三角形的证明试题
(完整版)三角形的证明测试题(最新版含答案)

第一章三角形的证明检测题(本试卷满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列命题:①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A.1个B.2个C.3个D.4个2.如图,在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于点D,则BD 的长为()A.157B.125C.207D.2153. 如图,在△ABC中,,点D在AC边上,且,则△A的度数为()A. 30°B. 36°C. 45°D. 70°4.(2015•湖北荆门中考)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.如图,已知,,,下列结论:①;②;③;④△≌△.其中正确的有()A.1个B.2个C.3个D.4个6. 在△ABC中,△A△△B△△C=1△2△3,最短边cm,则最长边AB的长是()A.5 cmB.6 cmC.5cmD.8 cm7.如图,已知,,下列条件能使△≌△的是()A. B.C. D.三个答案都是8.(2015·陕西中考)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个9.已知一个直角三角形的周长是26,斜边上的中线长为2,则这个三角形的面积为( ) A.5 B.2C.45D.110.如图,在△ABC 中,AB 的垂直平分线交AC 于点D ,交AB 于点E ,如果cm ,那么△的周长是( )A.6 cmB.7 cmC.8 cmD.9 cm二、填空题(每小题3分,共24分) 11.如图所示,在等腰△ABC 中,AB =AC , ∠BAC =50°, ∠BAC 的平分线与AB 的垂直平分线交于点O ,点 C 沿EF 折叠后与点O 重合,则∠OEC 的度数是 .12.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是________三角形.13.(2015•四川乐山中考)如图,在等腰三角形ABC 中,AB =AC ,DE 垂直平分AB ,已知∠ADE =40°,则∠DBC =________°. 14.如图,在△ABC 中,,AM 平分△,cm ,则点M 到AB 的距离是_________.15.如图,在等边△ABC 中,F 是AB 的中点, FE △AC 于E ,若△ABC 的边长为10,则_________,_________.16.(2015•江苏连云港中考)在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 . 17.如图,已知的垂直平分线交于点,则.18.一副三角板叠在一起如图所示放置,最小锐角的顶点D 恰好放在等腰直角三角板的斜边AB 上,BC 与DE 交于点M ,如果∠ADF =100°,那么∠BMD 为 度.三、解答题(共46分)19.(6分)如图,在△ABC中,,是上任意一点(M与A不重合),MD⊥BC,且交∠的平分线于点D,求证:.20.(6分)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图(1),若P A=PB,则点P为△ABC的准外心.应用:如图(2),CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探P A 的长.21.(6分)如图所示,在四边形中,平分∠.求证:.22.(6分)如图所示,以等腰直角三角形ABC的斜边AB为边作等边△ABD,连接DC,以DC为边作等边△DCE,B,E在C,D的同侧,若2,求BE的长.23.(6分)如图所示,在Rt△ABC中,,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A,D重合,连接BE,EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.24.(8分)(2015·陕西中考)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E.求证:AD=CE.第24题图25.(8分)已知:如图,,是上一点,于点,的延长线交的延长线于点.求证:△是等腰三角形.第一章三角形的证明检测题参考答案1.B 解析:只有②②正确.2.A 解析:②②BAC =90°,AB =3,AC =4,②5BC ===, ② BC 边上的高=123455⨯÷=. ② AD 平分②BAC ,②点D 到AB ,AC 的距离相等,设为h , 则111123452225ABC S h h ∆=⨯+⨯=⨯⨯,解得127h =,1121123 2725ABD S BD ∆=⨯⨯=⨯,解得157BD =.故选A . 3.B 解析:因为,所以.因为,所以.