人教版高中数学教程教学讲义

合集下载

人教版高中数学必修一精品讲义5.1 任意角和弧度制(精练)(解析版)

人教版高中数学必修一精品讲义5.1 任意角和弧度制(精练)(解析版)

5.1 任意角和弧度制【题组一 基本概念的辨析】1.(2020·河南林州一中高一月考)已知集合A ={α|α小于90°},B ={α|α为第一象限角},则A ∩B =( ) A .{α|α为锐角} B .{α|α小于90°} C .{α|α为第一象限角} D .以上都不对【正确答案】D【详细解析】∵A ={α|α小于90°},B ={α|α为第一象限角}, ∴A ∩B ={小于90°且在第一象限的角},对于A :小于90°的角不一定是第一象限的,不正确,比如﹣30°;对于B :小于90°的角且在第一象限的角不一定是0°~90°的角,不正确,例如﹣300°; 对于C :第一象限的角不一定是小于90°的角且在第一象限的角,不正确,例如380°, 故选D .2.(2020·浙江高一课时练习)下列命题中正确的是( ). A .第一象限角一定不是负角 B .小于90°的角一定是锐角 C .钝角一定是第二象限角 D .终边和始边都相同的角一定相等 【正确答案】C【详细解析】300︒-为第一象限角且为负角,故A 错误;5090-︒<︒,但50︒-不是锐角,故B 错误;终边与始边均相同的角不一定相等,它们可以相差360,k k Z ︒⋅∈,故D 错误.钝角一定是第二象限角,C 正确. 故选:C .3.(2020·汪清县汪清第六中学高一期中(文))下列结论中正确的是( ) A .小于90°的角是锐角 B .第二象限的角是钝角 C .相等的角终边一定相同 D .终边相同的角一定相等 【正确答案】C【详细解析】对于A,小于90︒可能是负角,不是锐角;对于B,第二象限的角可能是负角,不是钝角;对于C,两个角相等,始边一致,则终边一定相同;对于D,终边相同的角,可能相差360°的倍数,不一定相等.故选C.4.(2020·全国高一课时练习)(1)给出下列说法: ①锐角都是第一象限角; ②第一象限角一定不是负角;③小于180°的角是钝角或直角或锐角.其中正确说法的序号为________.( 把正确说法的序号都写上) (2)将时钟拨快20分钟,则分针转过的度数是________. 【正确答案】② 120-︒【详细解析】(1)①锐角的范围为()0,90︒︒是第一象限的角,命题①正确;②第一象限角的范围为()()360,90360k k k Z ⋅︒︒+⋅︒∈,故第一象限角可以为负角,故②错误; ③根据任意角的概念,可知小于180°的角,可以为负角,故③错误; 故正确答案为:②(2)将时针拨快20分钟,则分针顺时针转过120︒,即转过的度数为120-︒ 故正确答案为:120-︒5.(2020·全国高一课时练习)给出下列说法: ①锐角都是第一象限角; ②第一象限角一定不是负角;③小于180°的角是钝角或直角或锐角.其中正确说法的序号为________.( 把正确说法的序号都写上) 【正确答案】①【详细解析】锐角指大于0°小于90°的角,都是第一象限角,所以①对;由任意角的概念知,第一象限角也可为负角,小于180°的角还有负角、零角,所以②③错误.故正确答案为:① 6.(2020·全国高一课时练习)下列命题正确的是____________( 填序号). ①-30°是第一象限角; ②750°是第四象限角; ③终边相同的角一定相等; ④-950°12′是第二象限的角. 【正确答案】④【详细解析】①30-︒是第四象限的角度,故①错误;②750°的终边与30︒的终边相同,故其为第一象限的角度,故②错误; ③终边相同的角度不一定相等,故③错误;④-950°12′与-950°12′108012948+︒=︒′的终边相同,其为第二象限的角,故④正确. 故正确答案为:④.【题组二 角度与弧度转换】1.(2019·伊美区第二中学高一月考)300-化为弧度是( ) A .43π-B .53π-C .23π-D .56π-【正确答案】B【详细解析】300530023603ππ-=-⨯=- 2.(2020·全国高一课时练习)把85π化为角度是( )A .270°B .280°C .288°D .318°【正确答案】C【详细解析】因为1801rad π⎛⎫=︒ ⎪⎝⎭,故8818028855πππ︒︒⎛⎫=⨯= ⎪⎝⎭.故选:C. 3.(2020·灵丘县豪洋中学高一期中)320-︒化为弧度是( ) A .43π-B .169π-C .76π-D .56π-【正确答案】B【详细解析】320-︒化为弧度是16320=1809ππ-︒⨯-.故选:B 4.(2020·金华市江南中学高一期中)1500︒转化为弧度数为( ) A .253B .163πC .163D .253π【正确答案】D【详细解析】由1180rad π︒=,所以15001550002318ππ︒=⨯=rad 故选:D 5.(2019·长沙铁路第一中学高一月考)将300o 化为弧度为( ) A .43πB .53π C .76π D .74π 【正确答案】B【详细解析】53003001803ππ︒=⨯=.故选:B . 6.(2020·通榆县第一中学校高一期末)512π=( )A .70°B .75°C .80°D .85°【正确答案】B【详细解析】因为1801rad π⎛⎫=︒⎪⎝⎭,故512π=51807512ππ⎛⎫⨯︒=︒ ⎪⎝⎭.故选:B. 7.(2020·全国高一课时练习)将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)712π(4)-115π. 【正确答案】(1)20°=9π;(2)-15°=-12π;(3)712π=105°;(4)-115π=-396°.【详细解析】(1)20°=20180π=9π.(2)-15°=-15180π=-12π.(3)712π=712×180°=105°.( 4)-115π=-115×180°=-396°.【题组三 终边相同】1.(2020·浙江高一课时练习)与405°角终边相同的角是( ). A .45360,k k Z ︒︒-+⋅∈ B .405360,k k Z ︒︒-+⋅∈ C .45360,k k Z ︒︒+⋅∈ D .45180,k k Z ︒︒+⋅∈【正确答案】C【详细解析】由于40536045︒︒︒=+,故与405°终边相同的角应为45360,k k Z ︒︒+⋅∈.故选:C 2.(2020·永州市第四中学高一月考)在0360~︒︒的范围内,与510︒-终边相同的角是( ) A .330︒ B .210︒C .150︒D .30︒【正确答案】B【详细解析】因为510720210︒-=-+,则在0360~︒︒的范围内,与510︒-终边相同的角是210︒,故选:B. 3.(2020·合肥市第八中学高一月考)下列各个角中与2020°终边相同的是( ) A .150︒- B .680°C .220°D .320°【正确答案】C【详细解析】由题,20202205360︒=︒+⨯︒,故选:C4.(2020·汪清县汪清第六中学高一期中(文))在0°~360°范围内,与-1050°的角终边相同的角是( )A .30°B .150°C .210°D .330°【正确答案】A【详细解析】因为1050336030-︒=-⨯︒+︒所以在0°~360°范围内,与-1050°的角终边相同的角是30故选:A5.(2020·北京延庆·高一期末)与角196π终边相同的角为( ) A .6π-B .6π C .56π-D .56π 【正确答案】C 【详细解析】与角196π终边相同的角可写成192,6παπ=+∈k k Z 令2k =-,则56πα=-故选:C6.(2020·辉县市第二高级中学高一期中) 下列与的终边相同的角的表达式中正确的是( )A .2k π+45°( k ∈Z)B .k ·360°+π( k ∈Z)C .k ·360°-315°( k ∈Z)D .k π+( k ∈Z)【正确答案】C 【详细解析】与的终边相同的角可以写成2k π+( k ∈Z),但是角度制与弧度制不能混用,所以只有正确答案C 正确.故正确答案为C7.(2020·陕西大荔·高一月考)已知角2α是第一象限角,则α的终边位于( )A .第一象限B .第二象限C .第一或第二象限D .第一或第二象限或y 轴的非负半轴上【正确答案】D 【详细解析】∵由角2α是第一象限角,∴可得π2π2π,22k k k α<<+∈Z ,∴4π4ππ,k k k α<<+∈Z .即α的终边位于第一或第二象限或y 轴的非负半轴上.故选:D.8.(2020·宁县第二中学高一期中)已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.【正确答案】{}|180********,n n n αα⋅︒+︒<<⋅︒+︒∈Z . 【详细解析】在0360范围内,终边落在阴影内的角α满足:30150α<<或210330α<<∴满足题意的角α为:{}{}30360150360210360330360k k k k αααα+⋅<<+⋅⋃+⋅<<+⋅{}{}302180150218021021803302180k k k k αααα=+⋅<<+⋅⋃+⋅<<+⋅{}()(){}3021801502180302118015021180k k k k αααα=+⋅<<+⋅⋃++⋅<<++⋅{}30180150180n n αα=+⋅<<+⋅,k Z ∈,n Z ∈本题正确结果:{}30180150180,n n n Z αα+⋅<<+⋅∈ 【题组四 象限的判断】1.(2020·广东高一期末)下列各角中,与2019°终边相同的角为( ) A .41° B .129°C .219°D .﹣231°【正确答案】C【详细解析】因为20195360219=⨯+,所以219与2019°终边相同.故选:C. 2.(2020·湖南隆回·高一期末)下列各角中,与60终边相同的角为( )A .30B .120C .420D .300【正确答案】C【详细解析】与60终边相同的角的集合是{}60360,k k Z αα=+⋅∈,当1k =时,420α=.故选:C 3.(2020·河南项城市第三高级中学高一月考)设2α是第一象限角,且cos cos αα=-,则α是第( )象限角 A .一 B .二C .三D .四【正确答案】B【详细解析】∵2α是第一象限角,∴360903602k k α︒<<︒+︒,k Z ∈,∴720180720k k α︒<<︒+︒,k Z ∈,∴α为第一象限角或第二象限角或终边在y 轴正半轴上的轴线角, ∵cos cos αα=-,∴cos 0α<,∴α是第二象限角.故选:B .4.(2020·辉县市第二高级中学高一期中)角–2α=弧度,则α所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【正确答案】C【详细解析】角–2α=弧度,2(,)2ππ-∈--,∴α在第三象限,故选:C .5.(2020·全国高一课时练习)若θ=-5,则角θ的终边在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限【正确答案】D【详细解析】2π-5与-5的终边相同,∵2π-5∈0,2π⎛⎫⎪⎝⎭,∴2π-5是第一象限角,则-5也是第一象限角. 故选:D6.(2020·浙江高一课时练习)若θ是第四象限角,则角2θ的终边在( ) A .第一象限 B .第一或第三象限 C .第四象限D .第二或第四象限【正确答案】D【详细解析】取80θ=-︒,则402θ=-︒,在第四象限;取320θ=︒,则1602θ=︒,在第二象限.故选:D .7.(2020·浙江高一课时练习)试求出终边在如图所示阴影区域内的角的集合.【正确答案】222,34k k k Zππβπβπ⎧⎫-++∈⎨⎬⎭⎩.【详细解析】因为42233πππ+=,所以43π的终边与23π-的终边相同,则终边在题图所示阴影区域内的角的集合为222,34k k k Zππβπβπ⎧⎫-++∈⎨⎬⎭⎩.8.(2020·上海高一课时练习)用弧度制写出终边在阴影部分的角的集合:(1)(2)【正确答案】(1)222,43k k k Zπαπαππ⎧⎫+<+∈⎨⎬⎩⎭;(2),6k k k Zπαπαπ⎧⎫+∈⎨⎬⎩⎭【详细解析】(1)边界对应射线所在终边的角分别为222,() 43k k k Zππππ++∈,所以终边在阴影部分的角的集合为222,43k k k Zπαπαππ⎧⎫+<+∈⎨⎬⎩⎭(2)边界对应射线所在终边的角分别为222,2,()667k k k k k Z πππππππ+++∈,, 所以终边在阴影部分的角的集合为722,22,66k k k Z k k k Z ππαπαπαππαπ⎧⎫⎧⎫≤+∈⋃+≤+∈⎨⎬⎨⎬⎩⎭⎩⎭=,6k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭【题组五 扇形】1.(2020·山东潍坊·高一期末)已知某扇形的半径为4cm ,圆心角为2rad ,则此扇形的面积为( ) A .232cm B .216cmC .28cmD .24cm【正确答案】B【详细解析】由题意,某扇形的半径为4cm ,圆心角为2rad , 根据扇形的面积公式,可得22211241622S r cm α==⨯⨯= 所以此扇形的面积为216cm .故选:B. 2.(2020·江西省铜鼓中学高一期末)一个扇形的圆心角为150°,面积为53π,则该扇形半径为( )A .4B .1C D .2【正确答案】D【详细解析】圆心角为51506πα==,设扇形的半径为R ,2215152326S R R ππα=⋅⇒=⨯, 解得2R =.故选:D3.(2020·武威第八中学高一期末)已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为( ) A .24cm B .26cmC .28cmD .216cm【正确答案】A【详细解析】设此扇形半径为r ,扇形弧长为l=2r 则2r +2r =8,r=2,∴扇形的面积为12l r=224r cm =故选A 4.(2020·辉县市第二高级中学高一期中)已知扇形的圆心角为2,周长为8,则扇形的面积为( ) A .2 B .4C .8D .16【正确答案】B【详细解析】设该扇形的半径为r ,弧长为l ,则2lr =,且28l r +=,所以有42l r =⎧⎨=⎩,所以,该扇形的面积为142S lr ==.故选:B. 5.(2020·河南宛城·南阳中学高一月考)中国传统扇文化有着极其深厚的底蕴.一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3πB .1)πC .1)πD .2)π【正确答案】A【详细解析】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则αβ=,又2αβπ+=,解得(3απ=- 故选:A6.(2020·永昌县第四中学高一期末) 如图,已知扇形AOB 的圆心角为120°,半径长为6,求弓形ACB 的面积.【正确答案】12π-【详细解析】∵120°=π=π,∴l =6×π=4π,∴AB 的长为4π.∵S 扇形OAB =lr =×4π×6=12π,如图所示,作OD ⊥AB ,有S △OAB =×AB ×OD =×2×6cos 30°×3=9.∴S 弓形ACB =S 扇形OAB -S △OAB =12π-9.∴弓形ACB 的面积为12π-9.【题组六 生活中实际】 1.(2020·全国高一课时练习)将时钟拨快20分钟,则分针转过的度数是________.【正确答案】-120°【详细解析】将时针拨快20分钟,则分针顺时针转过120︒,即转过的度数为120-︒故正确答案为:120-︒ 2.(2020·全国高一课时练习)已知α=30°,将其终边按逆时针方向旋转三周后的角度数为________.【正确答案】1110°【详细解析】一个角为30,其终边按逆时针方向旋转三周后的角的度数为:3603301110︒⨯+︒=︒. 故正确答案为:1110︒.3.(2020·全国高一课时练习)写出下列说法所表示的角.(1)顺时针拧螺丝2圈;(2)将时钟拨慢2小时30分,分针转过的角.【正确答案】(1)-720°;(2)900°.【详细解析】(1)顺时针拧螺丝2圈,即旋转了2360=720⨯︒︒,顺时针旋转得到的角为负角,故转过的角是720-︒; (2)拨慢时钟需将分针按逆时针方向旋转,时针拨慢2小时30分,是2.5周角,角度数是2.5360900⨯︒=︒;又分针是逆时针旋转,转过的角是900︒.4.(2020·浙江高一课时练习)在一昼夜中,钟表的时针和分针有几次重合?几次形成直角?时针、分针和秒针何时重合?请写出理由.【正确答案】正确答案见详细解析.【详细解析】时针每分钟走0.5°,分针每分钟走6°,秒针每分钟走360°,(1)一昼夜有24601440⨯=(分钟), 时针和分针每重合一次间隔的时间为36060.5-分钟, 所以一昼夜时针和分针重合14402236060.5=-(次).(2)假设时针不动,分针转一圈与时针两次形成直角,但一昼夜时针转了两圈,则少了4次垂直,于是时针和分针一共有242444⨯-=(次)形成直角.(3)秒针与分针每重合一次间隔的时间为3603606-分钟,由3603606-和36060.5-的“最小公倍数”为720,而720分钟=12小时,所以一昼夜只有0:00与12:00这两个时刻“三针”重合.。

