第二章 金属材料的高温化学腐蚀 金属腐蚀教学课件
合集下载
第2章腐蚀电化学原理简介PPT课件

形成腐蚀电池并不是造成腐蚀的根本原因,只要材料与环境 介质接触,形成热力学不稳定的体系,就会在释放化学能的 推动下,使金属转变为离子溶解(即发生腐蚀)。
腐蚀反应中释放的化学能又是从何而来的?
形成腐蚀电池确实对腐蚀有加速作用。在腐蚀控制工作中仍 然要注意防止形成腐蚀电池,或减小腐蚀电池的推动力。
Zn+2H+→Zn2++H2↑
电流的流动
金属中:电子从阳极流向阴极。
形 溶液中:离子迁移。阳离子从阳极区向阴极区迁移,阴离子从
成
阴极区向阳极区迁移。
回 路
阳极:发生氧化反应
阴极:发生还原反应
中国民航大学 理学院 2010/8/14
5
A
k
e
-
+
化学 Zn
Cu
势能2H+
Zn2+
SO42-
电池工作的推动力是电池反应的化学势能,即反应物和反应 产物之间的化学势差。
化学势能与构成电池的两个电极的电位差成正比。
ΔrGm=-nFE
中国民航大学 理学院 2010/8/14
6
2.1 腐蚀电池
-+
Zn Cu e
Zn2+
2H+ SO42-
◦ 把Zn-Cu原电池短路,电池仍可以持续工作。
电池工作的结果仅造成Zn被溶解(腐蚀),不能输出有用的 电功
形成了腐蚀原电池(可简称腐蚀电池)。电化学腐蚀是以腐 蚀电池工作的方式完成的
中国民航大学 理学院 2010/8/14
10
2.1 腐蚀电池
2.1.2 腐蚀电池的类型
◦ 按组成腐蚀电池的阴极、阳极的大小:
宏观腐蚀电池:阳极区和阴极区尺寸较大,区分明显,多数 情况下肉眼可辨。
腐蚀反应中释放的化学能又是从何而来的?
形成腐蚀电池确实对腐蚀有加速作用。在腐蚀控制工作中仍 然要注意防止形成腐蚀电池,或减小腐蚀电池的推动力。
Zn+2H+→Zn2++H2↑
电流的流动
金属中:电子从阳极流向阴极。
形 溶液中:离子迁移。阳离子从阳极区向阴极区迁移,阴离子从
成
阴极区向阳极区迁移。
回 路
阳极:发生氧化反应
阴极:发生还原反应
中国民航大学 理学院 2010/8/14
5
A
k
e
-
+
化学 Zn
Cu
势能2H+
Zn2+
SO42-
电池工作的推动力是电池反应的化学势能,即反应物和反应 产物之间的化学势差。
化学势能与构成电池的两个电极的电位差成正比。
ΔrGm=-nFE
中国民航大学 理学院 2010/8/14
6
2.1 腐蚀电池
-+
Zn Cu e
Zn2+
2H+ SO42-
◦ 把Zn-Cu原电池短路,电池仍可以持续工作。
电池工作的结果仅造成Zn被溶解(腐蚀),不能输出有用的 电功
形成了腐蚀原电池(可简称腐蚀电池)。电化学腐蚀是以腐 蚀电池工作的方式完成的
中国民航大学 理学院 2010/8/14
10
2.1 腐蚀电池
2.1.2 腐蚀电池的类型
◦ 按组成腐蚀电池的阴极、阳极的大小:
宏观腐蚀电池:阳极区和阴极区尺寸较大,区分明显,多数 情况下肉眼可辨。
金属的腐蚀与防护完整版PPT课件

数据分析与结果讨论
对实验数据进行处理和分析,提取金属内部或表面的缺陷信息,评 估金属的腐蚀程度和剩余寿命。
06 金属防护工程实践案例 分享
石油化工行业金属设备防护案例
案例一
某石化公司炼油厂塔器设备腐蚀防护。采用高分子复合涂层技术进 行防护,有效延长了设备使用寿命。
案例二
某油田输油管道腐蚀防护。采用阴极保护技术,结合涂层保护,降 低了管道的腐蚀速率。
阴极保护法
01
将被保护金属与外加直流电源的负极相连,使其成为阴极而防
止金属腐蚀的方法。
阳极保护法
02
将被保护金属与外加直流电源的正极相连,使其处于阳极电位
下成为钝态或致钝而防止金属腐蚀的方法。
牺牲阳极保护法
03
