霍尔传感器测位移课程设计

合集下载

霍尔传感器的应用——位移及振幅测量

霍尔传感器的应用——位移及振幅测量

学院:信息工程学院专业:班级:姓名:学号:实验日期:实验三霍尔传感器的应用——位移及振幅测量一、实验目的1、了解霍尔位移传感器的工作原理和结构,学会用霍尔传感器进行位移测试;2、了解霍尔传感器在震动测量中的应用。

二、实验内容和要求1、观察传感器综合试验仪上霍尔式位移传感器的结构。

2、直流激励下,用霍尔位移传感器进行静态位移测试;3、直流激励下,用霍尔位移传感器进行震动测试;4、交流激励下,用霍尔位移传感器进行震动测试;5、进行试验前,先预习信号幅值调制的原理。

三、实验主要仪器设备和材料1、CYS 型传感器系统综合试验仪;本次实验所用模块包括:①直流稳压电源;②霍尔传感器;③电桥;④差动放大器;⑤毫伏表;⑥测微头;⑦移相器;⑧相敏检波器;⑨低通滤波器、音频振荡器2、双踪示波器;3、接插连接实验导线若干。

四、实验方法、步骤及结果测试(一)、实验原理及方法实验台上的霍尔传感器,由两个环形磁钢组成梯度磁场和位于梯度磁场中的霍尔元件组成。

当保持霍尔元件的控制电流I 恒定,在与霍尔元件控制电流相垂直的方向上就有霍尔电势输出。

霍尔元件在梯度磁场上下移动时,输出的霍尔电势U0 取决于其在磁场中的位移量x,即U0=kx,所以测得电势大小就可知道霍尔元件的位移量。

(二)、实验步骤及结果测试1、霍尔传感器位移测试①相关仪表和电路调零差动放大器调零时请先将放大器的增益调至适中。

②按图3 直流激励接线③旋转测微头,使测微头顶杆与振动盘接触。

调节振动盘上下位置,使霍尔元件基本位于梯度磁场的中间位置。

④开启电源,调节测微头和电位器WD,使差放输出为零。

⑤上下移动测微头各 3.5mm,每变化0.5mm 读取响应电压值,并记入下表。

2、直流激励下霍尔传感器震动测试①仍按图3 直流激励接线,使系统调零,并松开测微头,使其脱离振动台。

②将低频振荡器接“激振I” ,保持适当振幅,用示波器观察差动放大器输出波形。

③进一步提高低频振荡器的振幅,用示波器观察差动放大器的输出波形,当波形出现顶部削峰时,说明霍尔元件已进入均匀磁场,霍尔电压已不再随位移量的增加而线性增加。

霍尔传感器位移特性实验报告

霍尔传感器位移特性实验报告

霍尔传感器位移特性实验报告霍尔传感器位移特性实验报告一、引言霍尔传感器是一种常用的非接触式位移传感器,广泛应用于工业自动化、汽车电子、航空航天等领域。

本实验旨在探究霍尔传感器的位移特性,通过实验数据的采集和分析,了解霍尔传感器在不同位移条件下的响应特点。

二、实验目的1. 理解霍尔传感器的工作原理;2. 掌握霍尔传感器的位移测量方法;3. 分析霍尔传感器在不同位移下的输出特性。

三、实验装置与方法1. 实验装置:- 霍尔传感器:将霍尔传感器固定在测量平台上,与位移装置相连;- 位移装置:通过手动旋钮控制位移装置的运动,使其产生不同的位移;- 数据采集系统:使用万用表或示波器对霍尔传感器的输出信号进行采集。

2. 实验方法:- 将霍尔传感器与位移装置连接后,将位移装置调整到初始位置;- 通过手动旋钮控制位移装置,逐步改变位移,记录下每个位移条件下的传感器输出信号;- 将采集到的数据进行整理和分析。