人教版高中数学必修第三册全册WORD讲义《导学案》

人教版高中数学必修第三册全册WORD讲义《导学案》

8.1.1向量数量积的概念(教师独具内容)课程标准:1.通过物理中功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.教学重点:平面向量数量积的含义及几何意义.教学难点:向量的投影及数量积的几何意义.知识点一两个向量的夹角(1)定义:给定两个01非零向量a,b(如图所示),在平面内任选一点O,作OA→=a,OB→=b,则称02[0,π]内的∠AOB为向量a与向量b的夹角,记作03〈a,b〉.(2)根据向量夹角的定义可知,两个非零向量的夹角是唯一确定的,而且040≤〈a,b〉≤π,〈a,b〉=05〈b,a〉.时,称向量a与向量b垂直,记作07a⊥b.在(3)垂直:当〈a,b〉=06π2讨论垂直问题时,规定08零向量与任意向量垂直.知识点二向量数量积(内积)的定义一般地,当a与b都是非零向量时,称01|a||b|cos〈a,b〉为向量a与b的数量积(也称为内积),记作a·b,即a·b=02|a||b|cos〈a,b〉.由定义可知,两个非零向量a与b的数量积是一个实数.知识点三平面向量的数量积的性质(1)当e是单位向量时,因为|e|=1,所以a·e=01|a|·cos〈a,e〉.(2)a⊥b⇔02a·b=0.(3)a·a=03|a|2,即04|a|=a·a.(4)cos〈a,b〉=05a·b(|a||b|≠0).|a||b|(5)|a·b|06≤|a||b|,当且仅当a∥b时等号成立.知识点四向量的投影如图1,设非零向量AB→=a,过A,B分别作直线l的垂线,垂足分别为A′,B′,则称向量为向量a在直线l上的01投影向量或投影.类似地,给定平面上的一个非零向量b,设b所在的直线为l,则a在直线l 上的投影称为a在向量b上的02投影.如图2中,向量a在向量b上的投影为03.可以看出,一个向量在一个非零向量上的投影,一定与这个非零向量04共线,但它们的方向既有可能05相同,也有可能06相反.知识点五向量数量积的几何意义如图(1)(2)(3)所示.当〈a ,b 〉<π2时,A ′B ′→的方向与b 的方向01相同,而且||=02|a |cos〈a ,b 〉;当〈a ,b 〉=π2时,为零向量,即||=030;当〈a ,b 〉>π2时,的方向与b 的方向04相反,而且||=05-|a |cos 〈a ,b 〉.一般地,如果a ,b 都是非零向量,则称06|a |cos 〈a ,b 〉为向量a 在向量b 上的投影的数量.投影的数量与投影的长度有关,但是投影的数量既可能是07非负数,也可能是08负数.两个非零向量a ,b 的数量积a ·b ,等于a 在向量b 上的投影的数量与b 的模的乘积.这就是两个向量数量积的几何意义.1.a 在b 方向上的投影的数量也可以写成a ·b|b |,它的符号取决于角θ的余弦值.2.在运用数量积公式解题时,一定要注意两向量夹角的范围是0°≤θ≤180°.3.a ·b 的符号与a 与b 的夹角θ的关系设两个非零向量a与b的夹角为θ,则(1)若a·b>0⇔θ为锐角或零角.当θ=0°时,a与b共线同向,a·b>0.或a与b中至少有一个为0.(2)a·b=0⇔θ=π2(3)a·b<0⇔θ为钝角或平角,当θ=180°时,a与b共线反向,a·b<0.特别注意a,b共线同向与共线反向的特殊情况,即a·b>0(<0),向量夹角不一定为锐角(钝角).4.向量的数量积a·b=|a||b|cosθ的主要应用(1)利用公式求数量积,应先求向量的模,正确求出向量的夹角(向量的夹角由向量的方向确定).求夹角,应正确求出两个整体:数量积a·b与模(2)利用公式变式cosθ=a·b|a||b|积|a||b|,同时注意θ∈[0,π].(3)利用a·b=0证明垂直问题.1.判一判(正确的打“√”,错误的打“×”)(1)若a·b=0,则a⊥b.()(2)两个向量的数量积是一个向量.()(3)当a∥b时,|a·b|=|a||b|.()答案(1)√(2)×(3)√2.做一做(1)已知向量a与向量b的夹角为30°且|a|=3,则a在b上的投影的数量为____.(2)已知|a|=4,|b|=22,且a与b的夹角为135°,则a·b=____.(3)在直角坐标系xOy内,已知向量AB→与x轴和y轴正向的夹角分别为120°和30°,则BA→在x轴、y轴上的投影的数量分别为____和____.答案(1)32(2)-8(3)12|AB→|-32|AB→|题型一两个向量夹角的定义例1已知向量a,b的夹角为60°,试求下列向量的夹角:(1)-a,b;(2)2a,23b.[解]如图,由向量夹角的定义可知:(1)向量-a,b的夹角为120°.(2)向量2a,23b的夹角为60°.(1)向量的夹角是针对非零向量定义的.(2)注意向量的夹角是[0°,180°].(3)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC不是向量CA→与AB→的夹角,作AD→=CA→,则∠BAD才是向量CA→与AB→的夹角.|a|,求a-b与a的夹角.[跟踪训练1]已知向量a与b的夹角为60°且|b|=12解如图,作OA→=a,OB→=b,则∠BOA=60°,连接BA,则BA→=a-b.取OA的中点D,连接BD,∵|b|=1|a|,∴OD=OB=BD=DA,2∴∠BDO=60°=2∠BAO,∴∠BAO=30°.∴a-b与a的夹角为30°.题型二向量数量积的定义例2(1)已知|a|=5,|b|=2,若①a∥b;②a⊥b;③a与b的夹角为30°,分别求a·b.(2)已知|a|=4,|b|=2,b2-a2=3a·b,求向量a与向量b的夹角.[解](1)①当a∥b时,若a与b同向,则它们的夹角为0°,∴a·b=|a||b|cos0°=5×2×1=10;若a与b反向,则它们的夹角为180°,∴a·b=|a||b|cos180°=5×2×(-1)=-10.②当a⊥b时,则它们的夹角为90°,∴a ·b =|a ||b |cos90°=5×2×0=0.③当a 与b 的夹角为30°时,a ·b =|a ||b |cos30°=5×2×32=53.(2)由题意,得4-16=3a ·b ,∴a ·b =-4,∴cos 〈a ,b 〉=a ·b |a ||b |=-12,向量a 与向量b 的夹角为120°.1.求向量数量积的一般步骤及注意事项(1)确定向量的模和夹角,根据定义求出数量积.(2)a 与b 垂直当且仅当a ·b =0.(3)非零向量a 与b 共线当且仅当a ·b =±|a ||b |.2.求向量夹角的一般步骤及注意事项(1)确定向量的模和数量积,根据夹角公式求出向量夹角的余弦值.(2)注意向量夹角的范围为[0,π],从而确定夹角的大小.[跟踪训练2](1)已知|a |=4,|b |=5,向量a 与b 的夹角θ=π3,求a ·b .(2)已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,求a 与b 的夹角.解(1)a ·b =|a ||b |cos θ=4×5×12=10.(2)设a 与b 的夹角为θ,cos θ=a ·b |a ||b |=21×4=12,又因为θ∈[0,π],所以θ=π3.题型三向量的投影例3已知直线l ,(1)|OA →|=4,〈OA→,l 〉=60°,求OA →在l 上的投影的数量OA 1;(2)|OB →|=4,〈OB →,l 〉=90°,求OB →在l 上的投影的数量OB 1;(3)|OC→|=4,〈OC→,l〉=120°,求OC→在l上的投影的数量OC1.=2.[解](1)OA1=4cos60°=4×12(2)OB1=4cos90°=4×0=0.(3)OC1=4cos120°=4 2.对向量投影的理解从定义上看,向量b在直线(或非零向量)上的投影是一个向量,投影的数量可正、可负、可为零.(1)当θ(2)当θ(3)当θ=0时,该数量为|b|.(4)当θ=π时,该数量为-|b|.注意:此处b为非零向量.时,该数量为0.(5)当θ=π2时,a在e方向[跟踪训练3]已知|a|=8,e为单位向量,当它们的夹角为π3上的投影的数量为()A.43B.4C.42D.8+32答案B解析因为a在e方向上的投影的数量为|a|cosπ=4,故选B.3题型四向量数量积的几何意义及应用例4(1)已知|b |=3,a 在b 方向上的投影的数量是32,则a ·b 为()A .3 B.92C .2D.12(2)如图,四边形ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,且AB =2DC =4.E 为腰BC 上的动点.求AE→·AB →的取值范围.[解析](1)设a 与b 的夹角为θ,a ·b =|a ||b |cos θ=|b ||a |cos θ=3×32=92.(2)如图,过E 作EE ′⊥AB ,垂足为E ′,过C 作CC ′⊥AB ,垂足为C ′.则AE →在AB →上的投影为AE ′→,∴AE →在AB →上的投影的数量为|AE ′→|,由向量数量积的几何意义知AE →·AB →=|AE ′→||AB →|=4|AE ′→|.∵E 在腰BC 上运动,∴点E ′在线段C ′B 上运动,∴|AC ′→|≤|AE ′→|≤|AB→|,∴2≤|AE ′→|≤4,∴8≤4|AE ′→|≤16,∴AE→·AB→的取值范围是[8,16].[答案](1)B(2)见解析利用向量数量积的几何意义求两向量的数量积需明确两个关键点:相关向量的模和一个向量在另一向量方向上的投影的数量,代入向量数量积的公式即可.利用向量数量积判断几何图形形状或解决最值范围问题时,常结合图形直观分析得到结果.[跟踪训练4](1)若E,F,G,H分别为四边形ABCD所在边的中点,且(AB→+BC→)·(BC→+CD→)=0,则四边形EFGH是()A.梯形B.菱形C.矩形D.正方形(2)已知a·b=16,若a在b方向上的投影的数量为4,则|b|=____.答案(1)C(2)4解析(1)因为(AB→+BC→)·(BC→+CD→)=0,所以AC→·BD→=0,所以AC→⊥BD→.又因为E,F,G,H分别为四边形ABCD所在边的中点,所以四边形EFGH的两组对边分别与AC,BD平行,且EF⊥EH,所以四边形EFGH为矩形.(2)设a与b的夹角为θ,因为a·b=16,所以|a||b|cosθ=16.又a在b方向上的投影的数量为4,所以|a|cosθ=4,所以|b|=4.1.已知|a|=3,|b|=5,且a·b=12,则向量a在向量b上的投影的数量为()A.125B.3C.4D.5答案A解析设a与b的夹角为θ,则向量a在b上的投影的数量为|a|cosθ=a·b|b|=12 5.2.已知|a|=4,|b|=2,当它们之间的夹角为π3时,a·b=() A.43B.4C.83D.8答案B解析根据向量数量积的定义得a·b=|a||b|cos〈a,b〉=4×2×cosπ3=4.3.已知|a|=2|b|≠0,且关于x的方程x2+|a|x+a·b=0有实根,则a与b的夹角θ的取值范围是()A.0,π6 B.π3,πC.π3,2π3 D.π6,π答案B解析由题意可得,Δ=|a|2-4a·b≥0,∵|a|=2|b|,∴cosθ≤12θ∈π3,π.故选B.4.(多选)已知两个单位向量e1,e2的夹角为θ,则下列结论正确的是() A.e1在e2上的投影的数量为sinθB.e21=e22C.任给θ∈[0,π],(e1+e2)⊥(e1-e2)D.不存在θ,使e1·e2=2答案BCD解析对于A,因为e1,e2为单位向量,所以e1在e2上的投影的数量为|e1|cosθ=cosθ,A错误;对于B,e21=e22=1,B正确;对于C,如图,设AB→=e1,AD→=e2,则易知四边形ABCD是菱形,AC⊥BD,即(e1+e2)⊥(e1-e2),C正确;对于D,e1·e2=1×1×cosθ=cosθ≤1,所以D正确.5.在△ABC中,已知|AB→|=|AC→|=6,且AB→·AC→=18,则△ABC的形状是____.答案等边三角形解析∵AB→·AC→=|AB→||AC→|cos∠BAC,∴cos∠BAC=12,∴∠BAC=60°.又|AB→|=|AC→|,∴△ABC为等边三角形.一、选择题1.若|a|=2,|b|=12,〈a,b〉=60°,则a·b等于()A.1 2B.1 4C.1D.2答案A解析a·b=|a||b|cos〈a,b〉=2×12×12=12.2.在Rt△ABC中,角C=90°,AC=4,则AB→·AC→等于()A.-16B.-8C.8D.16答案D解析解法一:∵AB→·AC→=|AB→||AC→|cos A,△ACB为直角三角形,∴AB→·AC→=|AB→|·|AC→|·|AC→||AB→|=|AC→|2=16.故选D.