在被保护金属上连接电位更负的金属或合金作为阳极,使其在
腐蚀介质中优先溶解,从而保护被连接金属的方法。
金属的腐蚀与防护完 整版PPT课件
目录
CONTENTS
• 金属腐蚀概述 • 金属腐蚀类型及特点 • 金属防护方法及原理 • 不同环境下金属腐蚀与防护策略 • 金属腐蚀实验方法与检测技术 • 金属防护工程实践案例分享
01 金属腐蚀概述
腐蚀定义与分类
腐蚀定义
金属与周围环境发生化学或电化学 反应,导致金属性能劣化的现象。
案例三
某变电站高压开关柜金 属外壳腐蚀防护。采用 阴极保护技术,结合涂 层保护,降低了金属外 壳的腐蚀速率。
交通运输领域金属部件防护案例
案例一
某地铁列车车体腐蚀防护。采用 不锈钢车体材料,结合电化学保 护技术,提高了车体的耐蚀性。
案例二
某汽车制造厂车身钢板腐蚀防护。 采用镀锌钢板材料,结合涂层保 护技术,延长了车身的使用寿命。
对实验数据进行处理和分析,提取金属内部或表面的缺陷信息,评 估金属的腐蚀程度和剩余寿命。
06 金属防护工程实践案例 分享
石油化工行业金属设备防护案例
案例一
某石化公司炼油厂塔器设备腐蚀防护。采用高分子复合涂层技术进 行防护,有效延长了设备使用寿命。
案例二
某油田输油管道腐蚀防护。采用阴极保护技术,结合涂层保护,降 低了管道的腐蚀速率。
阴极保护法
01
将被保护金属与外加直流电源的负极相连,使其成为阴极而防
止金属腐蚀的方法。
阳极保护法
02
将被保护金属与外加直流电源的正极相连,使其处于阳极电位
下成为钝态或致钝而防止金属腐蚀的方法。
牺牲阳极保护法
03
在被保护金属上连接电位更负的金属或合金作为阳极,使其在
腐蚀介质中优先溶解,从而保护被连接金属的方法。
金属的腐蚀与防护完 整版PPT课件
目录
CONTENTS
• 金属腐蚀概述 • 金属腐蚀类型及特点 • 金属防护方法及原理 • 不同环境下金属腐蚀与防护策略 • 金属腐蚀实验方法与检测技术 • 金属防护工程实践案例分享
01 金属腐蚀概述
腐蚀定义与分类
腐蚀定义
金属与周围环境发生化学或电化学 反应,导致金属性能劣化的现象。
案例三
某变电站高压开关柜金 属外壳腐蚀防护。采用 阴极保护技术,结合涂 层保护,降低了金属外 壳的腐蚀速率。
交通运输领域金属部件防护案例
案例一
某地铁列车车体腐蚀防护。采用 不锈钢车体材料,结合电化学保 护技术,提高了车体的耐蚀性。
案例二
某汽车制造厂车身钢板腐蚀防护。 采用镀锌钢板材料,结合涂层保 护技术,延长了车身的使用寿命。
《高温腐蚀二》课件

实验参数
温度
根据实验需求设定不同的温度条件,如常温 、中温、高温等。
时间
根据实验需求设定不同的腐蚀时间,如数分 钟、数小时、数天等。
腐蚀介质
选择适当的腐蚀介质,如酸、碱、盐等,以 模拟不同环境下的腐蚀情况。
样品处理
对样品进行预处理,如清洗、干燥等,以确 保实验结果的准确性和可靠性。
数据分析
数据记录
案例三:工业炉高温腐蚀
防护措施
采用涂层、合金化、热喷涂和渗铝等方法对工业炉进行防护 。
案例分析
某型工业炉炉管在使用过程中出现了高温氧化和热腐蚀,导 致炉管表面剥落和穿孔,严重影响工业炉的性能和使用寿命 。
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
详细记录实验过程中的数据,如温度 、压力、腐蚀速率等。
数据处理
对实验数据进行整理、分析和处理, 提取有用的信息。
结果评估
根据实验结果评估材料的耐腐蚀性能 ,并分析其原因。
结果应用
将实验结果应用于实际工程中,为材 料选择和防腐措施提供依据。
01
高温腐蚀的应用与 案例分析
应用领域
航空航天
能源
高温腐蚀在航空航天领域中主要应用于航 空发动机和燃气轮机等关键部件的防护。
