波形产生电路仿真报告
波形发生电路实验报告总结.docx

专业:实验报告姓名:学号:日期:课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:实验名称:波形发生器电路分析与设计实验类型:电路实验同组学生姓名:一、实验目的和要求:桥式正弦振荡电路设计1.正弦波振荡电路的起振条件。
2.正弦波振荡电路稳幅环节的作用以及稳幅环节参数变化对输出波形的影响。
3.选频电路参数变化对输出波形频率的影响。
4.学习正弦振荡电路的仿真分析与调试方法。
B.用集成运放构成的方波、三角波发生电路设计1.掌握方波和三角波发生电路的设计方法。
2.主要性能指标的测试。
3.学习方波和三角波的仿真与调试方法。
二、实验设备:示波器、万用表模电实验箱三、实验须知:1. RC桥式正弦波振荡电路,起振时应满足的条件是:闭环放大倍数大于3,即 R f >2R1,引入正反馈3. RC桥式正弦波振荡电路的振荡频率:RC桥式正弦波振荡电路,稳定振荡时应满足的条件是:电路中有非线性元件起自动稳幅的作用4. RC桥式正弦波振荡电路里C的大小:f01/(2π RC)C5. RC桥式正弦波振荡电路R1 的大小:6. RC桥式正弦波振荡电路 R2 的大小:R1=15kΩR2=Ω7.RC桥式正弦波振荡电路是通过哪几个8.波形发生器电路里 A1的输出会不会元器件来实现稳幅作用的随电源电压的变化而变化答:配对选用硅二极管,使两只二极答:A1输出不会改变,电源电压的变管的特性相同,上下对称,根据振荡化通过选频网络调节,不影响放大和幅度的变化,采用非线性元件来自动稳幅环节改变放大电路中负反馈的强弱,以实现稳幅目的8.波形发生器电路里v01的输出主要由谁9.波形发生器电路里, R 和 C的参数大决定,当电源电压发生变化时,它会小会不会影响 v0的输出波形答:发生变化吗会影响,而且 v o的频率和幅值都由答:由两只二极管决定,电源电压变RC决定,因为 R和 C的回路构成选频化时, V 不会变化网络o1四、实验步骤:A. RC桥式正弦波振荡电路:原理图:1.PSpice 仿真波形:示波器测量的波形:T=616us,v pp,v RMS667mV根据实际波形,比较实际数据和理论数据之间的差异:理论周期为650us,略大于试验数据,但非常接近,由于实际电阻和二极管的线性或非线性特性与理想状态有所不同,在误差允许范围内认为符合要求2.改变R2的参数(减小或增大R2),使输出v0从无到有,从正弦波直至削顶,分析出现这三种情况的原因和条件。
波形产生与波形变换电路的设计与仿真

践,理论与实践结合,可以使学生更好地理解相关理论知识,提升学生的基本技能,与此同时提高学生的创新能力,又为进一步将理论应用于实践提供了锻炼的机会。
实践教学手段包含专业课程相关的实验、实训以及课程设计等。
与单纯的理论授课相比较,实践实验教学环节更能激发学生的学习兴趣,提高学生的实践动手能力,尤其设计性的实践环节,更能提升学生运用理论基础知识进行相关课题的设计能力。
通常情况下,对于设计性实践内容,需要学生根据选题及设计要求,独立或分组完成相应的方案设计,交给指导老师审阅,之后进行硬件组装调试,从而整体完成对电子电路的工程实践操作。
在传统的设计过程中,学生首先要查阅相关资料,结合设计要求确定合理的整体框架,然后设计电路,选择合适的元件进行电路组装调试。
通常,这种传统的设计方式需要花费学生包括指导教师大量的时间,耗时耗力,并且在电路设计调试结果出不来的情况下,很难更改电路,以至于很难顺利完成相应内容设计。
随着电子计算机技术的不断发展,与此同时出现了很多电路设计相关的EDA仿真软件,在电路设计中起到了很大的作用,使学生的电路设计能力以及设计水平在很大程度上得到了提高和改善。
Multisim仿真软件就是一款比较有效且简单易学的电路设计仿真软件。
Multisim仿真软件主要是在计算机上实现电子电路功能的设计以及性能分析,使学生设计的电路只需模拟调试成功即可组装电路,既节约了设计时间,又可避免在这一设计过程中采用传统方式可能带来的元件损耗,这是对传统实践教学方法的充实与改进,它使设计的方法和手段现代化[1]。
利用Multisim仿真软件这款电路设计与仿真的EDA软件,使实践教学环节更加丰富有趣,学生根据虚拟仪器仪表的测试等,合理设计自己的内容,对于进一步提高实践教学当今社会,随着电子技术的飞速发展,基本已经不存在纯手工设计电子产品。
对于现代化的电子产品设计的过程,首要的工作是确定产品要实现的功能,接着对电路原理图进行设计、进行PCB 版图设计、结合程序设计等步骤,这些设计工作都是在计算机上得以实现。
电路实验仿真实验报告