解法二:∵△ACB为直角三角形,∴AB→在AC→上的投影为AC→,∴AB→·AC→=AC→2=16.故选D.3.向量a的模为10,它与x轴正方向的夹角为150°,则它在x轴正方向上的投影的数量为()A.-53B.5C.-5D.53答案A解析a在x轴正方向上的投影的数量为|a|cos150°=-53.4.已知向量a,b满足|a|=4,|a·b|≥10,则|a-2b|的最小值是()A.1B.2C.3D.4答案A解析设a,b的夹角为θ,因为|a·b|=4|b||cosθ|≥10,所以|b|≥104|cosθ|≥52,由向量形式的三角不等式得,|a-2b|≥||a|-|2b||=|2|b|-4|≥|2×52-4|=1.5.(多选)关于菱形ABCD的下列说法中,正确的是()A.AB→∥CD→B.(AB→+BC→)⊥(BC→+CD→)C.(AB→-AD→)·(BA→-BC→)=0D.AB→·AD→=BC→·CD→答案ABC解析∵四边形ABCD为菱形,∴AB∥CD,∴AB→∥CD→,A正确;∵对角线AC 与BD互相垂直,且AB→+BC→=AC→,BC→+CD→=BD→,∴AC→⊥BD→,即(AB→+BC→)⊥(BC→+CD→),B正确;∵AB→-AD→=DB→,BA→-BC→=CA→,∵DB→⊥CA→,即DB→·CA→=0,∴(AB→-AD→)·(BA→-BC→)=0,C正确;易知〈AB→,AD→〉=180°-〈BC→,CD→〉,且|AB→|=|AD→|=|BC→|=|CD→|,∴AB→·AD→=-BC→·CD→,D错误.故选ABC.二、填空题6.△ABC中,∠A,∠B,∠C的对边长分别为a,b,c,a=3,b=1,∠C=30°,则BC→·CA→等于____.答案-332解析BC→·CA→=|BC→||CA→|cos(180°-30°)=ab cos150°=-332.7.若|a|=2,b=-2a,则a·b=____.答案-8解析|b|=2|a|=4,且b与a反向,∴〈a,b〉=180°.∴a·b=|a||b|cos180°=2×4×(-1)=-8.8.给出下列命题:①若a=0,则对任一向量b,有a·b=0;②若a≠0,则对任意一个非零向量b,有a·b≠0;③若a≠0,a·b=0,则b=0;④若a·b=0,则a,b至少有一个为0;⑤若a≠0,a·b=a·c,则b=c;⑥若a·b=a·c,且b≠c,当且仅当a=0时成立.其中真命题为____.答案①解析由数量积的定义逐一判断可知,只有①正确.三、解答题9.已知正方形ABCD的边长为1,分别求:(1)AB→·CD→;(2)AB→·AD→;(3)AC→·DA→.解如图,(1)〈AB→,CD→〉=π,∴AB→·CD→=-1.(2)〈AB →,AD→〉=π2,∴AB →·AD →=0.(3)〈AC →,DA →〉=3π4,∴AC →·DA →=2×1×cos 3π4=-1.10.已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,AB →与BC →的夹角为θ.求θ的取值范围.解∵AB→·BC →=|AB →||BC →|cos θ=6>0,∴cos θ>0,∴θ为锐角,如图,过C 作CD ⊥AB ,垂足为D ,则|CD |=|BC |sin θ.由题意,知AB→·BC →=|AB →||BC →|cos θ=6,①S =12|AB ||CD |=12|AB →||BC →|sin θ.②由②÷①得S 6=12tan θ,即3tan θ=S .∵3≤S ≤3,∴3≤3tan θ≤3,即33≤tan θ≤1.又θ为AB →与BC →的夹角,θ∈[0,π],∴θ∈π6,π4.1.(多选)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,AH 为BC 边上的高,给出以下结论,其中正确的是()A.AH→·(AC→-AB→)=0B.AB→·BC→<0⇒△ABC为钝角三角形C.AC→·AH→|AH→|=c sin BD.BC→·(AC→-AB→)=a2答案ACD解析因为AC→-AB→=BC→,且AH⊥BC,所以AH→·(AC→-AB→)=0,故A正确;在△ABC中,由AB→·BC→<0,只能得出角B为锐角,不能判断出△ABC的形状,故B不正确;AH→|AH→|是AH→的单位向量,依据数量积的几何意义可知AC→·AH→|AH→|为AC→在AH→方向上的投影,为b sin C=c sin B,故C正确;因为AC→-AB→=BC→,所以BC→·(AC→-AB→)=|BC→|2=a2,故D正确.2.已知a,b是两个非零向量.(1)若|a|=3,|b|=4,|a·b|=6,求a与b的夹角;(2)若|a|=|b|=|a-b|,求a与a+b的夹角.解(1)∵a·b=|a||b|cos〈a,b〉,∴|a·b|=||a||b|cos〈a,b〉|=|a||b||cos〈a,b〉|=6.又|a|=3,|b|=4,∴|cos〈a,b〉|=6|a||b|=63×4=12,∴cos〈a,b〉=±12.∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π3或2π3.(2)如图所示,在平面内取一点O ,作OA→=a ,OB →=b ,以OA →,OB →为邻边作平行四边形OACB ,使|OA →|=|OB →|,所以四边形OACB 为菱形,OC 平分∠AOB ,这时OC→=a +b ,BA →=a -b .由于|a |=|b |=|a -b |,即|OA→|=|OB →|=|AB →|,所以∠AOC =π6,即a 与a +b 的夹角为π6.8.1.2向量数量积的运算律(教师独具内容)课程标准:理解掌握数量积的性质和运算律.教学重点:向量数量积的性质与运算律及其应用.教学难点:平面向量数量积的运算律的证明.知识点平面向量数量积的运算律已知向量a ,b ,c 与实数λ,则交换律a ·b =01b ·a结合律(λa)·b=02λ(a·b)=03a·(λb)分配律(a+b)·c=04a·c+b·c对向量数量积的运算律的几点说明(1)向量数量积不满足消去律:设a,b,c均为非零向量且a·c=b·c,不能得到a=b.事实上,如右图所示,OA→=a,OB→=b,OC→=c,AB⊥OC于D,可以看出,a,b在向量c上的投影分别为|a|cos∠AOD,|b|cos∠BOD,此时|b|cos∠BOD=|a|cos∠AOD=OD.即a·c=b·c.但很显然b≠a.(2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a·b)c≠a(b·c),这是由于a·b,b·c都是实数,(a·b)c表示与c方向相同或相反的向量,a(b·c)表示与a方向相同或相反的向量,而a与c不一定共线.1.判一判(正确的打“√”,错误的打“×”)(1)对于向量a,b,c等式(a·b)·c=a·(b·c)恒成立.()(2)若a·b=a·c(a≠0),则b=c.()(3)(a+b)·(a-b)=a2-b2.()答案(1)×(2)×(3)√2.做一做(1)已知|a|=2,b在a上的投影的数量为-2,则a·(a-b)=____.(2)已知|a|=3,|b|=4,则(a+b)·(a-b)=____.(3)已知|a|=6,|b|=8,〈a,b〉=120°,则|a2-b2|=____,|a-b|=____,|a2+b2|=____.答案(1)8(2)-7(3)28237100题型一求向量的数量积例1已知|a|=2,|b|=3,a与b的夹角为120°,求:(1)a·b;(2)a2-b2;(3)(2a-b)·(a+3b).[解](1)a·b=|a||b|cos120°=2×3 3.(2)a2-b2=|a|2-|b|2=4-9=-5.(3)(2a-b)·(a+3b)=2a2+5a·b-3b2=2|a|2+5|a||b|cos120°-3|b|2=8-15-27=-34.求向量的数量积的两个关键点求向量的数量积时,需明确两个关键点:相关向量的模和夹角.若相关向量是两个或两个以上向量的线性运算,则需先利用向量数量积的运算律及多项式乘法的相关公式进行化简.[跟踪训练1]在边长为1的正三角形ABC中,设BC→=2BD→,CA→=3CE→,则AD→·BE→=____.答案-14解析由已知得AD→=12(AB→+AC→),AE→=23AC→,BE→=BA→+AE→=23AC→-AB→,所以AD→·BE→=12(AB→+AC→)·-=12×→|2-|AB→|2-13AB→·=1 2×1-13cos60°=-14.题型二求向量的夹角例2已知单位向量e1,e2的夹角为60°,求向量a=e1+e2,b=e2-2e1的夹角.[解]设a,b的夹角为θ,∵单位向量e1,e2的夹角为60°,∴e1·e2=|e1||e2|cos60°=12.∴a·b=(e1+e2)·(e2-2e1)=e1·e2+e22-2e21-2e1·e2=e22-2e21-e1·e2=1-2-12=-32,|a|=a2=(e1+e2)2=|e1|2+|e2|2+2e1·e2=1+1+1=3.|b|=b2=(e2-2e1)2=|e2|2-4e1·e2+4|e1|2=1+4-4×12=3.∴cosθ=a·b|a||b|=-323×3=-12.∵θ∈[0,π],∴θ=120°.求向量a,b夹角θ的思路(1)解题流程求|a|,|b|→计算a·b→计算cosθ=a·b|a||b|→结合θ∈[0,π],求出θ(2)解题思想:由于|a|,|b|及a·b都是实数,因此在涉及有关|a|,|b|及a·b的相应等式中,可用方程的思想求解(或表示)未知量.[跟踪训练2]已知|a|=3,|b|=5,|a+b|=7,求a·b及a与b的夹角.解∵|a+b|=7,∴(a+b)2=a2+2a·b+b2=|a|2+2a·b+|b|2=34+2a·b=49,∴a·b=152.设a与b的夹角为θ,则cosθ=a·b|a||b|=1523×5=12又θ∈[0,π],故a与b的夹角θ=60°.题型三求向量的模例3已知x=1是方程x2+|a|x+a·b=0的根,且a2=4,〈a,b〉=120°.求:(1)向量b的模;(2)向量2b+a的模.[解](1)∵a2=4,∴|a|2=4,即|a|=2.把x=1代入方程x2+|a|x+a·b=0,得1+|a|+a·b=0,∴a·b=-3,则a·b=|a||b|cos〈a,b〉=2|b|cos120°=-3,∴|b|=3.(2)(2b+a)2=4b2+a2+4a·b=4×9+4+4×(-3)=28,∴|2b+a|=27.极化恒等式求模长(1)两个结论①(a+b)2=a2+2a·b+b2;②(a+b)·(a-b)=a2-b2.证明:①(a+b)2=(a+b)·(a+b)=a·a+a·b+b·a+b·b=a2+2a·b+b2.②(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.说明:下列结论也是成立的:(a-b)2=a2-2a·b+b2,(a+b)·(c+d)=a·c+a·d+b·c+b·d.(2)由上述结论,我们不难得到4a·b=(a+b)2-(a-b)2,即a·b=1[(a+b)2-(a-b)2].4我们把该恒等式称为“极化恒等式”.(3)应用向量数量积的运算律求向量的模的方法①求模问题一般转化为求模平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.②一些常见的等式应熟记,如(a±b)2=a2±2a·b+b2,(a+b)(a-b)=a2-b2等.提醒:向量的模是非负实数;一个向量与自身的数量积等于它的模的平方.,求|a-b|,|a+b|.[跟踪训练3]已知|a|=|b|=5,向量a与b的夹角为π3解解法一:|a+b|=(a+b)2=a2+b2+2a·b=|a|2+|b|2+2|a||b|cos〈a,b〉=53.=52+52+2×5×5×cosπ3|a-b|=(a-b)2=a2+b2-2a·b=|a|2+|b|2-2|a||b|cos〈a,b〉=5.=52+52-2×5×5×cosπ3解法二:以a,b为邻边作▱ABCD,设AC,BD相交于点E,如图所示.∵|a|=|b|且∠DAB=π3,∴△ABD为正三角形,∴|a-b|=|DB→|=5,|a+b|=|AC→|=2|AE→|=2|AB→|2-|BE→|2=252-5 2253.题型四用向量数量积解决垂直问题例4已知平面上三个向量a,b,c的模均为1,它们相互之间的夹角为120°,求证:(a-b)⊥c.[证明]证法一:∵|a|=|b|=|c|=1,且a,b,c之间的夹角均为120°,∴(a-b)·c=a·c-b·c=|a||c|·cos120°-|b||c|cos120°=0.∴(a-b)⊥c.证法二:如图,设OA→=a,OB→=b,OC→=c,连接AB,AC,BC,三条线段围成正三角形ABC,O为△ABC的中心,∴OC ⊥AB.