反应过程
腐蚀介质吸附
腐蚀介质在金属表面吸 附。
电子转移
金属失去电子,成为正 离子。
腐蚀产物形成
金属离子与腐蚀介质结 合,形成腐蚀产物。
腐蚀产物脱落
腐蚀产物从金属表面脱 落,暴露出新的金属表 面,继续发生腐蚀反应
。
01
高温腐蚀的防护措 施
材料选择
耐高温材料
第二章 金属腐蚀电化学理论基础

(E=0.00V)
(Pt (镀铂黑)H2(1atm), H+(aH+=1)) 标准氢电极的电极反应为 (Pt) H2 = 2H+ + 2e 规定标准氢电极的电位为零。以 标准氢电极为参考电极测出的电位值 称为氢标电位,记为E(vs SHE) 。 SHE是最基准的参考电极,但使用 不方便,实验室中常用的参考电极有:
1.宏观腐蚀电池
铜铆钉
1. 异种金属相接触 如 电偶腐蚀。 2. 浓差电池 (1)金属离子浓度不同, 浓度低电位低,容易腐蚀。 (2)氧浓度不同 氧浓度低电位低,更容易腐蚀。 3. 温差电池 如金属所处环境温度不同, 高温电位低,更容易腐蚀。
铝板
粘 土
沙 土
2. 微观腐蚀电池 (1)材料本身的不均匀性
也可以简单地说,绝对电极电位是电子导体和离子导体接 触时的界面电位差。
双电层:
由于金属和溶液的内电位不同,在电极系统的金属相和
溶液相之间存在电位差,因此,两相之间有一个相界区,叫做
双电层。 电极系统中发生电极反应,两相之间有电荷转移,是形成 双电层的一个重要原因。 例如:Zn/Zn2+,Cu/Cu2+ 。
腐蚀原电池产生的电流是由于它的两个电极在电解质中的 电位不同产生的电位差引起的,该电位差是电池反应的推动力。 构成腐蚀原电池的基本要素(*) • • • • 阳极 阴极 电解质溶液(*) 电池反应的推动力-电池两个电极的电位差
电流流动:在金属中靠电子从阳极流向阴极;在溶液中靠离 子迁移;在阳、阴极区界面上分别发生氧化还原反应,实现电子 的传递。 从金属腐蚀历程也可看出化学腐蚀与电化学腐蚀的区别。
盐水滴实验
3%NaCl+铁氰化钾+酚酞
(Pt (镀铂黑)H2(1atm), H+(aH+=1)) 标准氢电极的电极反应为 (Pt) H2 = 2H+ + 2e 规定标准氢电极的电位为零。以 标准氢电极为参考电极测出的电位值 称为氢标电位,记为E(vs SHE) 。 SHE是最基准的参考电极,但使用 不方便,实验室中常用的参考电极有:
1.宏观腐蚀电池
铜铆钉
1. 异种金属相接触 如 电偶腐蚀。 2. 浓差电池 (1)金属离子浓度不同, 浓度低电位低,容易腐蚀。 (2)氧浓度不同 氧浓度低电位低,更容易腐蚀。 3. 温差电池 如金属所处环境温度不同, 高温电位低,更容易腐蚀。
铝板
粘 土
沙 土
2. 微观腐蚀电池 (1)材料本身的不均匀性
也可以简单地说,绝对电极电位是电子导体和离子导体接 触时的界面电位差。
双电层:
由于金属和溶液的内电位不同,在电极系统的金属相和
溶液相之间存在电位差,因此,两相之间有一个相界区,叫做
双电层。 电极系统中发生电极反应,两相之间有电荷转移,是形成 双电层的一个重要原因。 例如:Zn/Zn2+,Cu/Cu2+ 。
腐蚀原电池产生的电流是由于它的两个电极在电解质中的 电位不同产生的电位差引起的,该电位差是电池反应的推动力。 构成腐蚀原电池的基本要素(*) • • • • 阳极 阴极 电解质溶液(*) 电池反应的推动力-电池两个电极的电位差
电流流动:在金属中靠电子从阳极流向阴极;在溶液中靠离 子迁移;在阳、阴极区界面上分别发生氧化还原反应,实现电子 的传递。 从金属腐蚀历程也可看出化学腐蚀与电化学腐蚀的区别。
盐水滴实验
3%NaCl+铁氰化钾+酚酞
腐蚀---课件