1. 理解电路基本理论,掌握电路分析方法。
2. 掌握电路仿真软件(如Multisim)的使用方法。
3. 分析电路参数对电路性能的影响。
二、实验内容本次实验主要针对一阶RC电路进行仿真分析,包括零输入响应、零状态响应和全响应的规律和特点。
三、实验原理一阶RC电路由一个电阻R和一个电容C串联而成,其电路符号如下:```+----[ R ]----[ C ]----+| |+---------------------+```一阶RC电路的传递函数为:H(s) = 1 / (1 + sRC)其中,s为复频域变量,R为电阻,C为电容,RC为电路的时间常数。
根据传递函数,可以得到以下结论:1. 当s = -1/RC时,电路发生谐振。
2. 当s = 0时,电路发生零输入响应。
3. 当s = jω时,电路发生零状态响应。
四、实验仪器与设备1. 电脑:用于运行电路仿真软件。
2. Multisim软件:用于搭建电路模型和进行仿真实验。
1. 打开Multisim软件,创建一个新的仿真项目。
2. 在项目中选择“基本电路库”,搭建一阶RC电路模型。
3. 设置电路参数,如电阻R、电容C等。
4. 选择合适的激励信号,如正弦波、方波等。
5. 运行仿真实验,观察电路的响应波形。
6. 分析仿真结果,验证实验原理。
六、实验结果与分析1. 零输入响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个初始电压源,电路开始工作。
此时,电路的响应为电容的充电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐增大,趋于稳态值。
(2)电容电流Ic先减小后增大,在t = 0时达到最大值。
(3)电路的时间常数τ = RC,表示电路响应的快慢。
2. 零状态响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个激励信号,电路开始工作。
此时,电路的响应为电容的放电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐减小,趋于0V。
方波-三角波发生电路实验报告

河西学院物理与机电工程学院综合设计实验方波-三角波产生电路实验报告学院:物理与机电工程学院专业:电子信息科学与技术姓名:侯涛日期:2016年 4月 26日方波-三角波发生电路要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。
指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V一、方案的提出方案一:1、由文氏桥振荡产生一个正弦波信号。
2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。
3、把方波信号通过一个积分器。
转换成三角波。
方案二:1、由滞回比较器和积分器构成方波三角波产生电路。
2、然后通过低通滤波把三角波转换成正弦波信号。
方案三:1、由比较器和积分器构成方波三角波产生电路。
2、用折线法把三角波转换成正弦波。
二、方案的比较与确定方案一:文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。
当R1=R2、C1=C2。
即f=f0时,F=1/3、Au=3。
然而,起振条件为Au略大于3。
实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。
如果R4/R3大于2时,正弦波信号顶部失真。
调试困难。
RC串、并联选频电路的幅频特性不对称,且选择性较差。
因此放弃方案一。
方案二:把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。
比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。
通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。
然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。
因此不满足使用低通滤波的条件。
放弃方案二。
方案三:方波、三角波发生器原理如同方案二。
比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。
高精度三角波发生电路设计及仿真分析

高精度三角波发生电路设计及仿真分析1. 引言三角波发生电路广泛应用于信号发生器、频率比较器和功率变换等领域。
本文旨在设计一种高精度的三角波发生电路,并通过仿真分析验证其性能。
2. 设计原理三角波发生电路一般采用积分器和比较器的组合。
其中,积分器用于生成一个随时间线性增加或减小的电压波形,比较器则用于将积分结果与参考电压进行比较,从而产生三角波。
设计一个高精度的三角波发生电路需要考虑以下因素:2.1 选取合适的积分器电路常用的积分器电路有反馈电容式和电压控制电压源(VCCS)等。
反馈电容式积分器简单可靠,但存在漂移和温度敏感性较大的问题。
相比之下,VCCS积分器对漂移和温度的依赖性较小,但在设计和布线上较为复杂。
根据需求选择适合的积分器电路。
2.2 参考电压源的选择参考电压源用于比较器的输入,一般为一个稳定的直流电压。
可选用电阻分压电路、稳压二极管或精度较高的运放电路作为参考电压源。
选取合适的参考电压源可以有效提高发生波形的精度。
2.3 比较器设计比较器用于将积分器输出的波形与参考电压进行比较。
常用的比较器电路有固定阈值比较器、比较器芯片等。
为提高精度,可采用电路补偿技术,并根据需求选择高性能的比较器芯片。
3. 电路图设计基于上述设计原理,我们可以绘制如下的高精度三角波发生电路图:(电路图请自行设计,这里仅提供设计思路)4. 仿真分析使用电子仿真软件对所设计的高精度三角波发生电路进行仿真分析,可以验证其性能和精度。
4.1 建立仿真模型将所设计的电路图导入仿真软件,并设置合适的参数和工作条件。
注意考虑元件的非理想性,如电容的等效串并联电阻、比较器的漂移等。
4.2 验证性能指标根据设计要求,设置仿真测量点并记录三角波的频率、峰峰值、上升时间、下降时间、线性度等指标。
4.3 分析结果根据仿真结果分析电路的性能,如精度、稳定性、非线性失真等。
如有需要,可以对某些参数进行调整和优化,再次进行仿真分析,直至满足设计要求。
电子电路实验四 实验报告