又BA→=a-b,∴(a-b)⊥c.要解决的问题是用向量表示,它往往对应一个几何图形;如果是几何的形式表示,它往往对应一个向量关系式.要善于发现这二者之间的关系,从一种形式转化为另一种形式,用哪种形式解决问题方便就选用哪种形式.[跟踪训练4]如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明设AD→=a ,AB →=b ,则|a |=|b |,a ·b =0,又DE→=DA →+AE →=-a +b 2,AF →=AB →+BF →=b +a 2,所以AF →·DE →a 12a 2-34a ·b +b 22=-12|a |2+12|b |2=0.故AF →⊥DE→,即AF ⊥DE .1.若向量a 的方向是正北方向,向量b 的方向是西偏南30°方向,且|a |=|b |=1,则(-3a )·(a +b )等于()A.32B .-32C.23D .-23答案B解析由题意知a 与b 的夹角为120°,∴a ·b =-12.∴(-3a )·(a +b )=-3a 2-3a ·b =-32.2.已知a ,b 均为单位向量,它们的夹角为60°,那么|a -b |等于()A.1 B.2C.3D.2答案A解析|a-b|=(a-b)2=a2+b2-2a·b=12+12-2·1·cos〈a,b〉=2-2cos60°=1.3.若O为△ABC所在平面内一点,且满足(OB→-OC→)·(OB→+OC→-2OA→)=0,则△ABC的形状为()A.正三角形B.直角三角形C.等腰三角形D.以上均不正确答案C解析由(OB→-OC→)·(OB→+OC→-2OA→)=0,得CB→·(AB→+AC→)=0,又CB→=AB→-AC→,∴(AB→-AC→)·(AB→+AC→)=0,即|AB→|2-|AC→|2=0.∴|AB→|=|AC→|.∴△ABC为等腰三角形.,则4.已知a,b,c为单位向量,且满足3a+λb+7c=0,a与b的夹角为π3实数λ=____.答案-8或5解析由3a+λb+7c=0,可得7c=-(3a+λb),则49c2=9a2+λ2b2+6λa·b.,即λ2+3λ-40由a,b,c为单位向量,得a2=b2=c2=1,则49=9+λ2+6λcosπ3=0,解得λ=-8或λ=5.5.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61,(1)求a与b的夹角θ;(2)求|a+b|和|a-b|.解(1)因为(2a-3b)·(2a+b)=61,所以4a2-4a·b-3b2=61,,所以4×42-4×4×3cosθ-3×32=61,cosθ=-12又因为θ∈[0,π],所以θ=120°.(2)因为|a+b|2=a2+2a·b+b2=16+2×4×3cos120°+9=13,所以|a+b|=13,同理可求得|a-b|=37.一、选择题1.已知向量a,b满足|a|=2,|b|=1,(a-b)·b=0,那么向量a与b的夹角为()A.30°B.45°C.60°D.90°答案C,解析由题意可得a·b-b2=0,设a与b的夹角为θ,则2cosθ=1,cosθ=12又θ∈[0,π],∴θ为60°.2.已知平面向量a,b满足|a|=3,|b|=2,a·b=-3,则|a+2b|=()A.1 B.7C.4+3D.27答案B解析根据题意,得|a+2b|=a2+4a·b+4b2=7.3.若AB →·BC →+AB →2=0,则△ABC 为()A .直角三角形B .钝角三角形C .锐角三角形D .等腰直角三角形答案A解析∵0=AB→·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →,∴AB →⊥AC →,∴∠BAC =90°.故选A.4.如图,O ,A ,B 是平面上的三点,C 为线段AB 的中点,向量OA→=a ,OB →=b ,设P 为线段AB 的垂直平分线上任意一点,向量OP →=p .若|a |=4,|b |=2,则p ·(a -b )=()A .1B .3C .5D .6答案D解析由题图知CP →⊥BA →,则CP →·BA →=0,p =OP→=OC →+CP →=12(OA →+OB →)+CP →,则p ·(a -b )=12(a +b )+CP →·(a -b )=12(a +b )·(a -b )+CP→·(a -b )=12(a 2-b 2)+CP →·BA →=12(|a |2-|b |2)+0=12×(42-22)=6.5.(多选)设a ,b ,c 是任意的非零向量,且它们相互不共线,则下列结论正确的是()A .a ·c -b ·c =(a -b )·cB .(b ·c )·a -(c ·a )·b 不与c 垂直C .|a |-|b |<|a -b |D .(3a +2b )·(3a -2b )=9|a |2-4|b |2答案ACD解析因为a ,b ,c 是任意的非零向量,且它们相互不共线,则由向量数量积的运算律,知A ,D 正确;由向量减法的三角形法则,知C 正确;因为[(b ·c )·a -(c ·a )·b ]·c =(b ·c )·(a ·c )-(c ·a )·(b ·c )=0.所以(b ·c )·a -(c ·a )·b 与c 垂直,B 错误.故选ACD.二、填空题6.若a ⊥b ,c 与a 及与b 的夹角均为60°,|a |=1,|b |=2,|c |=3,则(a +2b -c )2=____.答案11解析原式展开,得|a |2+4|b |2+|c |2+4|a ||b |cos90°-2|a ||c |cos60°-4|b ||c |cos60°=11.7.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 的夹角的余弦值为____.答案-13解析由|a |=3|b |,得|b ||a |=13.由|a |=|a +2b |,两边平方得|a |2=|a +2b |2=|a |2+4|b |2+4a ·b ,整理得a ·b =-|b |2.设a ,b 的夹角为θ,则cos θ=a ·b |a ||b |=-|b |2|a ||b |=-|b ||a |=-13.8.已知向量AB→与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为____.答案712解析因为向量AB→与AC→的夹角为120°,且|AB→|=3,|AC→|=2,所以AB→·AC→=|AB→||AC→|cos120°=3×2 3.由AP→⊥BC→,得AP→·BC→=0,即AP→·BC→=(λAB→+AC→)·(AC→-AB→)=0,所以AC→2-λAB→2+(λ-1)AB→·AC→=0,即4-9λ-3(λ-1)=0,解得λ=7.12三、解答题9.已知|a|=4,|b|=8,a与b的夹角是120°.(1)计算|4a-2b|;(2)当k为何值时,(a+2b)⊥(k a-b).解由已知,得a·b=4×816.(1)∵(4a-2b)2=16a2-16a·b+4b2=16×16-16×(-16)+4×64=3×162,∴|4a-2b|=16 3.(2)若(a+2b)⊥(k a-b),则(a+2b)·(k a-b)=0.∴k a2+(2k-1)a·b-2b2=0,即16k-16(2k-1)-2×64=0,∴k=-7.10.如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足AP→=λPB→.(1)若λ=12,用向量OA →,OB →表示OP →;(2)若|OA→|=4,|OB →|=3,且∠AOB =60°,求OP →·AB →的取值范围.解(1)∵AP →=12PB →,∴OP →-OA →=12(OB →-OP →).∴32OP →=OA →+12OB →,即OP →=23OA →+13OB →.(2)OA→·OB →=|OA →||OB →|cos60°=6.∵AP→=λPB →,∴OP→-OA →=λ(OB →-OP →),(1+λ)OP →=OA →+λOB →,∴OP →=11+λOA →+λ1+λOB →.∵AB→=OB →-OA →,∴OP →·AB →+λ1+λOB OB →-OA →)=-11+λOA →2+λ1+λOB →2·OB →=-16+9λ+6-6λ1+λ=3λ-101+λ=3-131+λ.∵λ>0,∴3-131+λ∈(-10,3).∴OP→·AB →的取值范围是(-10,3).1.已知向量OA→与OB→的夹角为θ,|OA→|=2,|OB→|=1,OP→=tOA→,OQ→=(1-t)OB→,t∈R,|PQ→|在t=t0时取得最小值,当0<t0<15时,夹角θ的取值范围是()A.0,π3π3,π2C.π2,2π30,2π3答案C解析因为向量OA→与OB→的夹角为θ,|OA→|=2,|OB→|=1,所以OA→·OB→=2cosθ,由PQ→=OQ→-OP→=(1-t)OB→-tOA→,得|PQ→|2=PQ→2=(1-t)2OB→2-2t(1-t)·OA→·OB→+t2OA→2=(5+4cosθ)t2-(2+4cosθ)t+1,所以t0=1+2cosθ5+4cosθ,由0<1+2cosθ5+4cosθ<15,解得-1 2<cosθ<0,因为0≤θ≤π,所以π2<θ<2π3.故选C.2.平面四边形ABCD中,AB→=a,BC→=b,CD→=c,DA→=d,且a·b=b·c=c·d=d·a,试问四边形ABCD的形状.解∵AB→+BC→+CD→+DA→=0,即a+b+c+d=0,∴a+b=-(c+d),由上式可得(a+b)2=(c+d)2,即a2+2a·b+b2=c2+2c·d+d2.又a·b=c·d,故a2+b2=c2+d2.①同理可得a2+d2=b2+c2②由①②,得a2=c2,且b2=d2,即|a|=|c|,且|b|=|d|,也即AB=CD,且BC=DA.∴四边形ABCD为平行四边形.故AB→=-CD→,即a=-c,∴a·b=b·c=-a·b,即a·b=0,∴a⊥b,即AB→⊥BC→.综上知,四边形ABCD为矩形.8.1.3向量数量积的坐标运算(教师独具内容)课程标准:1.能用坐标表示平面向量的数量积,会表示两个平面向量的夹角.2.能用坐标表示平面向量垂直的条件.教学重点:平面向量数量积的坐标表示以及模、角度、垂直关系的坐标表示.教学难点:用坐标法处理模、角度、垂直问题.知识点一向量数量积的坐标运算已知a=(x1,y1),b=(x2,y2),则a·b=01x1x2+y1y2,即两个向量的数量积等于02它们对应坐标乘积的和.知识点二向量的长度已知a=(x1,y1),则|a|=01x21+y21,即向量的长度等于02它的坐标平方和的算术平方根.知识点三两向量夹角的余弦设a=(x1,y1),b=(x2,y2),则cos〈a,b〉=01x1x2+y1y2x21+y21x22+y22.知识点四两点间的距离如果A(x1,y1),B(x2,y2),则|AB→|=01(x2-x1)2+(y2-y1)2.知识点五用坐标表示两向量垂直设a=(x1,y1),b=(x2,y2),则a⊥b⇔01x1x2+y1y2=0.1.两个向量垂直的条件已知a=(x1,y1),b=(x2,y2),如果a⊥b,则x1x2+y1y2=0;反之,如果x1x2+y1y2=0,则a⊥b.运用向量垂直的条件,既可以判定两向量是否垂直,又可以由垂直关系去求参数.如果a⊥b,则向量(x1,y1)与(-y2,x2)平行.这是因为a⊥b,有x1x2+y1y2=0(*),当x2y2≠0时,(*)式可以表示为x1-y2=y1x2,即向量(x1,y1)与向量(-y2,x2)平行.对任意的实数k,向量k(-y2,x2)与向量(x2,y2)垂直.2.不等式|a·b|≤|a||b|的代数形式若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,|a |=x 21+y 21,|b |=x 22+y 22.由|a·b |≤|a ||b |得|x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22,当且仅当a ∥b ,即x 1y 2-x 2y 1=0时取等号,即不等式(x 1x 2+y 1y 2)2≤(x 21+y 21)(x 22+y 22)成立.1.判一判(正确的打“√”,错误的打“×”)(1)若a =(1,1),b =(-2,2),则a·b =0.()(2)若a =(4,2),b =(6,m )且a ⊥b ,则m =-12.()(3)若a·b >0(a ,b 均为非零向量),则〈a ,b 〉为锐角.()答案(1)√(2)√(3)×2.做一做(1)已知向量a =(1,3),b =(3,1),则a 与b 夹角的大小为____.