态,使位错不能运动阻止了滑移的进行,使金属表现出脆性。
氢鼓包是由于原子态氢进入到金属的空隙、夹层处,并在其中复合成分子 氢,由于氢分子不能扩散,就会在空隙、夹层处积累而形成巨大的内压,使金 属鼓包,甚至破裂。氢鼓包主要发生在含湿硫化氢的介质中。 脱碳:在工业制氢装置中,高温氢气设备易产生脱碳损伤。钢中的渗碳体 在高温下与氢气作用生成甲烷,结果导致表面层的渗碳体减少,而碳便从邻近 的尚未反应的金属层逐渐扩散到这一反应区,于是有一定厚度的金属层因缺碳
三、腐蚀的形貌特征
2、电偶腐蚀:两种电位不同的金属直接接触或用导线连接起来并浸入电解质溶 液中时,它们之间就有电流流过,通常电位正的金属(阴极)腐蚀速率降低, 直至完全停止,电位负的金属(阳极)腐蚀速度增加。 电偶腐蚀在有内件的压力容器中比较常见,在检验此类设备时应予以重点 检查。电偶腐蚀机理示意图:
三、腐蚀的形貌特征
氢脆—白点
三、腐蚀的形貌特征
氢鼓包-1:
三、腐蚀的形貌特征
氢鼓包-2:
三、腐蚀的形貌特征
氢鼓包剖面
三、腐蚀的形貌特征
氢致裂纹微观形态
三、腐蚀的形貌特征
氢腐蚀-1
三、腐蚀的形貌特征
氢腐蚀-2
三、腐蚀的形貌特征
8、疲劳腐蚀:腐蚀疲劳是在腐蚀环境中的疲劳问题,只要存在腐蚀介质和交变 应力就会发生腐蚀疲劳。 与纯粹的机械疲劳不同,腐蚀疲劳不存在疲劳极限。与无腐蚀时材料的正
三、腐蚀的形貌特征
尿素合成塔内不锈钢衬里的全面腐蚀-1
三、腐蚀的形貌特征
尿素合成塔内不锈钢衬里的全面腐蚀-2
三、腐蚀的形貌特征
氧腐蚀
三、腐蚀的形貌特征
均匀腐蚀的四级标准:
防止全面腐蚀最常用的方法有:
金属腐蚀与防护高温氧化课件.ppt

• C可以还原Fe的氧化物但不能还原Al的氧化物 • “选择性氧化” ——合金表面氧化物的组成
合金氧化膜主要由图下方合金元素的氧化物所组成
第12页,共100页。
第13页,共100页。
∆G0-T 图
1. 各直线:相变
熔化、沸腾、升华和晶型转变
在相变温度处,特别是沸点 处,直线发生明显的转折
——体系在相变时熵发生了变化
5.1.2 氧化物固相的稳定性
• ∆G0
判断金属氧化物的高温化学稳定性
根据氧化物的熔点、挥发性来估计其固相的高温稳定性 低熔点易挥发氧化物的产生往往是造成灾难性高温腐蚀的
重要原因之一
1. 氧化物的熔点
估计氧化物的高温稳定性
金属表面生成液态氧化物
失去氧化物保护性
如:硼、钨、钼、钒等的氧化物
合金氧化时更易产生液态氧化物
• 蒸气压随温度升高而增大,即氧化物固相的稳定性随温度升 高而下降
• 高温腐蚀中形成的挥发性物质
加速腐蚀过程
• 挥发性氧化物影响碳、硅、钼、钨和铬等的高温氧化动力学
第28页,共100页。
氧化物的挥发性
• 挥发性物质的热力学平衡图
• 例:Cr-O体系,1250K ,高温氧化 只生成Cr2O3一种致密氧化物 Cr(气)、CrO(气)、CrO2(气)和 CrO3(气)4种挥发物质 凝聚相-气相平衡有 2种类型
第30页,共100页。
氧化物的挥发性
• Cr-O体系的固有性质:
– pO2较低时,Cr(气)的蒸气压最大 – pO2较高时,CrO3(气)的蒸气压最大
• 影响铬及含铬合金的氧化
– 在Cr2O3膜与基体之间将产生很大的Cr(气)的蒸气压,使Cr2O3膜 与基体分离;
合金氧化膜主要由图下方合金元素的氧化物所组成
第12页,共100页。
第13页,共100页。
∆G0-T 图
1. 各直线:相变
熔化、沸腾、升华和晶型转变
在相变温度处,特别是沸点 处,直线发生明显的转折
——体系在相变时熵发生了变化
5.1.2 氧化物固相的稳定性
• ∆G0
判断金属氧化物的高温化学稳定性
根据氧化物的熔点、挥发性来估计其固相的高温稳定性 低熔点易挥发氧化物的产生往往是造成灾难性高温腐蚀的