四、实验结果与分析在实验过程中,我们按照不同的位移条件,记录下了霍尔传感器的输出信号。

通过对数据的整理和分析,我们得到了以下结果:1. 位移与输出信号的关系:我们发现,随着位移的增加,霍尔传感器的输出信号呈线性增加的趋势。

这与霍尔传感器的工作原理相吻合,即霍尔传感器通过感应磁场的变化来测量位移。

2. 输出信号的稳定性:在一定范围内,霍尔传感器的输出信号相对稳定,变化较小。

然而,当位移超出一定范围时,输出信号的变化较大。

这可能是由于霍尔传感器的灵敏度有限,在较大位移下无法准确测量。

3. 温度对输出信号的影响:在实验过程中,我们还发现温度对霍尔传感器的输出信号有一定影响。

随着温度的升高,输出信号呈现出一定的波动。

这可能是由于温度变化引起霍尔传感器内部电路的参数变化,进而影响输出信号的稳定性。

五、实验总结通过本次实验,我们深入了解了霍尔传感器的位移特性。

我们发现霍尔传感器的输出信号与位移呈线性关系,在一定范围内相对稳定。

霍尔传感器的课程设计..docx

霍尔传感器的课程设计..docx

霍尔传感器的课程设计.标题:霍尔传感器的课程设计摘要:霍尔传感器是一种常用的磁场传感器,广泛应用于工业控制、汽车电子、医疗仪器等领域。

本文基于实际情景,设计了一门针对霍尔传感器的课程。

通过该课程,学生将全面了解霍尔传感器的原理、应用和实验操作技能,为他们将来的工作和学习提供有力支持。

关键词:霍尔传感器,课程设计,实验操作技能一、引言近年来,随着工业自动化和电子技术的快速发展,传感器技术在各个领域得到广泛应用。

其中,霍尔传感器因其简单、高精度的测量特性备受关注。

针对这一热门技术,设计一门系统全面的课程对于培养学生的实践操作技能和创新能力具有重要意义。

二、课程目标1. 理解霍尔传感器的原理和工作机制。

2. 掌握霍尔传感器的应用场景和相关技术。

3. 培养学生在实验操作和解决实际问题中的能力。

三、课程内容安排1. 原理和基础知识讲解- 霍尔效应的原理和基本概念- 霍尔传感器的工作原理及分类- 霍尔传感器在不同领域的应用案例介绍2. 实验操作训练- 霍尔传感器的接线和电路设计- 信号采集和处理相关实验- 数据分析和结果评估3. 项目设计与开发- 学生自主或小组合作,设计并实现一个基于霍尔传感器的应用项目- 考核项目的创新性、可行性和实用性四、教学方法1. 讲授法:通过教师讲解和示范,向学生传授相关知识和技能。

2. 实验操作:提供实验平台,让学生亲自操作霍尔传感器进行测量和实验。

3. 讨论与案例分析:通过小组讨论、案例分析,激发学生思维,培养解决实际问题的能力。

4. 项目指导:教师定期跟进项目设计与开发过程,提供指导和反馈。

五、评估方式1. 平时表现:包括实验记录、课堂参与等。

2. 实验报告:学生通过实验操作,撰写实验报告,总结实验结果和数据分析。

3. 项目成果:考核学生项目设计和实现的创新性、可行性和实用性。

六、预期成果经过本课程的学习,学生将掌握霍尔传感器的原理、应用和实验操作技能,具备以下能力:- 理解和解释霍尔传感器相关技术和概念。

霍尔传感器测位移课程设计

霍尔传感器测位移课程设计

传感器课程设计说明书线性霍尔元件位移传感器学号:学院名称:专业班级:学生姓名:教师姓名:教师职称:2015 年 1 月线性霍尔元件位移传感器设计任务书一、设计题目线性霍尔元件位移传感器二、设计目的课程设计是工科各专业的主要实践性教学环节之一,是围绕一门主要基础课或专业课,运用所学课程的知识,结合实际应用设计而进行的一次综合分析设计能力的训练。

《传感器技术》是测控技术与仪器专业的一门专业技能课,能够运用基本测控电路知识解决日常生活中的问题是本专业学生的基本素质。

本次课程设计旨在培养学生运用所学过的理论知识,初步掌握解决实际应用问题时所应具有的查阅资料、综合运用所学知识的能力,为课程设计及今后从事专业学习工作打下坚实的基础。

三、设计内容及要求1.掌握传感器工作原理2.掌握信号处理电路的作用与原理3.画出各电路处理后的信号波形4.对位移进行测量(正负位移均三次以上)5.算出传感器的迟滞误差、线性度6.写出说明书。