(2)已知a =(1,3),b =(-2,0),则|a +b |=____.(3)设a =(2,0),|b |=1,〈a ,b 〉=60°,则a·b =____.(4)已知a =(3,4),则与a 垂直的单位向量有________,与a 共线的单位向量有________.答案(1)π6(2)2(3)1-45,-35,-题型一向量数量积的坐标运算例1已知向量a 与b 同向,b =(1,2),a ·b =10,求:(1)向量a 的坐标;(2)若c=(2,-1),求(a·c)b.[解](1)∵a与b同向,且b=(1,2),∴a=λb=(λ,2λ)(λ>0).又a·b=10,∴λ+4λ=10,∴λ=2,∴a=(2,4).(2)∵a·c=2×2+(-1)×4=0,∴(a·c)b=0.(1)通过向量的坐标表示实现向量问题代数化,应注意与方程、函数等知识的联系.(2)向量问题的处理有两种思路:一种是纯向量式,另一种是坐标式,两者互相补充.[跟踪训练1]已知a=(2,-1),b=(3,-2),求(3a-b)·(a-2b).解解法一:(3a-b)·(a-2b)=3a2-7a·b+2b2.∵a·b=2×3+(-1)×(-2)=8,a2=22+(-1)2=5,b2=32+(-2)2=13,∴(3a-b)·(a-2b)=3×5-7×8+2×13=-15.解法二:∵a=(2,-1),b=(3,-2),∴3a-b=(6,-3)-(3,-2)=(3,-1),a-2b=(2,-1)-(6,-4)=(-4,3),∴(3a-b)·(a-2b)=3×(-4)+(-1)×3=-15.题型二向量的夹角问题例2已知a+b=(2,-8),a-b=(-8,16),求a与b的数量积及a与b的夹角的余弦值.[解]+b =(2,-8),-b =(-8,16),=(-3,4),=(5,-12).∴a ·b =(-3,4)·(5,-12)=(-3)×5+4×(-12)=-63.cos 〈a ,b 〉=a ·b |a ||b |=-63(-3)2+42×52+(-12)2=-635×13=-6365.∴a 与b 的夹角的余弦值为-6365.利用数量积求两向量夹角的步骤特别提醒:已知两个非零向量的坐标,就可以利用该公式求得两个向量的夹角,因为向量的夹角范围为[0,π],故不存在讨论角的终边所在象限的问题.[跟踪训练2]设向量a =(-2sin α,2cos α)(0≤α≤π),b =(-25,0),则a 与b 的夹角为____.答案|π2-α|解析设a 与b 的夹角为θ,则cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22=45sin α2×25=sin α,∵α∈[0,π],∴θ=|π2-α|.题型三向量的长度、距离问题例3已知向量a,b满足|a|=|b|=1,且|3a-2b|=3.求|3a+b|的值.[解]设a=(x1,y1),b=(x2,y2).∵|a|=|b|=1,∴x21+y21=1,x22+y22=1,3a-2b=3(x1,y1)-2(x2,y2)=(3x1-2x2,3y1-2y2),∵|3a-2b|=(3x1-2x2)2+(3y1-2y2)2=3,∴9x21-12x1x2+4x22+9y21-12y1y2+4y22=9,∴13-12(x1x2+y1y2)=9.∴x1x2+y1y2=13.∵3a+b=3(x1,y1)+(x2,y2)=(3x1+x2,3y1+y2),∴|3a+b|=(3x1+x2)2+(3y1+y2)2=9x21+6x1x2+x22+9y21+6y1y2+y22=10+6(x1x2+y1y2)=10+6×13=23.(1)在上述解题过程中,根据|a|=|b|=1,可以设a=(cosβ,sinβ),b=(cosα,sinα).(2)利用本题的解法可解决下面的一般性问题:若向量a,b满足|a|=|b|=r1,及|λ1a+μ1b|=r2求|λ2a+μ2b|的值.(3)注意区别m=n与|m|=|n|,其中m=n表示的是向量关系,即(x1,y1)=(x2,y2),而|m|=|n|表示的是数量关系,即x21+y21=x22+y22.[跟踪训练3]若向量OA→=(1,-3),|OA→|=|OB→|,OA→·OB→=0,则|AB→|=____.答案25解析解法一:设OB→=(x,y),由|OA→|=|OB→|,知x2+y2=10.①由题意知OA→·OB→=x-3y=0.②=3,=1=-3,=-1.当x=3,y=1时,AB→=OB→-OA→=(2,4),则|AB→|=25;当x=-3,y=-1时,AB→=(-4,2),则|AB→|=25.故|AB→|=25.解法二:由题意知,|AB→|就是以OA→,OB→对应线段为邻边的正方形的对角线长,因为|OA→|=10,所以|AB→|=2×10=25.题型四两向量垂直条件的应用例4如图所示,以原点O和点A(5,2)为两个顶点作等腰直角三角形AOB,使∠B=90°,求点B的坐标.[解]设点B(x,y),则OB→=(x,y),AB→=(x-5,y-2).因为∠B=90°,所以x(x-5)+y(y-2)=0,又|AB→|=|OB→|,所以x2+y2=(x-5)2+(y-2)2,2+y 2-5x -2y =0,x +4y =29,1=72,1=-322=32,2=72.即点B利用向量可以解决与长度、角度、垂直、平行等有关的几何问题,解题的关键在于把其他语言转化为向量语言,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题.常用方法是建立平面直角坐标系,借助向量的坐标运算再将向量问题转化为代数问题来解决.[跟踪训练4]在等腰直角三角形ABC 中,∠ACB 是直角,AC =BC ,D 是BC 的中点,E 是AB 上一点,且AE =2EB .求证:AD ⊥CE .证明建立如图所示的平面直角坐标系,设CA =CB =2,则A (2,0),B (0,2),C (0,0),设E (x ,y ).∵D 为BC 的中点,∴D (0,1).∵AE =2EB ,∴AE →=23AB →,∴(x -2,y )=23(-2,2),-2=-43,=43,=23,=43,∴∴AD→·CE→=(-=-43+43=0,∴AD→⊥CE→,∴AD⊥CE.题型五向量数量积的综合应用例5若函数f(x)=-2<x<10)的图像与x轴交于点A,过点A的直线l与函数的图像交于B,C两点,O为坐标原点,则(OB→+OC→)·OA→=() A.-32B.-16C.16D.32[解析]令f(x)=0,得π6x+π3kπ,k∈Z,∴x=6k-2,k∈Z.∵-2<x<10,∴x=4,即A(4,0).设B(x1,y1),C(x2,y2),∵过点A的直线l与函数的图像交于B,C两点,∴B,C两点关于点A对称,即x1+x2=8,y1+y2=0.故(OB→+OC→)·OA→=(x1+x2,y1+y2)·(4,0)=4(x1+x2)=32.[答案]D与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点问题.解此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、夹角的坐标运算公式外,还应掌握三角函数的图像和性质等知识.[跟踪训练5]设O(0,0),A(1,0),B(0,1),点P是线段AB上的一个动点,AP→=λAB→.若OP→·AB→≥P A→·PB→,则实数λ的取值范围是()A.12≤λ≤1B.1-22≤λ≤1C.12≤λ≤1+22D.1-22≤λ≤1+22答案B解析设P(x,y),则由AP→=λAB→,得(x-1,y)=λ(-1,1),-1=-λ,=λ,∴x-1+y=0.①又OP→·AB→≥PA→·PB→,∴(x,y)·(-1,1)≥(1-x,-y)·(-x,1-y).整理,得x2+y2-2y≤0,即x2+(y -1)2≤1.②将①整理,得x=1-y,代入②中,得(y-1)2≤12.即-22≤y-1≤22.∴1-22≤y≤1+22.结合题意,得1-22≤y≤1,即1-22≤λ≤1.故选B.1.若a=(2,-3),b=(x,2x),且3a·b=4,则x等于()A.3 B.13C.-13D.-3答案C解析∵3a·b=(6,-9)·(x,2x)=-12x=4,∴x=-13.2.已知A(1,2),B(4,0),C(8,6),D(5,8)四点,则四边形ABCD是() A.梯形B.矩形C.菱形D.正方形答案B解析∵AB→=(3,-2),DC →=(3,-2),∴AB →=DC →,又AD→=(4,6),∴AB →·AD →=0,∴AB →⊥AD →.∵|AB→|≠|AD →|,∴选B.3.正三角形ABC 的边长为1,设AB →=c ,BC →=a ,CA →=b ,那么a ·b +b ·c +c ·a 的值是____.答案-32解析解法一:如图,以点A 为坐标原点,AB 所在直线为x 轴,建立直角坐标系,则A (0,0),B (1,0),∴a -12,b -12,-c =(1,0),∴a ·b +32×=-12,同理b ·c =c ·a =-12,∴a ·b +b ·c +c ·a =-32.解法二:a·b +b·c +c·a =1×1×cos120°+1×1×cos120°+1×1×cos120°=3=-32.4.设向量a 与b 的夹角为α,且a =(3,3),2b -a =(-1,1),则cos α=____.答案31010解析∵a =(3,3),由2b -a =(-1,1)可得b =(1,2),∴cos α=a ·b |a ||b |=918×5=31010.5.如图,已知△ABC 的面积为32,AB =2,AB→·BC →=1,求边AC 的长.解以点A 为坐标原点,AB →为x 轴正方向建立平面直角坐标系,设点C 的坐标为(x ,y )(y >0),因为AB =2,∴点B 的坐标是(2,0),∴AB→=(2,0),BC →=(x -2,y ).∵AB →·BC →=1,∴2(x -2)=1,解得x =52.又S △ABC =32,∴12·|AB |·y =32,∴y =32,∴C AC →∴|AC→|==342,故边AC 的长为342.一、选择题1.已知a=(-3,4),b=(5,2),则a·b=()A.23B.7C.-23D.-7答案D解析a·b=(-3)×5+4×2=-7.2.已知A(1,2),B(2,3),C(-2,5),则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形答案A解析∵AB→=(1,1),AC→=(-3,3),∴AB→·AC→=1×(-3)+1×3=0,∴AB→⊥AC→,∴A=90°,故选A.3.已知a=(2,-3),b=(1,-2),且c⊥a,b·c=1,则c的坐标为() A.(3,-2)B.(3,2)C.(-3,-2)D.(-3,2)答案C解析设c=(x,y)2x-3y=0,x-2y=1,x=-3,y=-2.4.与已知向量a 72,12,b12,-72的夹角相等,且模为1的向量是()-45,-223,答案B解析设与向量ab1的向量为(x,y)+y2=1,+12y=12x-72y,=45,=-35=-45,=35,故选B.5.(多选)设A(a,1),B(2,b),C(4,5)为坐标平面上的三点,O为坐标原点.若OA→与OB→在OC→方向上的投影相同,则a,b的取值可能为()A.a=2,b=1B.a=7,b=5C.a=9,b=6D.a=12,b=9答案ABD解析由图知,要使OA→与OB→在OC→方向上的投影相同,只需使AB→⊥OC→,即(2-a,b-1)·(4,5)=0,得4a-5b-3=0,则a,b需满足关系式4a-5b=3,结合选项可知,A,B,D中a,b的取值满足条件.故选ABD.二、填空题6.若a=(x,2),b=(-3,5),且a与b的夹角是钝角,则实数x的取值范围是____.答案103,+∞解析x应满足(x,2)·(-3,5)<0且a,b不共线.解得x>103且x≠-65,∴x>103.7.已知向量a=(1,2),b=(-2,-4),|c|=5,若(a+b)·c=52,则a与c的夹角为____.答案120°解析由已知,得a+b=-a,∴a与c的夹角与c与a+b的夹角互补.又cos〈a+b,c〉=(a+b)·c|a+b||c|=12.∴〈a+b,c〉=60°.∴a与c的夹角是120°.8.已知向量a=(cos2θ,sin2θ),向量b=(2,0),则|2a-b|的最大值是____.答案22解析令t=cos2θ(0≤t≤1),则a=(t,1-t),所以|2a-b|2=(2t-2)2+(2-2t)2=8(t-1)2.所以|2a-b|=22|t-1|=22(1-t),故当t=0时,|2a-b|取得最大值22.三、解答题9.在△ABC中,A(2,-1),B(3,2),C(-3,-1),AD是BC边上的高,求。