重要原因之一
1. 氧化物的熔点
估计氧化物的高温稳定性
金属表面生成液态氧化物
失去氧化物保护性
如:硼、钨、钼、钒等的氧化物
合金氧化时更易产生液态氧化物
• 蒸气压随温度升高而增大,即氧化物固相的稳定性随温度升 高而下降
• 高温腐蚀中形成的挥发性物质
加速腐蚀过程
• 挥发性氧化物影响碳、硅、钼、钨和铬等的高温氧化动力学
第28页,共100页。
氧化物的挥发性
• 挥发性物质的热力学平衡图
• 例:Cr-O体系,1250K ,高温氧化 只生成Cr2O3一种致密氧化物 Cr(气)、CrO(气)、CrO2(气)和 CrO3(气)4种挥发物质 凝聚相-气相平衡有 2种类型
第30页,共100页。
氧化物的挥发性
• Cr-O体系的固有性质:
– pO2较低时,Cr(气)的蒸气压最大 – pO2较高时,CrO3(气)的蒸气压最大
• 影响铬及含铬合金的氧化
– 在Cr2O3膜与基体之间将产生很大的Cr(气)的蒸气压,使Cr2O3膜 与基体分离;
金属腐蚀.ppt

2 面积效应 电偶腐蚀电池的阴阳极面积之比, 阴阳极
面积比增大,阳极腐蚀速度呈直线关系。 大阴极小阳极应避免
3 介质的导电性
介质导电率对电偶腐蚀影响很大,导电率高 腐蚀区域大,腐蚀面积减少,腐蚀不严重, 否则,腐蚀严重
四 防止
1 采用电位相近的金属相联接,避免大阴极 小阳极
2 不同金属连接,应加绝缘 3 不应采用多孔涂料,防止出现大阴极小
的回路
二 腐蚀过程及作用
阳极过程 阴极过程 电流的流动
三 类型
根据腐蚀电池中电极大小不同,可分为宏观 腐蚀电池和微观腐蚀电池
宏观腐蚀电池:电偶电池、浓差电池 浓差电池:金属离子浓差电池,氧浓差电池
电偶电池
在同一电解质溶液中,两种具有不同电极电 位的金属或合金通过电连接形成的腐蚀电池 称为电偶电池。
按环境分 大气、水和蒸汽、土壤、化学介质
按腐蚀形态分
全面和局部
局部包括:应力腐蚀破裂、点蚀、晶间腐蚀、 电偶腐蚀和缝隙腐蚀
第一章 金属腐蚀的基本原理
第一节 金属电化学腐蚀的电化学反应过程 电解质:能导电的溶液,几乎所有水溶液都是
电解质 一 电化学反应式 1 金属在酸中:活泼金属被腐蚀放出氢气
第二节 电偶腐蚀
电偶腐蚀:当两种具有不同电位的金属相互 接触,并浸入电解质溶液时,电位较负的金 属遭受腐蚀,电位较正的金属不腐蚀。
原因:两种金属电位差别较大。腐蚀越严重。
电偶序
金属在特定介质中电位不同,可以根据电偶 序表来判断,那种金属是阳极,那种是阴极。
三影响因素
1 环境 不同环境,金属电位可能不同, 甚至逆转
二 电极电位
电极:金属与电解质溶液构成的体系 电极电位:金属与溶液的电位差即该电极的
面积比增大,阳极腐蚀速度呈直线关系。 大阴极小阳极应避免
3 介质的导电性
介质导电率对电偶腐蚀影响很大,导电率高 腐蚀区域大,腐蚀面积减少,腐蚀不严重, 否则,腐蚀严重
四 防止
1 采用电位相近的金属相联接,避免大阴极 小阳极
2 不同金属连接,应加绝缘 3 不应采用多孔涂料,防止出现大阴极小
的回路
二 腐蚀过程及作用
阳极过程 阴极过程 电流的流动
三 类型
根据腐蚀电池中电极大小不同,可分为宏观 腐蚀电池和微观腐蚀电池
宏观腐蚀电池:电偶电池、浓差电池 浓差电池:金属离子浓差电池,氧浓差电池
电偶电池
在同一电解质溶液中,两种具有不同电极电 位的金属或合金通过电连接形成的腐蚀电池 称为电偶电池。
按环境分 大气、水和蒸汽、土壤、化学介质
按腐蚀形态分
全面和局部
局部包括:应力腐蚀破裂、点蚀、晶间腐蚀、 电偶腐蚀和缝隙腐蚀
第一章 金属腐蚀的基本原理
第一节 金属电化学腐蚀的电化学反应过程 电解质:能导电的溶液,几乎所有水溶液都是