四、设计方法和基本原理1.问题描述设计一个既能测量位移的大小,也能判别方向的线性霍尔元件位移传感器。

2.解决方案①搜集资料,确定电路原理图(包括激励信号电路、消除不等位电势补偿电路、放大电路、移相电路、相敏检波电路和低通滤波电路等信号处理电路)②搭建实物测量系统,调试各部分电路。

③测试得出相应的实验数据,给出相应的波形,计算出传感器的量程、线性度和灵敏度、迟滞误差。

写出说明书,答辩。

目录第一章引言 (4)第二章霍尔传感器工作原理 (4)2.1霍尔效应 (4)2.2霍尔元件的主要特性 (6)2.3霍尔传感器的应用 (6)第三章测量系统组成 (9)3.1霍尔元件的误差及补偿 (9)3.1.1霍尔元件的零位误差与补偿 (9)3.1.2霍尔元件的温度误差及补偿 (9)3.2 直流激励的霍尔传感器电路 (10)3.3交流激励的霍尔传感器电路 (10)3.3.1传感器补偿放大电路 (10)3.3.2移相电路 (11)3.3.2相敏检波电路 (12)3.3.4低通滤波电路 (12)第四章电路测试与结果 (13)4.1进行各部分电路线路元件的连接组装 (13)4.2移相电路的测试 (14)4.3相敏检波电路的测试 (15)4.4低通滤波电路测试 (17)第五章传感器测试与数据处理 (18)5.1传感器的回程差 (18)5.2传感器的灵敏度 (19)5.3传感器的线性度 (20)第五章心得体会 (21)致谢 (22)参考文献 (23)附录 (24)6.1直流激励数据 (24)6.2交流激励数据 (25)第一章引言位移是与物体的位置在运动过程中的移动有关的量,目前测量位移的方法相当多,小位移通常使用应变式、电感式、差动变压器式、涡流式、霍尔等位移传感器器来测量,大的位移常用感应同步器、光栅、容栅、磁栅等位移传感器来测量。

实验四霍耳式传感器静态位移测量

实验四霍耳式传感器静态位移测量

实验四 霍耳式传感器静态位移测量一、实验目的了解霍耳式传感器的工作原理和工作情况。

二、实验原理1、霍尔效应金属或半导体薄片,若在它的两端通过控制电流I ,并在薄片的垂直方向上施加磁感应强度为B 的磁场,那么在垂直于电流和磁场的方向上将产生电动势H U ,这种现象称为霍尔效应。

产生的电动势称为霍尔电动势或霍尔电势H U ,该金属或半导体薄片称为霍尔元件。

霍尔电势大小表示为:H H R IBU d=H R ——霍尔常数(1H R ne=) d ——霍尔元件的厚度令H H RK d=,则:H H U R IB =可见霍尔电动势的大小正比于控制电流I 和磁感应强度B 的乘积。

霍尔效应的产生是由于运动电荷受磁场中洛仑磁力作用的结果。

当控制电流的方向或磁场的方向改变时,输出电动势的方向也将改变;但当 磁场与电流的方向同时改变时,霍尔电动势并不改变原来的方向。

磁场的梯度越大测量的灵敏度越高,沿霍尔元件移动方向的磁场梯度越均 匀,霍尔电势与位移的关系越接近线性。

2、直流、交流激励下霍尔传感器的位移特性霍尔传感器是由两个半圆形永久磁钢组成梯度磁场,位于梯度磁场中的霍尔 元件—霍尔片通过底座与被测振动台相连。

当霍尔片通以恒定电流时,霍尔元件 就有电压输出。

改变振动台的位置,霍尔片就在梯度磁场中上、下移动,输出的 霍尔电势 V 值取决于其在磁场中的位移量 Y 。

交流激励霍尔元件与直流激励基 本原理相同,不同之处是测量电路。

3、霍尔位移传感器的振幅测量利用霍尔式位移传感器测量动态参数与测量位移的原理相同4、霍尔位移传感器称重实验利用霍尔式位移传感器和振动台加载时悬臂梁产生位移,通过测位移来称 重。

5、霍尔测速传感器的转速测量利用霍尔效应表达式:UH=KHIB,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化 N 次。

每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。

三、所需单元和部件霍耳式传感器、直流稳压电源、差动放大器、电桥、测微器、V/F 表有关旋钮的初始位置:直流稳压电源输出置于 0V 档,V/F 表置于V表20V档, 差动放大器增益旋钮置于中间。