人教版高中数学必修5讲义 第1章章末分层突破

人教版高中数学必修5讲义 第1章章末分层突破

章末分层突破[自我校对]①asin A=bsin B=csin C②已知两角和其中一边③c2=a2+b2-2ab cos C④已知三边⑤S=12ac sin B利用正、余弦定理求解三角形的基本问题过程.三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时也求三角形的面积.解斜三角形共包括四种类型:(1)已知三角形的两角和一边(一般先用内角和求角或用正弦定理求边);(2)已知两边及夹角(一般先用余弦定理求第三边);(3)已知三边(先用余弦定理求角);(4)已知两边和一边的对角(先用正弦定理求另一边的对角或先用余弦定理求第三边,注意讨论解的个数).已知△ABC的内角A,B,C的对边分别为a,b,c,a sin A+c sin C -2a sin C=b sin B.(1)求角B的大小;(2)若A=75°,b=2,求a,c.【精彩点拨】(1)用正弦定理将已知关系式变形为边之间的关系,然后利用余弦定理求解.(2)先求角C,然后利用正弦定理求边a,c.【规范解答】(1)由正弦定理得a2+c2-2ac=b2.由余弦定理得b2=a2+c2-2ac cos B,故cos B=22,因此B=45°.(2)sin A=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+6 4.故a=b×sin Asin B=1+ 3.由已知得,C =180°-45°-75°=60°, c =b ×sin Csin B = 6. [再练一题]1.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,设a ,b ,c 满足条件b 2+c 2-bc =a 2和c b =12+3,求A 和tan B 的值.【解】 由余弦定理cos A =b 2+c 2-a 22bc =12,因此A =60°.在△ABC 中,C =180°-A -B =120°-B .由已知条件,应用正弦定理 12+3=c b =sin C sin B =sin (120°-B )sin B=sin 120°cos B -cos 120°sin B sin B=32tan B +12,从而tan B =12.正、余弦定理的综合应用正、角形的面积提供了依据,而三角形中的问题常与向量、函数、方程及平面几何相结合,通常可以利用正、余弦定理完成证明、求值等问题.(1)解三角形与向量的交汇问题,可以结合向量的平行、垂直、夹角、模等知识转化求解.(2)解三角形与其他知识的交汇问题,可以运用三角形的基础知识、正余弦定理、三角形面积公式与三角恒等变换,通过等价转化或构造方程及函数求解.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c ,已知BA →·BC→=2,cos B =13,b =3.求:(1)a 和c 的值;(2)cos(B -C )的值.【精彩点拨】 (1)由平面向量的数量积定义及余弦定理,列出关于a ,c 的方程组即可求解.(2)由(1)结合正弦定理分别求出B ,C 的正、余弦值,利用差角余弦公理求解.【规范解答】 (1)由BA →·BC →=2得c ·a cos B =2. 又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×6×13=13. 解⎩⎪⎨⎪⎧ ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧ a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2.因为a >c ,所以a =3,c =2. (2)在△ABC 中, sin B =1-cos 2 B =1-⎝ ⎛⎭⎪⎫132=223, 由正弦定理,得sin C =c b sin B =23×223=429. 因为a =b >c ,所以C 为锐角, 因此cos C =1-sin 2 C =1-⎝⎛⎭⎪⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327. [再练一题]2.如图1-1,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC=17.(1)求sin∠BAD;(2)求BD,AC的长.图1-1【解】(1)在△ADC中,因为cos∠ADC=17,所以sin∠ADC=437.所以sin∠BAD=sin(∠ADC-∠B)=sin∠ADC cos B-cos∠ADC sin B=437×12-17×32=3314.(2)在△ABD中,由正弦定理得BD=AB·sin∠BADsin∠ADB=8×3314437=3.在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BC·cos B=82+52-2×8×5×12=49.所以AC=7.正、余弦定理的实际应用问题,测量高度问题,测量角度问题等.解决的基本思路是画出正确的示意图,把已知量和未知量标在示意图中(目的是发现已知量与未知量之间的关系),最后确定用哪个定理转化,用哪个定理求解,并进行作答,解题时还要注意近似计算的要求.图1-2如图1-2所示,某市郊外景区内有一条笔直的公路a经过三个景点A、B、C.景区管委会开发了风景优美的景点D.经测量景点D位于景点A的北偏东30°方向上8 km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上.已知AB=5 km.(1)景区管委会准备由景点D向景点B修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(2)求景点C与景点D之间的距离.(结果精确到0.1 km)(参考数据:3=1.73,sin 75°=0.97,cos 75°=0.26,tan 75°=3.73,sin 53°=0.80,cos 53°=0.60,tan 53°=1.33,sin 38°=0.62,cos 38°=0.79,tan 38°=0.78)【精彩点拨】(1)以BD为边的三角形为△ABD和△BCD,在△ABD中,一角和另外两边易得,所以可在△ABD中利用余弦定理求解DB.(2)以CD为边的两个三角形中的其他边不易全部求得,而角的关系易得,考虑应用正弦定理求解.【规范解答】(1)设BD=x km,则在△ABD中,由余弦定理得52=82+x2-2×8x cos 30°,即x2-83x+39=0,解得x=43±3.因为43+3>8,应舍去,所以x=43-3≈3.9,即这条公路的长约为3.9 km.(2)在△ABD中,由正弦定理得ADsin∠ABD=ABsin∠ADB,所以sin∠ABD=sin∠CBD=ADAB·sin∠ADB=45=0.8,所以cos∠CBD=0.6.在△CBD中,sin∠DCB=sin(∠CBD+∠BDC)=sin(∠CBD+75°)=0.8×0.26+0.6×0.97=0.79,由正弦定理得CD=sin∠DBC×BDsin∠DCB≈3.9.故景点C与景点D之间的距离约为3.9 km.[再练一题]3.如图1-3,某住宅小区的平面图呈扇形AOC.小区的两个出入口设置在点A及点C处,小区里有两条笔直的小路AD,DC,且拐弯处的转角为120°.已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米).图1-3【解】法一:设该扇形的半径为r米,由题意,得CD=500米,DA=300米,∠CDO=60°.在△CDO中,CD2+OD2-2·CD·OD·cos 60°=OC2,即5002+(r-300)2-2×500×(r-300)×12=r2,解得r=4 90011≈445(米).法二:连接AC,作OH⊥AC,交AC于点H,由题意,得CD=500米,AD=300米,∠CDA=120°.在△ACD中,AC2=CD2+AD2-2·CD·AD·cos 120°=5002+3002+2×500×300×12=7002,∴AC=700(米).cos∠CAD=AC2+AD2-CD22AC·AD=1114.在Rt△HAO中,AH=350(米),cos∠HAO=1114,∴OA=AHcos∠HAO =4 90011≈445(米).转化与化归思想下,把一种状况转化为另一种状况,也就是转化为另一种情境,使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式.本章主要是综合运用正、余弦定理解决较为复杂的与解三角形有关的问题,在判断三角形的形状的问题中,利用边、角之间的转化与化归的方法是解决这类问题的基本思路.在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cos A sin B=sin C,试确定△ABC的形状.【精彩点拨】充分运用正弦定理和余弦定理,可利用边的关系判断,也可转化为角的关系来判断.【规范解答】法一:由正弦定理,得sin Csin B=cb.又2cos A sin B=sin C,所以cos A=sin C2sin B =c 2b.由余弦定理,有cos A=b2+c2-a22bc,所以c2b =b2+c2-a22bc,即c2=b2+c2-a2,所以a=b.又因为(a+b+c)(a+b-c)=3ab,所以(a+b)2-c2=3ab,所以4b2-c2=3b2,所以b=c,所以a=b=c.因此△ABC为等边三角形.法二:因为A+B+C=180°,所以sin C=sin(A+B).又因为2cos A sin B=sin C,所以2cos A sin B=sin A cos B+cos A sin B,所以sin(A-B)=0.因为A、B均为三角形的内角,所以A=B. 又由(a+b+c)(a+b-c)=3ab,得(a+b)2-c2=3ab,即a2+b2-c2=ab,所以cos C=a2+b2-c22ab=ab2ab=12.因为0°<C<180°,所以C=60°,因此△ABC为等边三角形.[再练一题]4.已知△ABC中,a3+b3-c3a+b-c=c2,且a cos B=b cos A,试判断△ABC的形状.【解】由a3+b3-c3a+b-c=c2,得a3+b3-c3=c2(a+b)-c3,∴a2+b2-ab=c2,∴cos C=12,∴C=60°.由a cos B =b cos A ,得2R sin A cos B =2R sin B cos A (R 为△ABC 外接圆的半径), ∴sin(A -B )=0,∴A -B =0,∴A =B =C =60°,∴△ABC 为等边三角形.1.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( ) A .5 B. 5 C .2 D .1【解析】 ∵S =12AB ·BC sin B =12×1×2sin B =12, ∴sin B =22,∴B =π4或3π4.当B =3π4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ·BC ·cos B =1+2+2=5,∴AC =5,此时△ABC 为钝角三角形,符合题意;当B =π4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ·BC ·cos B =1+2-2=1,∴AC =1,此时AB 2+AC 2=BC 2,△ABC 为直角三角形,不符合题意.故AC = 5.【答案】 B2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.【解析】 因为A ,C 为△ABC 的内角,且cos A =45,cos C =513, 所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =sin B sin A =6365×53=2113.【答案】 21133.如图1-4,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别是67°,30°,此时气球的高是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73)图1-4【解析】 根据已知的图形可得AB =46sin 67°.在△ABC 中,∠BCA =30°,∠BAC=37°,由正弦定理,得AB sin 30°=BC sin 37°,所以BC ≈2×460.92×0.60=60(m).【答案】 604.在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.【解析】 如图,在△ABD 中,由正弦定理,得AD sin B =AB sin ∠ADB,∴sin ∠ADB =22. ∴∠ADB =45°,∴∠BAD =180°-45°-120°=15°.∴∠BAC =30°,∠C =30°,∴BC =AB = 2.在△ABC 中,由正弦定理,得AC sin B =BC sin A ,∴AC = 6.【答案】 65.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cosA)=c.(1)求C;(2)若c=7,△ABC的面积为332,求△ABC的周长.【解】(1)由已知及正弦定理得2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sin(A+B)=sin C,故2sin C cos C=sin C.可得cos C=12,所以C=π3.(2)由已知得12ab sin C=332.又C=π3,所以ab=6.由已知及余弦定理得a2+b2-2ab cos C=7,故a2+b2=13,从而(a+b)2=25.所以△ABC的周长为5+7.。

人教版【高中数学】选修2-1第三章直线与平面的夹角讲义

人教版【高中数学】选修2-1第三章直线与平面的夹角讲义

2 / 14
人教版【高中数学】选修 2-1 第三章直线与平面的夹角讲义
答案 如下图 , 作 AO⊥a,O 为垂足 , 连结 OB,OC,OD,则∠ ABO,∠ACO∠, ADO 分别为
AB,AC,AD与 a 所成的角 , 则
∠ABO=3°0 , ∠ACO=4°5 .

AO=h,则 AC= 2 h,AB=2h.
面的夹角为 , 当一条直线与个平面平行或在平面内时 , 这条直线与平面的夹角为 0. (4) 直线和平面所成角的求法 : ①几何法 : 用几何法求直线和平面所成角的步骤 :i) 找 ( 或作 )
出直线和平面所成的角; ii) 计算 , 即解三角形; iii) 结论 , 即点明直线和平面所成角的大
小. ②向量法 : 若直线 AB与平面 a 所成的角为 , 平面 a 的法向量为 n, 直线与向量 n 所成的
2
∴ AH=A1A AO 1 2
3.
A1O
63
2
AH
∴sin ∠AA1H=
A1 A
3
3
. ∠AA1H=arc sin.33 Nhomakorabea3
∴ A1A 平面 A1BD所成角的大小为 arc sin
.
3
解法二 : ∵AA1=AD=AB,
∴点 A 在平面 A1BD上的射影 H 为△A1BD中心 , 连结 A1H, 则 A1H 为正△A1BD外接圆半径 ,
成的角为 2,OA 与 OM所成的角为 , 则有 cos =
cos 1· cos 2, 我们简称此公式为三余弦公式 , 它反映了三个角的余弦值之间的关系 .
在上述公式中 , 因为 0≤cos 2≤ 1,所以 cos <cos 1, 因为 1 和 都是锐角 , 所以

人教版高中数学必修二教案

人教版高中数学必修二教案

人教版高中数学必修二教案篇一:人教版高中数学必修2教案讲义1:空间几何体一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、锥体、台体、球体及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征.三、教学难点:柱、锥、台、球的结构特征的概括.四、教学过程:(一)、新课导入:1. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.(二)、讲授新课:1. 教学棱柱、棱锥的结构特征:①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?②、定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱. → 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE-A’B’C’D’E’④、讨论:埃及金字塔具有什么几何特征?⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示?⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征:① 讨论:圆柱、圆锥如何形成?② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→结合图形认识:底面、轴、侧面、母线、高. → 表示方法③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→ 柱体、锥体.④ 观察书P2若干图形,找出相应几何体;三、巩固练习:1. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径.2.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.3.正四棱锥的底面积为46cm,侧面等腰三角形面积为6cm,求正四棱锥侧棱.(四)、教学棱台与圆台的结构特征:① 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?② 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得?③ 讨论:棱台、圆台分别具有一些什么几何性质? 22★ 棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.★ 圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.④ 讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系?(以台体的上底面变化为线索)2.教学球体的结构特征:① 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.结合图形认识:球心、半径、直径.→ 球的表示.② 讨论:球有一些什么几何性质?③ 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)3. 教学简单组合体的结构特征:① 讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?② 定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.4. 练习:圆锥底面半径为1cmcm,其中有一个内接正方体,求这个内接正方体的棱长. (补充平行线分线段成比例定理)(五)、巩固练习:1. 已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少?2. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高3. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。

人教版高中数学选择性必修一讲义1.1 空间向量及其运算(精炼)(解析版)

人教版高中数学选择性必修一讲义1.1 空间向量及其运算(精炼)(解析版)