电解质 一 电化学反应式 1 金属在酸中:活泼金属被腐蚀放出氢气
第二节 电偶腐蚀
电偶腐蚀:当两种具有不同电位的金属相互 接触,并浸入电解质溶液时,电位较负的金 属遭受腐蚀,电位较正的金属不腐蚀。
原因:两种金属电位差别较大。腐蚀越严重。
电偶序
金属在特定介质中电位不同,可以根据电偶 序表来判断,那种金属是阳极,那种是阴极。
三影响因素
1 环境 不同环境,金属电位可能不同, 甚至逆转
二 电极电位
电极:金属与电解质溶液构成的体系 电极电位:金属与溶液的电位差即该电极的
《金属的腐蚀》PPT课件

07 金属腐蚀的案例 分析与讨论
案例一:某桥梁钢构件的腐蚀问题
腐蚀现象描述
桥梁钢构件出现锈蚀、开裂、变形等现象。
原因分析
钢构件长期暴露在潮湿环境中,受到氧气、水分和氯离子的侵蚀,导致电化学腐蚀。
防护措施
采用耐候钢、镀锌钢等耐腐蚀材料,对钢构件进行定期除锈、喷漆等维护措施。
案例二:某化工厂管道的腐蚀与防护
危害
造成金属构件的突然断裂,引发严 重事故。
腐蚀疲劳
腐蚀疲劳裂纹
金属在交变应力和腐蚀介质共同作用下产生的裂 纹。
腐蚀疲劳断裂
金属在腐蚀疲劳裂纹扩展至临界尺寸时发生的断 裂。
危害
降低金属构件的疲劳强度,缩短使用寿命,增加 维修成本。
04 影响金属腐蚀的有不同的耐腐蚀性,如不锈钢、铝合金等耐腐蚀性较 好。
复合缓蚀剂
将无机和有机缓蚀剂复配使用,发挥协同作用,提高缓蚀 效果。
电化学保护方法
阴极保护
利用外加电流使金属电位负移,成为阴极而得到保护,如牺牲阳极 法和外加电流法。
阳极保护
将金属连接到外加电源的正极上,使其电位正移并处于钝化状态从 而防止腐蚀。此方法适用于易钝化的金属体系。
电化学再活化
对于已经发生腐蚀的金属,通过电化学方法使其恢复到活化状态,然 后采取适当的防护措施。
06 金属腐蚀的实验 研究方法
失重法测腐蚀速率
原理
通过测量金属在腐蚀前后质量 的变化来评估腐蚀速率。
优点
简单易行,适用于各种金属和 腐蚀环境。
缺点
只能得到平均腐蚀速率,无法 反映局部腐蚀情况。
应用范围
广泛用于实验室和工业现场的 金属腐蚀研究。
电化学测试技术
原理
优点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
oK
300 400 500 600 800 1000 1200 1400 1600 1800 2000
2Ag2O 4Ag+O2
8.4x10-5 6.9x10-1
24.9x10
360.0
2Cu2O 4Cu+O2
2PbO 2Pb+O2
2NiO 2Ni+O2
2ZnO 2Zn+O2
2FeO 2Fe+O2
0.56x10-30 8.0x10-24 3.7x10-16 1.5x10-11 2.0x10-8 3.6x10-6 1.8x10-4 3.8x10-3 4.4x10-1
Lg时间(分)
铁在空气中氧化的抛物线规律
(双对数坐标)
金 属的高温 氧
化
16
(3)混合抛物线规律
ay2 + by = kt Fe、Cu在低氧分压气氛中的氧化(比如Fe在水
蒸汽中的氧化)符合混合抛物线规律。 (4)对数规律 在温度比较低时,金属表面上形成薄(或极薄)的 氧化膜,就足以对氧化过程产生很大的阻滞作 用,使膜厚的增长速度变慢,在时间不太长时 膜厚实际上已不再增加。在这种情况,膜成长 符合对数规律
高温腐蚀带来的后果:
金属材料的直接损失;横截面积减少,机械 负荷加重;
破坏设备的使用性能;
改变金属组织,金属内部完整性的破坏并引 起金属内部性能的变化;
为了消除锈皮,增加设备,延长时间,降低 生产效率。
探讨高温腐蚀锈皮的形成规律,可帮助我们了