实验四 霍尔式传感器位移特性实验

实验四 霍尔式传感器位移特性实验

实验四 霍尔式传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:根据霍尔效应,霍尔电势U H =K H IB ,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。

三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V 、±15V、测微头、数显单元、相敏检波、移相、滤波模板、双线示波器。

四、实验步骤:(一)直流激励时霍尔式传感器1、将霍尔传感器按图5-1安装。

霍尔传感器与实验模板的连接按图5-2进行。

1、3为电源±4V,2、4为输出。

图5-1 霍尔传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节R W1使数显表指示为零。

图5-2 霍尔传感器位移 直流激励实验接线图3、旋转测微头向轴向方向推进,每转动0.2mm记下一个读数,直到读数近似不变,将读数填入表5-1。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。

(二)交流激励时霍尔式传感器1、传感器安装如下图,实验模板上连线见图5-3。

霍尔实验模板移相、相敏、低通模板霍尔传感器安装示意图5-3 交流激励时霍尔传感器位移实验接线图2、调节音频振荡器频率和幅度旋扭,从L V输出用示波器测量,使输出为1KH Z、峰-峰值为4V,引入电路中(激励电压从音频输出端L V输出频率1KH Z,幅值为4V峰-峰值,注意电压过大会烧坏霍尔元件)。

3、调节测微头使霍尔传感器处于磁钢中点,先用示波器观察使霍尔元件不等位电势为最小,然后从数显表上观察,调节电位器R W1、R W2使显示为零。

4、调节测微头使霍尔传感器产生一个较大位移,利用示波器观察相敏检波器输出,旋转移相单元电位器RW和相敏检波电位器RW,使示波器显示全波整流波形,且数显表显示相对值。

5、使数显表显示为零,然后旋动测微头记下每转动0.2mm时表头读数,填入表5-2。

6、根据表5-2作出V-X曲线,计算不同量程时的非线性误差。

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验1.实验目的通过对线性霍尔传感器位移特性的实验,使学生了解线性霍尔传感器的基本工作原理,并了解它在位移测量中的应用。

2.实验仪器线性霍尔传感器、数字万用表、调整电源。

3.实验原理线性霍尔传感器是一种基于霍尔效应工作的传感器。

当通过传感器的电流与磁场相互作用时,传感器的输出电压会发生变化。

通过调整传感器附近的磁场,可以改变传感器的输出电压。

线性霍尔传感器的输出电压与输出电流成正比,因此可以用来测量位移。

4.实验步骤(1)将调整电源的电压调整到3V左右,将线性霍尔传感器连接到数字万用表的电流输入端。

(2)将线性霍尔传感器固定在一个平面表面上,并将测量头固定在传动机构上。

(3)在传动机构上固定一块磁铁,并将磁铁与线性霍尔传感器保持一定的距离。

(4)用手慢慢地移动传动机构,观察及记录数字万用表的输出读数,同时测量传动机构的位移。

(5)按照步骤(4),沿一个方向不断地调整传动机构的位置,获得输出电压和位移数据。

然后,沿相反的方向重复这个过程。

(6)根据实验中获得的数据绘制线性霍尔传感器的位移特性曲线。

5.实验注意事项(1)实验时应防止磁场干扰,以免影响实验结果。

(2)在实验过程中需要减小环境磁场干扰。

(3)尽量减少传动机构的摩擦,以确保实验结果的准确性。

6.实验结果分析根据实验分析得到的数据,可以绘制线性霍尔传感器的位移特性曲线。

通过分析该曲线,可以了解线性霍尔传感器的工作特性。

根据曲线的斜率,可以计算出线性霍尔传感器的灵敏度,进一步推断出它在位移测量中的应用范围。

实验五霍尔传感器位移特性实验

实验五霍尔传感器位移特性实验

实验五霍尔传感器位移特性实验(共2页)(一)直流激励时位移特性实验一、实验目的:了解霍尔传感器的原理与应用。

二、实验仪器:霍尔传感器模块、霍尔传感器、测微头、直流电源、数显电压表。

三、实验原理:根据霍尔效应,霍尔电势U H=K H IB,其中K H为灵敏度系数,由霍尔材料的物理性质决定,当通过霍尔组件的电流I一定,霍尔组件在一个梯度磁场中运动时,就可以用来进行位移测量。