1.1 空间向量及其运算(精炼)【题组一 概念的辨析】1.(2020·辽宁沈阳.高二期末)在下列结论中:①若向量,a b 共线,则向量,a b 所在的直线平行;②若向量,a b 所在的直线为异面直线,则向量,a b 一定不共面;③若三个向量,,a b c 两两共面,则向量,,a b c 共面;④已知空间的三个向量,,a b c ,则对于空间的任意一个向量p 总存在实数x,y,z 使得p xa yb zc =++. 其中正确结论的个数是( )A .0B .1C .2D .3 【正确答案】A【详细解析】平行向量就是共线向量,它们的方向相同或相反,未必在同一条直线上,故①错. 两条异面直线的方向向量可通过平移使得它们在同一平面内,故②错,三个向量两两共面,这三个向量未必共面,如三棱锥P ABC -中,,,PA PB PC 两两共面,但它们不是共面向量,故③错.根据空间向量基本定理,,,a b c 需不共面,故④错.综上,选A .2(2019·全国高二)下列说法中正确的是( )A .若a b =,则a ,b 的长度相等,方向相同或相反B .若向量a 是向量b 的相反向量,则a b =C .空间向量的减法满足结合律D .在四边形ABCD 中,一定有AB AD AC +=【正确答案】B【详细解析】对于A,向量的模相等指的是向量的长度相等,方向具有不确定性,因而不一定方向相同或相反,所以A 错误.对于B,相反向量指的是大小相等,方向相反的两个向量.因而相反向量满足模长相等,所以B 正确. 对于C,减法结合律指的是()()a b c a b c --=--,因而由运算可得空间向量减法不满足结合律.所以C 错误.对于D 满足AB AD AC +=的一定是平行四边形,一般四边形是不满足的,因而D 错误.综上可知,正确的为B,故选:B3.(2020·陕西新城.西安中学高二期末(理))给出下列命题:①若空间向量,a b 满足a b =,则a b =;②空间任意两个单位向量必相等;③对于非零向量c ,由a c b c ⋅=⋅,则a b =;④在向量的数量积运算中()()a b c a b c ⋅⋅=⋅⋅.其中假.命题的个数是( ) A .1B .2C .3D .4 【正确答案】D 【详细解析】对于①,空间向量,a b 的方向不一定相同,即a b =不一定成立,故①错误;对于②,单位向量的方向不一定相同,故②错误;对于③,取()0,0,0a =,()1,0,0b =,()0,1,0c =,满足0a c b c ⋅=⋅=,且0c ≠,但是a b ≠,故③错误;对于④,因为a b ⋅和b c ⋅都是常数,所以()a b c ⋅⋅和()a b c ⋅⋅表示两个向量,若a 和c 方向不同则()a b c ⋅⋅和()a b c ⋅⋅不相等,故④错误.故选:D.4.(2019·长宁.上海市延安中学高二期中)给出以下结论:①空间任意两个共起点的向量是共面的;②两个相等向量就是相等长度的两条有向线段表示的向量;③空间向量的加法满足结合律:()()a b c a b c ++=++;④首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.请将正确的说法题号填在横线上:__________.【正确答案】①③④【详细解析】①中,两个向量共起点,与两向量终点共有3个点,则3点共面,可知两向量共面,①正确; ②中,两个相等向量需大小相等,方向相同,②错误;③中,空间向量加法满足结合律,③正确;④中,由向量加法的三角形法则可知④正确.故正确答案为:①③④【题组二 空间向量的线性运算】1.(2020·辽宁沈阳.高二期末)如图,在正方体1111ABCD A B C D -中,点,M N 分别是面对角线A 1B 与B 1D 1的中点,若DA =a ,DC =b ,1DD =c ,则MN =( )A .1()2c b a +- B .1()2a b c +- C .1()2a c - D .1()2c a - 【正确答案】D【详细解析】根据向量的线性运算 11MN MA A N =+ 1111122BA AC =+=()()111111122BA AA A B B C =+++()()1122b c b a =-++- ()12c a =-所以选D 2.(2020·全国高二)在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于( )A .112223EF AC AB AD =+- B .112223EF AC AB AD =--+ C .112223EF AC AB AD =-+ D .112223EF AC AB AD =-+- 【正确答案】B【详细解析】()1211223223EF EB BA AF AB AC AB AD AC AB AD =++=--+=--+.故选:B 3(2020·山东章丘四中高二月考)如图所示,在空间四边形OABC 中,OA a OB b OC c ===,,,点M 在OA 上,且2,OM MA N =为BC 中点,则MN =( )A .121232a b c -+ B .211322a b c -++ C .111222a b c +- D .221b 332a c -+- 【正确答案】B 【详细解析】由向量的加法和减法运算:12211()23322MN ON OM OB OC OA a b c =-=+-=-++. 故选:B4.(2020·山东德州.高二期末)如图,平行六面体1111ABCD A B C D -中,AC 与BD 的交点为M ,设AB a =,AD b =,1AA c =,则下列选项中与向量1MC 相等的是( )A .1122a b c --- B .1122a b c ++ C .1122a b c -- D .1122a b c +- 【正确答案】B【详细解析】如图所示,11MC MC CC =+,12M C C A =,AC AB AD =+,AB a =,AD b =,1CC c =, ()1111121122212MC AB CC AB AD AD b CC a c ∴=++=++++=, 故选:B .5.(2020·陕西王益.高二期末(理))如图,在空间四边形ABCD 中,E ,M ,N 分别是边BC ,BD ,CD 的中点,DE ,MN 交于F 点,则1122AB AC EF ++=( )A .ADB .AFC .FAD .EM 【正确答案】B【详细解析】E 是边BC 的中点,∴1122AB AC AE +=;∴1122AB AC EF AE EF AF ++=+=; 故选:B . 6.(2019·江苏省苏州实验中学高二月考)平行六面体1111ABCD A B C D -中,12,AM MC =1AM xAB yAD zAA =++,则实数x,y,z 的值分别为( )A .1,32,323B .2,31,323C .2,32,313D .2,31,223【正确答案】C【详细解析】12,A M MC =112,3A M AC ∴= ()111,AC AC AA AB AD AA -==+- 1112222,3333A M AC AB AD AA ∴=+-= 111221333AM AA A M AB AD AA +∴=+=+,221333x y z ==∴=,,.故选:C. 7.(2020·湖北黄石.高二期末)如图,已知空间四边形OABC ,其对角线为,OB AC ,,M N 分别是对边,OB AC 的中点,点G 在线段MN 上,2MG GN =,现用基向量,,OA OB OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( )A .111333x y z ===,, B .111336x y z ===,, C .111363x y z ===,, D .111633x y z ===,, 【正确答案】D 【详细解析】()1212121223232323OG OM MG OA MN OA MA AN OA OA AN =+=+=++=+⨯+()525221636332OA AB BN OA AB BC =++=++⨯()()521111633633OA OB OA OC OB OA OB OC =+-+-=++ 16x ∴=,13y =,13z =故选:D 8.(2020·全国高二课时练习)在正方体ABCD -A 1B 1C 1D 1中,已知下列各式:①(AB +BC )+CC 1;②(1AA +11A D )+11DC ;③(AB +1BB )+11B C ;④(1AA +11A B )+11B C .其中运算的结果为1AC 的有___个. 【正确答案】4【详细解析】根据空间向量的加法运算以及正方体的性质逐一进行判断:①(AB +BC )+1CC =AC +1CC =1AC ;②(1AA +11A D )+11DC =1AD +11DC =1AC ; ③(AB +1BB )+11B C =1AB +11B C =1AC ;④(1AA +11A B )+11B C =1AB +11B C =1AC . 所以4个式子的运算结果都是1AC .故正确答案为:4.9.(2020·江苏省如东高级中学高一月考)在四面体ABCD 中,E 、G 分别是CD 、BE 的中点,若记→→=AB a ,AD b →→=,AC c →→=,则AG →=______.【正确答案】111244a b c →→→++ 【详细解析】在四面体ABCD 中,E 、G 分别是CD 、BE 的中点,则AG AB BG →→→=+12AB BE →→=+11()22AB BC BD →→→=+⨯+1()4AB AC AB AD AB →→→→→=+-+-111442AB AC AD AB →→→→=++- 111244AB AD AC →→→=++.故正确答案为:111244a b c →→→++. 10.(2020·全国高二课时练习)已知正方体ABCD -A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且1AF AD mAB nAA =+-则m ,n 的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12【正确答案】A 【详细解析】由于11111()222AF AD DF AD DC DD AD AB AA =+=++=++,所以11,22m n ==-.故选:A 【题组三 空间向量的共面问题】1.(2020·涟水县第一中学高二月考),,,A B C D 是空间四点,有以下条件: ①11OD OA OB OC 23=++; ②111234OD OA OB OC =++; ③111OD OA OB OC 235=++; ④111OD OA OB 236OC =++, 能使,,,A B C D 四点一定共面的条件是______【正确答案】④ 【详细解析】对于④111OD OA OB 236OC =++,1111236++=,由空间向量共面定理可知,,,A B C D 四点一定共面,①②③不满足共面定理的条件.故正确答案为:④2.(2019·江苏海安高级中学高二期中(理))设空间任意一点O 和不共线三点A B C ,,,且点P 满足向量关系OP xOA yOB zOC =++,若,,,P A B C 四点共面,则x y z ++=______.【正确答案】1【详细解析】因为,,,P A B C 四点共面,三点A B C ,,不共线,所以,,,m n R PA mAB nAC ∃∈=+()(),(1)OA OP m OB OA n OC OA OP m n OA mOB nOC -=-+-∴=++--因为OP xOA yOB zOC =++,因为O 是任意一点,故,,OA OB OC 可不共面,所以1,,x m n y m z n =++=-=-,故1x y z ++=.故正确答案为:13.(2020·全国高二课时练习)对于空间任意一点O 和不共线的三点A ,B ,C ,有如下关系:623OP OA OB OC =++,则( )A .四点O ,A ,B ,C 必共面 B .四点P ,A ,B ,C 必共面C .四点O ,P ,B ,C 必共面D .五点O ,P ,A ,B ,C 必共面【正确答案】B 【详细解析】因为623OP OA OB OC =++,所以()()23OP OA OB OP OC OP -=-+-, 即23AP PB PC =+,根据共面向量基本定理,可得AP ,PB ,PC 共面,所以,P ,A ,B ,C 四点共面.故选:B .4.(2020·宁阳县第四中学高二期末)对于空间任意一点O 和不共线的三点A ,B ,C ,有如下关系:623OP OA OB OC =++,则( )A .四点O ,A ,B ,C 必共面 B .四点P ,A ,B ,C 必共面C .四点O ,P ,B ,C 必共面D .五点O ,P ,A ,B ,C 必共面【正确答案】B 【详细解析】由已知得111632OP OA OB OC =++,而1111632++=,∴四点P 、A 、B 、C 共面. 故选:B .5.(2020·四川阆中中学高二月考(理))O 为空间任意一点,,,A B C 三点不共线,若OP =111326OA OB OC ++,则,,,A B C P 四点( ) A .一定不共面B .不一定共面C .一定共面D .无法判断 【正确答案】C【详细解析】因为OP =111326OA OB OC ++,且1111326++=,所以,,,A B C P 四点共面. 6.(2019·建瓯市第二中学高二月考)已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( )A .OM OA OB OC =++B .111333OM OA OB OC =++ C .1123OM OA OB OC =++ D .2OM OA OB OC =--【正确答案】B 【详细解析】若111333OM OA OB OC =++, 故可得1111110333333OM OA OM OB OM OC -+-+-=即1110333AM BM CM ++=, 则AM BM CM =--,故AM AM AB AM AC =-+-+ 整理得1133AM AB AC =+ 又因为,AB AC 共面,故可得,,AM AM AM 共面,而其它选项不符合,即可得,,,A B C M 四点共面.故选:B.7.(2020·西夏.宁夏育才中学高二期末(理))已知O 为空间任意一点,若311488OP OA OB OC =++,则,,,A B C P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断【正确答案】B【详细解析】由若 OP a OA b OB c OC ⋅+⋅+⋅= ,当且仅当1a b c ++= 时,P A B C ,,, 四点共面. 311488OP OA OB OC =++ , 而 311 1 488++= 故P A B C ,,, 四点共面,故选B 【题组四 空间向量的数量积】1.(2020·山东新泰市第一中学高一期中)如图,平行六面体1111ABCD A B C D -中,11AB AD AA ===,1120BAD BAA ∠=∠=︒,160DAA ∠=︒,则1AC =( )A .1B .2CD 【正确答案】D【详细解析】11AC AB AD AA =++,2221111222AC AB AD AA AB AD AB AA AD AA ∴=+++⋅+⋅+⋅1111112112112112222⎛⎫⎛⎫=+++⨯⨯⨯-+⨯⨯⨯-+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭,1AC ∴=故选:D2.(2020·四川遂宁.高三三模(理))如图,平行六面体1111ABCD A B C D -中,5AB =,3AD =,17AA =,3BAD π∠=,114BAA DAA π∠=∠=,则1AC 的长为_____.【详细解析】平行六面体1111ABCD A B C D -中,5AB =,3AD =,17AA =,3BAD π∠=,114BAA DAA π∠=∠=,11AC AB BC CC =++,()211221AC AC AB BC CC ==++2221112cos2cos2cos344AB BC CC AB BC BC CC AB CC πππ=+++⋅+⋅⋅+⋅12594925323725798222=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=+1198AC AC ∴==3.(2020·全国高二课时练习)如图,M N 、分别是四面体OABC 的棱OA BC 、的中点,P Q 、是MN 的三等分点.(1)用向量OA ,OB ,OC 表示OP 和OQ .(2)若四面体OABC 的所有棱长都等于1,求OP OQ 的值. 【正确答案】(1)111633OP OA OB OC =++,111366OQ OA OB OC =++(2)1336.【详细解析】(1)AB OB OA =-,BC OC OB =- ∴1111()2222MN MA AB BN OA AB BC OA OB OA OC OB =++=++=+-+- 111222OA OB OC =-++121111111232333633OP OM MP OA MN OA OA OB OC OA OB OC∴=+=+=-++=++111111111232666366OQ OM MQ OA MN OA OA OB OC OA OB OC ∴=+=+=-++=++(2)四面体OABC 的所有棱长都等于1,各面为等边三角形,,,,3OA OB OB OC OC OA π∴<>=<>=<>=,OB ,OC111111()()633366OP OQ OA OB OC OA OB OC ∴=++++222111111111++++++1818183636918918OA OB OC OA OB OA OC OB OA OB OC OC OA OC OB =++11111111113++++++18181872721836183636=++= 4..(2020·全国高二课时练习)如图,三棱柱111ABC A B C -中,底面边长和侧棱长都等于1,1160BAA CAA ∠=∠=︒.(1)设1AA a =,AB b =,AC c =,用向量a ,b ,c 表示1BC ,并求出1BC 的长度; (2)求异面直线1AB 与1BC 所成角的余弦值. 【正确答案】(1)1BC a c b =+-;(2【详细解析】解:(1)111111111BC BB BC BB AC A B a c b =+=+-=+-, 又11cos 11cos602a b a b BAA ⋅=∠=⨯⨯︒=, 同理可得12a cbc ⋅=⋅=, 则221||()2222BC a c b a c b a c a b c b =+-=+++⋅-⋅-⋅=.(2)因为1AB a b =+, 所以221||()23AB a b a b a b =+=++⋅=,因为211()()1AB BC a b a c b a a c a b ba cb b ⋅=+⋅+-=+⋅-⋅+⋅+⋅-=,所以111111cos ,6||||2AB BC AB BC AB BC ⋅<>===.则异面直线1AB 与1BC5.(2020·全国高二课时练习)如图,三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为_____________【正确答案】6【详细解析】三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,设棱长为1,则111cos602AB AC ︒⋅=⨯⨯=,1111cos602AB AA ︒⋅=⨯⨯=, 1111cos602AC AA ︒⋅=⨯⨯=. 又11AB AB AA =+,11BC AA AC AB =+-,所以()()1111AB BC AB AA AA AC AB ⋅=+⋅+-22111111*********AB AA AB AC AB AA AA AC AA AB =⋅+⋅-++⋅-⋅=+-++-= 而()222111123ABAB AA AB AB AA AA =+=+⋅+=,()2111BC AA AC AB =+-==所以111111cos 62AB BC AB BC AB BC ⋅<⋅>===⋅. 故正确答案为 6.如图3­1­22所示,在空间四边形OABC 中,OA ,OB ,OC 两两成60°角,且OA =OB =OC =2,E 为OA 的中点,F为BC 的中点,试求E ,F 间的距离.图3­1­22【正确答案】2【详细解析】EF →=EA →+AF →=12OA →+12(AB →+AC →)=12OA →+12[(OB →-OA →)+(OC →-OA →)]=-12OA →+12OB →+12OC →,所以EF 2→=14OA →2+14OB →2+14OC →2+2×⎝⎛⎭⎫-12×12OA →·OB →+2×⎝⎛⎭⎫-12×12OA →·OC →+2×12×12OB →·OC →=2. ∴|EF →|=2,即E ,F 间的距离为 2.7.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在α的同侧,若AB =BC =CD =2,求A ,D 两点间的距离.【正确答案】22【详细解析】∵AD →=AB →+BC →+CD →,∴|AD →|2=(AB →+BC →+CD →)2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2AB →·CD →+2BC →·CD →=12+2(2·2·cos90°+2·2·cos120°+2·2·cos90°)=8,∴|AD →|=22,即A ,D 两点间的距离为2 2.。