解腐蚀破坏的性质并启发我们Hale Waihona Puke 究防蚀的有效措施。5
第二节 金属(合金)的高温腐蚀理论
液态金属:Pb,Bi,Hg,Sn 液态融盐:硝酸盐,硫酸盐,氯化物,碱 低熔点氧化物:V2O5
3
高温固态介质腐蚀:金属材料在带有腐蚀性的 固态颗粒状物质的冲刷下发生的高温腐蚀, 也称为“磨蚀”或“冲蚀”。
固态粒子:C,S,Al 氧化物灰分:V2O5 盐颗粒:NaCl
4
二、研究金属材料高温腐蚀的意义
26
第三节 金属与合金的高温抗蚀性
一、高温抗蚀锈层 必须满足下列要求: 具备优良的化学稳定性和相稳定性; 结构是致密的; 锈皮必须连续而均匀地覆盖在金属表面上; 锈皮必须能牢固地粘结在金属表面上。
27
二、金属抗高温腐蚀合金化 一般遵循三原则: 合金元素选择氧化后生成合金元素锈皮; 合金元素与基体金属组成尖晶石结构锈皮
直线:氧化皮的生成并未 对界面化学反应的进行造 成不利的影响; 抛物线、对数:不利的影 响。
12
(1)直线规律 y = kt
直线规律反映表面氧化膜多孔,不完整, 对金属进一步氧化没有抑制作用。
13
5 575摄氏度
4
增
量
(
米
3
厘
毫
克
2
)
1
551摄氏度 526摄氏度
503摄氏度
2/
0
10
20
30 40 50 60 70
9
2、界面化学反应产物——氧化皮
纯金属在不同环境中所形成的锈皮,其颜 色、厚薄、连续性虽各有特色,但从结构 上可概括为:
➢ 离子型化合物锈皮:靠离子键作用形成; ➢ 半导体化合物类型锈皮; ➢ 间隙化合物型绣化皮。
10
11
3、氧化皮对界面及界面反应的影响
氧化皮的形成使单一金属 /气体界面变为两个界 面——金属/氧化皮界面 和氧化皮/气体界面。
31
耐热钢
作为耐热钢基础的Fe—Cr合金,其优良的耐高温 氧化性能来自几个方面:Cr的选择性内部氧化,两种
氧化物生成固溶体的反应,两种氧化物生成尖晶石 型化合物FeOCr2O3(FeCr2O4)的反应。 提高钢铁抗高温氧化性能的主要合金元素,除Cr 外还有Al和Si。虽然Al和Si的作用比Cr更强,但 加入Al和Si对钢铁的机械性能和加工性能不利, 而Cr能提高钢材的常温和高温强度,所以Cr成为 耐热钢必不可少的主要合金元素。
层取代抗蚀性低的基体金属锈皮; 将微量合金元素固溶于基体金属锈皮中,
借助于微观结构缺陷的变化来提高金属的 抗蚀性。
28
29
1、合金元素的选择氧化 合金元素必须固溶在基体金属中,必须生
成较基体金属锈皮层更加热力学稳定的锈 皮; 合金元素的离子尺寸小有助于加快它在金 属中的扩散,并保证获得晶格参数小而结 构致密的锈皮; 在反应界面上保持一定的锈皮组成合金元 素的活度,以便组成连续的锈皮。
PMeo: 平衡氧分压; PO2:实际氧分压 ➢ 当PO2> PMeO,G < 0,金属能够发生氧化,
二者差值愈大,氧化反应倾向愈大。
➢ 当PO2= PMeO,G = 0,反应达到平衡。 ➢ 当PO2< PMeO,G < 0,金属不可能发生氧化,
而是氧化物分解。
8
金属氧化物的分解压力
温度
各种金属氧化物按下式分解时的分解压力,atm
时间(小时)
纯镁在氧气中氧化的直线规律
(根据Uhlig)
14
(2)(简单)抛物线规律
y2 = kt
大量研究数据表明,多数金属(如Fe、Ni、 Cu、Ti)在中等温度范围内的氧化都符合简 单抛物线规律,氧化反应生成致密的厚膜, 能对金属产生保护作用。 当氧化符合简单抛物线规律时,氧化速度 dy/dt与膜厚y成反比,这表明氧化受离子扩 散通过表面氧化膜的速度所控制。
32
3、改善基体腐蚀产物微观结构 4、增强氧化皮与基体的附着力
33