四、实验内容与步骤1.按图5-1接线。

图5-1 霍尔传感器直流激励接线图2.开启电源,直流数显电压表选择“2V”档,将测微头的起始位置调到“1cm”处,手动调节测微头的位置,先使霍尔片大概在磁钢的中间位置(数显表大致为0),固定测微头,再调节Rw1使数显表显示为零。

3.分别向左、右不同方向旋动测微头,每隔0.2mm记下一个读数,直到读数近似不变,将读数填入下表5-1及5-2。

五、实验报告1.作出U-X曲线,计算灵敏度。

2.何为霍尔效应?制作霍尔元件应采用什么材料,为什么?(二)交流激励时位移特性实验一、实验目的:了解交流激励时霍尔传感器的特性二、实验仪器:霍尔传感器模块、霍尔传感器、测微头、直流电源、数显电压表。

三、实验原理:交流激励时霍尔式传感器与直流激励一样,基本工作原理相同,不同之处是测量电路。

四、实验内容与步骤:1.接线如下图5-2。

图5-22.调节振荡器的音频调频和音频调幅旋钮,使音频振荡器的“00”输出端输出频率为1K,Vp-p=4V的正弦波(注意:峰峰值不应过大,否则烧毁霍尔组件)。

3.开启电源,直流数显电压表选择“2V”档,将测微头的起始位置调到“10mm”处,手动调节测微头的位置,使霍尔片大概在磁钢的中间位置(数显表大致为0),固定测微头,再调节Rw1使数显表为零。

4.分别向左、右不同方向旋动测微头,每隔0.2mm记一个读数,直到读数近似不变,将读数填入下表5-3及5-4。

五、实验报告1.作出U-X曲线,计算灵敏度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器课程设计说明书线性霍尔元件位移传感器学号:学院名称:专业班级:学生姓名:教师姓名:教师职称:2015 年 1 月线性霍尔元件位移传感器设计任务书一、设计题目线性霍尔元件位移传感器二、设计目的课程设计是工科各专业的主要实践性教学环节之一,是围绕一门主要基础课或专业课,运用所学课程的知识,结合实际应用设计而进行的一次综合分析设计能力的训练。

《传感器技术》是测控技术与仪器专业的一门专业技能课,能够运用基本测控电路知识解决日常生活中的问题是本专业学生的基本素质。

本次课程设计旨在培养学生运用所学过的理论知识,初步掌握解决实际应用问题时所应具有的查阅资料、综合运用所学知识的能力,为课程设计及今后从事专业学习工作打下坚实的基础。

三、设计内容及要求1.掌握传感器工作原理2.掌握信号处理电路的作用与原理3.画出各电路处理后的信号波形4.对位移进行测量(正负位移均三次以上)5.算出传感器的迟滞误差、线性度6.写出说明书。

四、设计方法和基本原理1.问题描述设计一个既能测量位移的大小,也能判别方向的线性霍尔元件位移传感器。

2.解决方案①搜集资料,确定电路原理图(包括激励信号电路、消除不等位电势补偿电路、放大电路、移相电路、相敏检波电路和低通滤波电路等信号处理电路)②搭建实物测量系统,调试各部分电路。

③测试得出相应的实验数据,给出相应的波形,计算出传感器的量程、线性度和灵敏度、迟滞误差。

写出说明书,答辩。

目录第一章引言 (4)第二章霍尔传感器工作原理 (4)2.1霍尔效应 (4)2.2霍尔元件的主要特性 (6)2.3霍尔传感器的应用 (6)第三章测量系统组成 (9)3.1霍尔元件的误差及补偿 (9)3.1.1霍尔元件的零位误差与补偿 (9)3.1.2霍尔元件的温度误差及补偿 (9)3.2 直流激励的霍尔传感器电路 (10)3.3交流激励的霍尔传感器电路 (10)3.3.1传感器补偿放大电路 (10)3.3.2移相电路 (11)3.3.2相敏检波电路 (12)3.3.4低通滤波电路 (12)第四章电路测试与结果 (13)4.1进行各部分电路线路元件的连接组装 (13)4.2移相电路的测试 (14)4.3相敏检波电路的测试 (15)4.4低通滤波电路测试 (17)第五章传感器测试与数据处理 (18)5.1传感器的回程差 (18)5.2传感器的灵敏度 (19)5.3传感器的线性度 (20)第五章心得体会 (21)致谢 (22)参考文献 (23)附录 (24)6.1直流激励数据 (24)6.2交流激励数据 (25)第一章引言位移是与物体的位置在运动过程中的移动有关的量,目前测量位移的方法相当多,小位移通常使用应变式、电感式、差动变压器式、涡流式、霍尔等位移传感器器来测量,大的位移常用感应同步器、光栅、容栅、磁栅等位移传感器来测量。