人教版高中数学高一培优讲义第1讲集合

人教版高中数学高一培优讲义第1讲集合

第1讲集合理清双基1、集合的有关概念(1)、集合的含义与表示:研究对象的全体称为集合。

对象为集合的元素。

通常用大写字母A 、B 、C 、D 表示。

元素与集合的关系∈与∉(2)、集合元素的特征(三要素):①确定性:②互异性:③无序性:【例】1.设R b a ∈,,集合},,0{},,1{b aba b a =+,则=-a b ________.(3)、集合的分类:①有限集②无限集③空集:∅(4)、集合的表示方法:①自然语言②列举法③描述法④venne 法【例】2.分析下列集合间的关系}1{2+==x y y A }1{2+==x y x B }1),{(2+==x y y x C }1{2+==x t t D 3.集合}{抛物线=A }{直线=B ,则B A 的元素个数下列说法正确的是()一个(B )二个(C )一个、二个或没有(D )以上都不正确变式:集合})0(),{(2≠++==a c bx ax y y x A })0(|),{(≠+==k b kx y y x B ,则B A 的元素个数为()说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

2.集合间的关系(1)子集:(2)相等关系:(3)真子集:说明:任何一个集合是它本身的子集空集是任何集合的子集,是任何非空集合的真子集。

【例】4.设⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,214,则M 与N 的关系正确的是()A.NM = B.NM ≠⊂ C.NM ≠⊃ D.以上都不对5.已知集合}.121|{},72|{-<<+=≤≤-=m x m x B x x A 。

若A B ⊆,则实数m 的取值范围是()A .43≤≤-m B .43<<-m C .42≤<m D .4≤m 3.集合的基本运算(1)交集(2)并集(3)补集全集【例】6.已知集合}1{2+==x y y M ,}9{2x y x N -==,则=N M ________4、集合运算中常用结论(1)等价关系B A A B A ⊆⇔= AB A B A ⊆⇔=【例】7.已知集合}{},1{a x x B x x A ≥=≤=,且R B A = ,则实数a 的取值范围为____(2)反演律(德摩根定律))()()(B C A C B A C U U U =)()()(B C A C B A C U U U =【例】8.设全集}5,4,3,2,1{=U ,集合S 与T 都是U 的子集,满足}2{=T S ,}4{)(=T S C U ,}5,1{)()(=T C S C U U 则有()A .TS ∈∈3,3B .TC S U ∈∈3,3C .TS C U ∈∈3,3D .TC S C U U ∈∈3,39.由)(+∈N n n 个元素组成的集合A 的子集个数:A 的子集有n2个,非空子集有)12(-n 个,真子集有)12(-n 个,非空真子集有)22(-n 个【考点分析】考点一集合的基本概念【例1】1.已知集合},,|),{(},5,4,3,2,1{A y x A y A x y x B A ∈+∈∈==则B 中所含元素的个数为()A .3B .6C .8D .102.集合A 是由形如()Z n Z m n m ∈∈+,3的数构成的,判断321-是不是集合A 中的元素.3.数集A 满足条件:若A a ∈,则)1(11≠∈-+a A a a .若A ∈31,求集合中的其他元素.4.已知},,2|{R k N x k x x P ∈∈<<=,若集合P 中恰有3个元素,则实数k 的取值范围是________.5.已知集合}023|{2=+-=x ax x A .(1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.►归纳提升解答集合的概念问题应关注两点(1)研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性。

人教版高中数学必修第一册同步讲义第一章 1.8 充分条件与必要条件

人教版高中数学必修第一册同步讲义第一章 1.8 充分条件与必要条件

1.8 充分条件与必要条件①课文三点专讲重点:(1)如果已知p ⇒q ,则说p 是q 的充分条件,同时也说q 是p 的必要条件。

如果既有p ⇒q ,又有q ⇒p ,就记作p ⇔q ,则说p 是q 的充要条件。

(2)从集合角度理解:①p ⇒q ,相当于Q P ⊆,即P ⊂≠Q 或P=Q 即:要使x ∈Q 成立,只要x ∈P 就足够了——有它就行。

②p ⇔q ,相当于P=Q , P 、Q 即:互为充要的两个条件刻画的是——同一事物“充要条件”的同义词语是“当且仅当”、“等价于”、“必须而且只需”、“…,反之也真”等.难点:充分条件与必要条件的判断:(1)定义法:①分清条件与结论,即分清哪一个是条件,哪一个是结论;②找推式,即判断p ⇒q 及q ⇒p 的真假; ③下结论,即根据推式及定义下结论.(2)等价法:将命题等价转化为另一个等价又便于判断真假的命题.(3)集合法:写出集合{|()}A x p x =及{|()}B x q x =,利用集合之间的包含关系加以判断.考点:(1)根据充要条件的定义,直接进行充要条件的判定.解此类问题需要根据充要条件的定义判定既有p ⇒q ,又有q ⇒p.(2)依据多个命题间的关系,判断其中两个命题之间的关系.解这类问题,需要明确两者之间的关系,可先用推出符号“⇒”作运载工具,将各命题之间的联系找出来,最后找到所求命题之间的关系.②练功篇典型试题分析例1.指出下列各组命题中,p 是q 的什么条件(在“充分而不必要条件”、“必要而不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种)?(1)p :(x-2)(x-3)=0;q :x-2=0.(2)p :同位角相等;q :两直线平行(3)p :x=3;q :x 2=9.(4)p :四边形的对角线相等;q :四边形是平行四边形.分析: 可以从命题的真假看充要条件.以p 与q 分别记作命题的条件与结论,则原命P P,QQ题与逆命题的真假同p 与q 的关系之间的关系如下:如果原命题真逆命题假,那么p 是q 的充分而不必要条件;如果原命题假逆命题真,那么p 是q 的必要而不充分条件;如果原命题与逆命题都真,那么p 是q 的充要条件;如果原命题与逆命题都假,那么p 是q 的既不充分又不必要条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)任意两个基本事件是互斥事件; (2)任何事件(除不可能事件)都可以表示成这些事 件的和.
2020/7/10
2020/7/10
二、试验探究,引入概念
通过同学们对三个试验的分析研究,归纳 试验具有:
(1)试验中所有可能出现的基本事件只有 有限个;
(有限性)
(2)每个基本事件出现的可能性相等。 (等可能性)
我们将具有这两个特点的概率模型称为古 典概率模型,简称古典概型。
2020/7/10
2020/7/10
2020/7/10
2020/7/10
三、例题分析,巩固概念
思考一:从所有整数中任取一个数的试验 是否属于古典概型?
基本事件无限个,不满足古典概型的第一个条件 。
思考二:某同学随机地向一靶心进行射击, 结果有:命中10环、命中9环……命中5环和 脱靶。你认为这是古典概型吗?为什么?
2020/7/10
2020/7/10
四、课堂练习,深化概念
变式二:一中决定从1-12班中选两个班参加青年志 愿 者活动,由于某种原因一班必须去,另外再从2 至12班中选一个班,有人建议:掷两枚均匀的骰子 得到点数和是几就选几班,你认为用掷两个骰子的 点数和定班级公平吗?这试验是不是古典概型? 分析: 掷两枚骰子有36种基本事件(有限性) 两枚骰子点数和为5和7的概率不相等(不等可能的)
由此大家得出结论:不公平,此建议不满足古典 概型的等可能性.
2020/7/10
2020/7/10
2020/7/10
作业布置:
同时掷两均匀骰子,向上的点数 相等的概率是多少?
2020/7/10
感谢您的指导和宝贵意见
2020/7/10
三亚一中 陈 艳
人教版高中数学教程
选修 必修5
必修1 必修4
必修2 必修3
海南省
2020/7/10
三亚市第一中学 数 学 组
陈艳
3.2.1 古典概型
通往知识的殿堂
教学目标
教学重、 难点
板书设计
教学情景设计
回顾反思
教学流程
一、情景设置:分组试验
分析一:基本事件
二、试验探究:

引入概念
分析二:古典概型


分析三:古典概型概率计算公式

三、例题分析:巩固概念
四、课堂练习:深化概念
五、总结反思:强化概念
2020/7/10
二、试验探究,引入概念
试验一: 2个结果 正面朝上 反面朝上 试验二: 6个结果 1点 2点 3点 4点 5点 6点 试验三: 5个结果 牌A 牌2 牌3 牌4 牌5
我们把这些不能再分的最简单的随机事件叫基本事件 基本事件具有两个特征:
不重不漏
(3)向上的点数之和是5(事件A)的概基本事件总数共有36种 2020/7/10
2020/7/10
2020/7/10
三、例题分析,巩固概念
【例2】 同时掷均匀两个骰子,计算: (3)向上的点数之和是5(事件A)的概率是多少?
解: 同时掷两个均匀骰子总共有36个基本事件 向上点数和为5(事件A)的基本事件有4种 由古典概率公式得:
不是古典概型,因为试验的所有可能结果只有7 个,而命中10环、命中9环、…、命中5环和脱靶 的出现不是等可能的 ,不满足第二个条件。
2020/7/10
三、例题分析,巩固概念
【例2】 同时掷两个均匀的骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5 (记作事件A)的结
果有多少种?
相关文档
最新文档