又因为,所以,所以所以4.C 解析:当等腰三角形的腰长是2,底边长是4时,等腰三角形的三边长是2,2,4,根据三角形的三边关系,不能构成三角形,所以不合题意,舍去;当等腰三角形的腰长是4,底边长是2时,等腰三角形的三边长是4,4,2,根据三角形的三边关系,能构成三角形,所以该三角形的周长为4+4+2=10.5.C 解析:因为,所以②②②(),所以,所以 ,即故②正确.又因为 ,所以②②②(ASA ), 所以 ,故②正确. 由②②②,知,又因为,所以②②②,故②正确.由于条件不足,无法证得②故正确的结论有:②②②.6.D 解析:因为②A ②②B ②②C =1②2②3, 所以②ABC 为直角三角形,且②C 为直角. 又因为最短边cm ,则最长边cm.7.D 解析:添加A 选项中条件可用“AAS”判定两个三角形全等; 添加B 选项中条件可用“SAS”判定两个三角形全等; 添加C 选项中条件可用“HL”判定两个三角形全等.故选D . 8.D 解析:在②ABC 中,② ②A =36°,AB =AC , ② ②ABC 是等腰三角形,②ABC =②C =72°. ② BD 平分②ABC ,② ②ABD =②CBD =36°, ② ②A =②ABD ,②CDB =②A +②ABD =36°+36°=72°, ② ②C =②CDB ,② ②ABD ,②CBD 都是等腰三角形. ② BC =BD .② BE =BC ,② BD =BE , ② ②EBD 是等腰三角形, ② ②BED ===72°.在②AED 中,② ②A =36°,②BED =②A +②ADE ,② ②ADE =②BED -②A =72°-36°=36°,② ②ADE =②A =36°,② ②AED 是等腰三角形. ② 图中共有5个等腰三角形.9.B 解析:设此直角三角形为②ABC ,其中因为直角三角形斜边的长等于斜边上中线长的2倍,所以又因为直角三角形的周长是624+,所以62=+b a . 两边平方,得24)(2=+b a ,即24222=++ab b a . 由勾股定理知16222==+c b a , 所以4=ab ,所以221=ab . 10.D 解析:因为垂直平分,所以.所以②的周长(cm ).11.100° 解析:如图所示,由AB =AC ,AO 平分∠BAC ,得AO 所在直线是线段BC 的垂直平分线,连接OB ,则OB=OA=OC , 所以②OAB =②OBA =×50°=25°,得②BOA=②COA=1802525130,︒-︒-︒=︒②BOC=360°-②BOA -②COA =100°. 所以②OBC=②OCB=1801002︒-︒=40°.由于EO=EC ,故②OEC =180°-2×40°=100°.12.直角 解析:直角三角形的三条高线交点恰好是此三角形的一个顶点;锐角三角形的三条高线交点在此三角形的内部;钝角三角形的三条高线交点在三角形的外部.13.15 解析:在Rt②AED 中,②ADE =40°,所以②A =50°. 因为AB =AC ,所以②ABC =(180°-50°)÷2=65°. 因为DE 垂直平分AB ,所以DA =DB , 所以②DBE =②A =50°. 所以②DBC =65°-50°=15°.14.20 cm 解析:根据角平分线的性质:角平分线上的点到角两边的距离相等可得答案. 15.251②3 解析:因为,F 是AB 的中点,所以.在Rt②中,因为,所以.又,所.16.4②3 解析:如图所示,过点D 作DM ②AB ,DN ②AC , 垂足分别为点M 和点N . ② AD 平分②BAC ,② DM =DN . ②AB ×DM ,AC ×DN ,② . 第16题答图17.60︒ 解析:② ②BAC=120︒,AB=AC , ② ②B=②C=180********.22BAC ︒-∠︒-︒==︒② AC 的垂直平分线交BC 于点D ,② AD=CD . ② 30,C DAC ∠=∠=︒② 303060.ADB C DAC ∠=∠+∠=︒+︒=︒18. 85 解析:② ②BDM =180°-②ADF -②FDE =180°-100°-30°=50°,② ②BMD=180°-②BDM-②B =180°-50°-45°=85°.19.证明:②,② ②,② .又② 为②的平分线,② ,② ,② .20. 解:应用:若PB=PC,连接PB,则②PCB=②PBC.② CD为等边三角形的高,② AD=BD,②PCB=30°,② ②PBD=②PBC=30°,②②②与已知PD=AB矛盾,② PB≠PC.若P A=PC,连接P A,同理,可得P A≠PC.若P A=PB,由PD=AB,得PD=BD,② ②BPD=45°,②②APB=90°.探究:若PB=PC,设P A=x,则x2+32=(4-x)2,② x =,即P A=.若P A=PC,则P A=2.若P A=PB,由图(2)知,在Rt②P AB中,这种情况不可能.故P A=2或.21.证明:如图,过点D作DE②AB交BA的延长线于点E,过点D作于点F.因为BD平分②ABC,所以.在Rt②EAD和Rt②FCD中,所以Rt②EAD②Rt②FCD(HL).所以②=②.因为②②80°,所以②.22.解:因为②ABD和②CDE都是等边三角形,所以,②②60°.所以②②②②,即②②.在②和②中,因为所以②②②,所以.又,所以.在等腰直角②中,2,故.23.解:,BE②EC.证明:② ,点D是AC的中点,② .② ②②45°,② ②②135°.② ,② ②EAB②②EDC.② ②②.② ②②90°.② ②.24.证明:② AE②BD,② ②EAC=②ACB.② AB=AC,② ②B=②ACB.② ②EAC=②B.又② ②BAD=②ACE=90°,② ②ABD②②CAE(ASA).② AD=CE.25.证明:② ,② ②②.②于点,② ②②.② ②②②②.② ②②.② ②②,② ②②.② ②是等腰三角形.。