实验四波形发生电路实验报告一、理论计算1.正弦振荡电路实验电路如图1所示,电源电压为±12V。
分析图1电路的工作原理,根据图中的元件参数,计算符合振荡条件的Rw值以及振荡频率f0。
该正弦振荡电路采用RC串并联选频网络,选频网络的示意图如下:当输入信号的频率足够低时,,超前,且当频率趋近于零时,相位超前趋近于+90°;当输入信号的频率足够高时,,滞后,且当频率趋近于无穷大时,相位滞后趋近于-90°。
因此,当信号频率从零逐渐变化到无穷大时,的相位将从+90°逐渐变化到-90°,故必定存在一个频率f0,当f= f0时,与同相。
RC串并联选频网络的反馈系数整理可得令,则代入上式,得出当f=f0时,,由正弦振荡电路的起振条件知,。
对于图1的正弦振荡电路,有将R3、R4代入上式,令之大于3,得Rw>10kΩ。
将R1=R2=16kΩ、C1=C2=0.01μF代入f0式,得f0=994.7Hz。
2.多谐振荡电路实验电路如图2所示。
深入分析图2所示电路的工作原理,画出Vo1、Vo2的波形,推导Vo1、Vo2波形的周期(频率)和幅度的计算公式。
再按图2中给出的元件参数计算Vo1、Vo2波形的周期(频率)、幅度,以备与实验实测值进行比较。
该电路为三角波发生电路,原理图如下:虚线左边为滞回电路,故Vo1为方波。
根据叠加原理,集成运放A1同相输入端的电位令,则阈值电压对于虚线右边的积分电路,其输入电压不是+U Z,就是-U Z,故积分电路的输出电压的波形为三角波。
设输出电压的初始值为-U T,终了值为+U T,则可解得T为矩形波、三角波共同的周期。
矩形波的幅度的理论值即为UZ,等于6V;将实验电路图中的各个参数代入各式,得UT=0.5*6=3V,故三角波的幅度理论值为3V,矩形波、三角波的周期 。
3.锯齿波发生电路锯齿波发生电路的原理图见仿真实验电路图。
设二极管导通时的等效电阻可忽略不计,当u o1=+U Z时,D3导通,D4截止,输出电压的表达式为uo随时间线性下降。
仿真信号发生器实训报告

一、实训目的本次实训旨在通过使用仿真软件Proteus和Keil uVision,学习并掌握信号发生器的设计与仿真方法,加深对信号发生器原理和电路设计的理解,提高实际操作能力。
二、实训内容1. 信号发生器原理信号发生器是一种产生各种标准信号的设备,广泛应用于通信、测量、科研等领域。
本次实训主要设计以下四种波形发生器:正弦波、方波、三角波和锯齿波。
2. 信号发生器电路设计(1)正弦波发生器:采用STM32F103单片机作为核心控制单元,通过查找正弦波查表法生成正弦波数据,经DAC0832数模转换芯片转换为模拟信号输出。
(2)方波发生器:利用STM32F103单片机的定时器产生方波信号,通过改变定时器的计数值来调整方波频率。
(3)三角波发生器:通过STM32F103单片机的定时器产生方波信号,再经过积分电路转换为三角波信号。
(4)锯齿波发生器:利用STM32F103单片机的定时器产生方波信号,再经过微分电路转换为锯齿波信号。
3. 信号发生器仿真(1)使用Proteus软件搭建信号发生器电路,并进行仿真测试。
(2)通过调整电路参数,观察输出波形的变化,验证电路设计的正确性。
(3)将仿真结果与理论分析进行对比,分析仿真结果与理论分析的一致性。
三、实训步骤1. 设计信号发生器电路原理图根据信号发生器原理,设计电路原理图,包括单片机、DAC0832数模转换芯片、矩阵键盘、LCD12864液晶屏幕等元件。
2. 编写程序使用C语言编写信号发生器程序,包括初始化配置、按键扫描、波形生成、LCD显示等功能。
3. 仿真测试(1)在Proteus软件中搭建电路,将程序编译生成的hex文件烧录到STM32F103单片机中。
(2)运行仿真,观察输出波形,验证电路设计及程序的正确性。
(3)根据仿真结果,调整电路参数,优化波形输出。
四、实训结果与分析1. 仿真结果通过仿真测试,成功实现了正弦波、方波、三角波和锯齿波的产生,波形输出稳定,符合设计要求。
矩形波发生电路multisim仿真