• 氧化膜的半导体性质 氧化物具有晶体结构,而且大多数金属氧 化物是非当量化合的。因此,氧化物晶体 中存在缺陷,晶体中有过剩金属的离子或 过剩氧阴离子;为保持电中性,还有数目 相当的自由电子或电子空位。这样,金属 氧化物膜不仅有离子导电性,而且有电子 导电性。即氧化膜具有半导体性质。
➢金属本身在高温腐蚀环境中热力学稳定,表面很 难形成锈皮;
➢金属很快在它表面生成一层能抑制界面反应的锈 皮。
条件: 锈皮必须是连续、均匀而且致密; 锈皮必须是稳定而牢固地粘附于金属表面上。
22
4、高温腐蚀锈皮晶体中的扩散:当金属表面形成 锈皮后,高温腐蚀的界面化学反应将受到参加反 应各组元通过锈皮扩散的控制。
100
数
规
50
律
1
10
-3
-2
实线:直角坐标
-1
0
虚线:半对数坐标
305摄氏度 252摄氏度
20 时间(分)
1
2
Lg时间(分)
19
二、高温腐蚀锈皮的形成
1、高温腐蚀锈皮的结构与组织 形核率和晶核长大速率的差异会导致锈皮形貌和组
织的变化。
根据界面反应产物的晶体形成的特点,锈皮结构分 为三层:
➢ 假晶层:最初瞬间,厚度不超过100埃,受金属 晶体结构的制约;
1.3x10-68 4.6x10-56 2.4x10-40 7.1x10-31 1.5x10-24 5.4x10-20 1.4x10-16 6.8x10-14 9.5x10-12
5.1x10-42 9.1x10-30 2.0x10-22 1.6x10-19 5.9x10-14 2.8x10-11 3.3x10-9 1.6x10-7
3.1x10-38 9.4x10-31 2.3x10-21 1.1x10-15 7.0x10-12 3.8x10-9 4.4x10-7 1.8x10-5 3.7x10-4
1.8x10-46 1.3x10-37 1.7x10-26 8.4x10-20 2.6x10-15 4.4x10-12 1.2x10-9 9.6x10-8 9.3x10-6
34
• 两类氧化膜
(1) 金属过剩型,如ZnO
氧化膜的缺陷为间隙锌离子和自由电子。 膜的导电性主要靠自由电子,故ZnO称为n 型半导体(电子带负电荷)。
Zni2++2ei+1/2O2=ZnO
金属过剩型(n型)氧化物的缺陷也可能是 氧阴离子空位和自由电子,如Al2O3、Fe2O3。
35
e Zn2+ e e O2-
单质气体分子:O2,H2,N2,F2,Cl2 非金属化合物分子:
H2O,CO2,SO2,H2S,CO,CH4,HCl 金属氧化物气态分子:MoO3,V2O5 金属盐气态分子:NaCl,Na2SO4
2
高温液态介质腐蚀:液体介质对固体金属材料的 高温腐蚀。
即存在化学腐蚀,也存在电化学腐蚀;即包括界 面化学反应,也包括液态物质对固体物质的溶解;
15
2/
300
增 重 250 (
米 厘 200
克
毫 )
150
100
50
1100 摄氏度
900摄 氏度
700摄 氏度
2/
Lg
增 重 ( 米 100 厘 克 毫 )
10
1100摄氏度 900摄氏度
700摄氏度
0 100
500
1000
时间(分)
铁在空气中氧化的抛物线规律
(直角坐标)
1 10
100
1000
• 高温氧化倾向的判断 当G < 0,金属发生氧化,转变为氧化物MeO。
G 的绝对值愈大,氧化反应的倾向愈大。 当G = 0,反应达到平衡。 当G > 0,金属不可能发生氧化;反应向逆方向
进行,氧化物分解。 7
1、金属与空气间的界面化学反应
GT
G0 RT ln
1 PO2
RT ln PMeO (1 3) PO2
一、高温氧化的研究内容 金属的高温氧化围绕三方面进行: 金属与气态空气间的界面反应(化学); 界面化学反应的产物—氧化皮; 氧化皮对界面及界面反应发展的影响。
6