合物>卟啉 5、油气运移发现随着运移距离的增加,烷烃与芳香烃、正构烷烃与环烷烃的比值增加、长链三环萜比藿烷易于运移,甾烷中αββ 组分比ααα组分易于运移,单芳甾烷比三芳甾烷更易运移,因此,随着原油运移距离的加大,易运移的组分相对富集。 6、油气源对比干酪根石油的形成影响油气生成的因素 1、微生物(成岩阶段形成生物气) 2、温度和活化能与反应速率呈指数关系

相关文档
最新文档