矩形波发生电路multisim仿真矩形波发生电路是一种常见的电子电路,可以用于模拟数字信号和脉冲信号。
Multisim是一款功能强大的电路仿真软件,可以帮助工程师在计算机上快速建立电路模型并进行仿真。
本文将介绍矩形波发生电路的基本原理,并使用Multisim进行仿真。
一、原理介绍矩形波发生电路主要由555定时器、电容和电阻组成。
555定时器是一种常用的集成电路,内部包含比较器、RS触发器和电压比较器等功能。
通过控制电压比较器的阀值电压和放电电阻的值,可以实现输出端的矩形波形。
二、电路设计1. 使用Multisim打开软件,选择新建一个电路图。
2. 在工具栏中选择元器件并依次添加555定时器、电容和电阻。
3. 连接电路,将电容连接到555定时器的引脚2和引脚6之间,电阻连接到引脚7和引脚6之间。
4. 设置电阻和电容的具体数值,可以根据需要调整。
5. 连接电路的输入端和输出端。
三、仿真流程1. 在Multisim中选择仿真按钮,打开仿真设置窗口。
2. 设置仿真时间为一定的周期,如10ms。
3. 调整电容和电阻的数值,观察矩形波形的变化。
4. 运行仿真,观察输出端的波形。
四、仿真结果通过对矩形波发生电路的仿真,我们可以观察到输出端的波形。
当电容和电阻的数值合适时,输出端的波形呈现出矩形的特点,即上升时间和下降时间较短,保持时间较长。
这样的矩形波形可以用于数字信号传输、脉冲信号测量等应用场景。
五、仿真分析通过对仿真结果的分析,我们可以得出一些结论。
首先,电容和电阻的数值直接影响矩形波形的特性,存在一个最佳数值使得波形最为稳定。
其次,通过调整电容和电阻的数值可以改变矩形波的频率和占空比,从而适应不同的应用需求。
最后,矩形波的输出电平和幅度与电源电压和电阻数值有关,需要根据具体情况进行调整。
六、结论通过Multisim的仿真,我们可以快速验证矩形波发生电路的性能和特性。
这对于电子工程师来说是一个非常有用的工具,可以在设计和调试过程中节省时间和成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波形产生电路仿真报告
一,正弦波的发生
1.实验电路图
2.Rw的调节
Rw=0时,输出波形为
此时电路不起振
Rw=10kΩ时,输出波形为
电路仍然不起振
Rw=15kΩ时,输出波形为
电路起振,振幅约为4.220V
Rw=20kΩ时,输出波形为
此时已经出现较为明显的失真波形,顶部电压约为10.5V,接近运放的工作电源电压值
反复在Rw=15kΩ附近调整阻值,发现刚好起振时Rw≈15kΩ
3.测量刚好不失真时的电压波形
反复调节Rw的阻值,找到使电压波形幅值最大且刚好不失真的Rw≈17.9kΩ,电压波形如下
输出电压幅值约为10.42V ,频率为f=993Hz,这与理论计算值036
2211994.722*16*10*0.01*10f Hz R C ππ-===相符合。
4.观察缺少非线性环节的波形
断开两个二极管,将Rw 调节至Rw=15 k Ω,即刚好起振的情况,输出波形如下
波形已经出现了失真,这是因为缺少了二极管的稳幅作用,原来由于两端被并联二极管的动态电阻的R4,开始起到了主要作用,使得Rw 的可调范围大大缩小。
二.矩形波和三角波振荡电路
1. 实验电路图
2. Vo1,Vo2波形的仿真
Vo1的幅值为5.54V,Vo2的幅值为2.88V二者周期相同,为419us,这与理论计算值T=400us 相符合。
3.锯齿波发生电路
修改后电路图如下
仿真Vo1,Vo2波形
Vo1 幅值为5.54V,Vo2幅值为2.72V,二者周期皆为1.368ms.
4.滞回比较器的电压传输特性仿真
实验电路图
传输特性仿真。