位移式传感器主要应用在自动化装备生产线对模拟量的智能控制。

线性霍尔元件位移传感器,因其结构简单、测量线性范围大、测量电路可靠、具有较高的分辨力和灵敏度以及价格低廉等优点,在许多行业的位移测量系统中得以广泛应用。

霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。

霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。

霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。

霍尔器件以霍尔效应为其工作原理。

被测物体分别与恒定电流I和恒定磁场B垂直。

当被测物体相对于原来位置有微小位移变化时,会产生变化的磁通量,会在导体垂直于磁场和电流的两个端面之间产生电势差,即UH(霍尔电压)。

本课程设计将做出一个既能测量物体位移大小又能辨别位移方向的线性霍尔元件位移传感器,并且可以得到低的线性度和较高的灵敏度。

第二章霍尔传感器工作原理霍尔传感器是一种磁传感器。

用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。

霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。

霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。

2.1霍尔效应霍尔效应Hall effect运动的带电粒子在磁场中受洛仑兹力作用而引起偏转就是霍尔效应的实质。

45图2-1 霍尔效应示意图霍尔元件是由n型半导体材料制成的。

其长为l 、宽为b、厚度为d。

如果在M 、N 两端按图所示加一恒定电流I (沿X 轴方向通过霍耳元件)。

并假定电流I 是沿X 轴负方向以速度运动的电子构成,电子的电量为-e ,自由电子的浓度为n.则根据电流强度的定义,电流I 可表示为:I=-envbd (1) 若在Z 轴方向加上恒定磁场B ,沿负X 轴方向运动的电子就受到洛伦兹力 f B =evB (2) f B 的方向指向负Y 轴,于是,霍尔元件内部的电子聚积在下方平面。

随着电子向下偏移,上方平面剩余正电荷,形成Y 轴负向的霍尔电压,上下两个平面间具有电势差V H 。

静电作用力f H 与洛仑兹力f B 大小相等时,有H Vb e evB =。

再利用式(1)得到 式中RH =1/en ,称为半导体材料的霍尔系数,K H =1/end 叫做它的灵敏度。

当工作电流和磁感应强度一定时 K H 的数值越大,霍尔电压越高。

如果已知霍尔片的灵敏度K H ,只需测出工作电流I 和霍尔电压就可求得B 。

I 的单位一般取为mV ,工作电流的单位取为mA ,磁感应强度单位为T (特斯拉), K H 的单位即为mV/(mA ·T)。

IB K dIB R end IB bvB V H H H ==-==(2.2霍尔元件的主要特性1)霍尔元件的主要特性参数灵敏度K H:表示元件在单位的磁感应强度和单位控制电流所得到的开路霍尔电动势霍尔输入电阻:霍尔控制及间的电阻值霍尔最大允许激励电流:以霍尔元件允许的最大温度为限所对应的激励电流不等位电势:当霍尔元件的控制电流为额定值时,若元件所处位置的磁感应强度为零,测得的空载霍尔电势。

寄生直流电势(霍尔元件零位误差的一部分):当没有外加磁场,霍尔元件用交流控制电流时,霍尔电极的输出有一个直流电势控制电极和霍尔电极与基片的连接是非完全欧姆接触时,会产生整流效应。

两个霍尔电极焊点的不一致,引起两电极温度不同产生温差电势霍尔电势温度系数:在一定磁感应强度和控制电流下,温度每变化1度时,霍尔电势变化的百分率。

2.3霍尔传感器的应用按被检测对象的性质可将它们的应用分为:直接应用和间接应用。

前者是直接检测受检对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,这个磁场是被检测的信息的载体,通过它,将许多非电、非磁的物理量,例如速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电学量来进行检测和控制(一)线性型霍尔传感器主要用于一些物理量的测量。

例如:1.电流传感器6由于通电螺线管内部存在磁场,其大小与导线中的电流成正比,故可以利用霍尔传感器测量出磁场,从而确定导线中电流的大小。

利用这一原理可以设计制成霍尔电流传感器。

其优点是不与被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。

图2-2 霍尔传感器测电流示意图霍尔电流传感器工作原理如图2-2所示,标准圆环铁芯有一个缺口,将霍尔传感器插入缺口中,圆环上绕有线圈,当电流通过线圈时产生磁场,则霍尔传感器有信号输出。

2.位移测量如图2-3所示,两块永久磁铁同极性相对放置,将线性型霍尔传感器置于中间,其磁感应强度为零,这个点可作为位移的零点,当霍尔传感器在Z轴上作△Z位移时,传感器有一个电压输出,电压大小与位移大小成正比。

图2-3 霍尔传感器测位移示意图如果把拉力、压力等参数变成位移,便可测出拉力及压力的大小,如图2-47所示,是按这一原理制成的力传感器。

图2-4 霍尔传感器测力示意图(二)开关型霍尔传感器主要用于测转数、转速、风速、流速、接近开关、关门告知器、报警器、自动控制电路等。

测转速或转数。

如图2-5所示,在非磁性材料的圆盘边上粘一块磁钢,霍尔传感器放在靠近圆盘边缘处,圆盘旋转一周,霍尔传感器就输出一个脉冲,从而可测出转数(计数器),若接入频率计,便可测出转速。

图2-5 霍尔传感器测转数示意图如果把开关型霍尔传感器按预定位置有规律地布置在轨道上,当装在运动车辆上的永磁体经过它时,可以从测量电路上测得脉冲信号。

根据脉冲信号的分布可以测出车辆的运动速度。

8第三章测量系统组成3.1霍尔元件的误差及补偿3.1.1霍尔元件的零位误差与补偿霍尔元件的零位误差是指无外加磁场或无控制电流情况下霍尔元件产生输出电压并由此产生误差。

它主要表现有以下几种形式:1)不等位电动势它是零位误差中最重要的一种,他是当霍尔元件在额定控制电流下,不外加磁场时,霍尔输出端之间的空载电动势。

2)寄生直流电势再无磁场的情况下,元件通入交流电流,输出端除交流不等位电压以外的直流分量3)感应零电动势感应零电动势是在未通电流情况下,由于脉动或交变磁场作用在输出端产生的电动势。

4)自激场零电动势霍尔元件控制电流产生自激场3.1.2霍尔元件的温度误差及补偿1)温度误差产生原因:霍尔元件的基片是半导体材料,因而对温度的变化很敏感。

其载流子浓度和载流子迁移率、电阻率和霍尔系数都是温度的函数。

当温度变化时,霍尔元件的一些特性参数,如霍尔电势、输入电阻和输出电阻等都要发生变化,从而使霍尔式传感器产生温度误差。

92)减小霍尔元件的温度误差的方法选用温度系数小的元件、采用恒温措施、采用恒流源供电、采用适当的补偿电路3.2 直流激励的霍尔传感器电路直流激励的霍尔传感器电路较为简单主要由霍尔传感器,741差动放大器等组成,如图3-1:图3—1 直流激励下传感器电路图3.3交流激励的霍尔传感器电路3.3.1传感器补偿放大电路交流激励的霍尔传感器电路较为复杂主要由霍尔传感器,741差动放大器,再加上移相电路,相敏检波电路,低通滤波电路等组成。

如图3-2:10图3—2交流激励下传感器电路图3.3.2移相电路移相电路原理图如下所示图3—3 移相电路原理图W可完成滞后0到180度的相位,理论上可移相器由两个部分组成,调节111以实现0到180度的调节,但是由于W远离信号,存在干扰,实际上并不能达1到180度。

图中选用了LF353作为运放,由于一个LF353上集成了两个运算放大器,所以可以节省空间,便于集成化。

3.3.2相敏检波电路相敏检波电路如下图所示图3—4 相敏检波电路原理图相敏检波电路由施密特开关电路和运算放大器组成,当相敏检波器输入信号与开关信号反相时,输出为正极性的全波整流信号,反之输出信号为负极性的全波整流信号。

图中Vi端为输入信号端,接到差动放大器的输出端;AC端为交流参考信号端,DC端为直流参考信号端;V o端为输出端。

相关文档
最新文档