初中数学三角形全等证明综合题(含答案)

七年级下册数学三角形全等证明综合题北师版一、单选题(共9道,每道11分)1.如图,AE=BF,AD∥BC,AD=BC,试说明DF=CE,小明是这样做的,老师扣他了3分,大家帮他找一下,他到底那个地方扣分了?证明:∵AE=BF∴AE -EF= BF-EF,即AF=EB①又∵AD∥BC∴∠C=∠D②在△ADF和△BCE中③ ∴△ADF≌△BEC(SAS)④ ∴DF=CE 上面过程中出错的序号有()A.①②③④B.②③④C.①②③D.③④答案:B试题难度:三颗星知识点:证明题的书写步骤及定理应用考察2.已知如下左图,△ABC中,AB=AC,AD是角平分线,BE=CF,图中全等的三角形有()对A.1B.2C.3D.4答案:C试题难度:三颗星知识点:全等三角形的个数3.如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.判断线段AP和AQ的关系,并证明.小红在做这道题目的时候部分分析思路如下:猜测AP和AQ的数量关系应该是相等的,证明线段AP=AQ,将这两条线段放到两个三角形中,即证明__≌__,题中已知BP=AC,CQ=AB,采取的判定方法是__,此时需要找的第三组条件=__.①△APD≌△QAE ②△APB≌△QAC ③SAS ④SSS ⑤AP=AQ⑥∠ABP=∠QCA ⑦∠PAB=∠AQC ⑧∠BPA=∠CAQA.①③⑧B.②③⑦C.②③⑥D.②④⑤答案:C试题难度:三颗星知识点:三角形全等解题思路4.已知,如图∠ACE=90°,AC=CE,B为AE上一点,ED⊥CB于D,AF⊥CB交CB的延长线于F.求证:DF=CF-AF.小强在做这道题目的时候部分分析思路如下:从图中知道DF=CF-CD,只需证明AF=CD,即证明△ACF≌△CED,题中已知AC=CE,ED⊥CB,AF⊥CB,采取的判定方法是AAS,此时需要找的第三组条件__=__.因为ED⊥CB,所以__+__=90°,而∠ACE=90°,即__+__=90°,根据等量代换即可得到第三组条件.①∠CAF=∠CED ②∠ACF=∠CED ③∠DBE+∠BED=90°④∠DCE+∠DEC=90° ⑤∠ACF+∠CAF=90° ⑥∠ACF+∠FCE=90°A.①③⑤B.①③⑥C.②④⑤D.②④⑥答案:D试题难度:三颗星知识点:三角形全等解题思路5.如图,在中,,AB=12,则中线AD的取值范围是()A.7<AD<17B.C.5<AD<12D.答案:B试题难度:三颗星知识点:倍长中线法6.如图,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.则下列式子正确的是()A.AB-AC<PB-PCB.AB-AC≧PB-PCC.AB-AC=PB-PCD.AB-AC>PB-PC答案:D试题难度:三颗星知识点:截长补短法7.已知△ABC,∠BAD=∠CAD,AB=2AC,AD=BD,下列式子中正确的是()A.AB=2ADB.AD=CDC.AD⊥BDD.DC⊥AC答案:D解题思路:利用翻折的思想来进行解决,在AB上截取AE=AC,在AB上截取AE=AC,连接DE,∵AB=2AC,∴AE=BE,又∵AD=BD,∴DE⊥AB,再证明△ADE≌ADC,∴∠ACD=∠AED=90°,即DC⊥AC.试题难度:三颗星知识点:折叠与全等8.如图,已知△ABC,BD=EC≠DE,则对于AB+AC与AD+AE的大小关系正确的是()A.AB+AC=AD+AEB.AB+AC≧AD+AEC.AB+AC>AD+AED.AB+AC≦AD+AE答案:C解题思路:利用平移的思想来进行解题,可以将△AEC平移至BD处,使EC与BD重合,假设为△BDF,DF与AB交于点G,则可先证△BDF≌△ECA,则在△BGF和△DGA中,BG+FG >BF,DG+AG>AD,即AB+AC>AD+AE.解:过点B和D作BF∥AE,DF∥AC,BF与DF交于点F,DF 与AB交于点G,则△BDF≌△ECA(ASA),∴BF=AE,DF=AC,在△BGF和△DGA中,BG+FG >BF,DG+AG>AD,二式相加可得BG+FG+ DG+AG>BF+ AD 即AB+AC>AD+AE.试题难度:三颗星知识点:平移与全等9.如图,EF分别是正方形ABCD的边BC、CD上的点,且∠EAF=45°,AH⊥EF,H为垂足,则下列说法中正确的是()A.直接证明△ABE和△AHE全等可以证明AH=ABB.EF=BE+DFC.AE=AFD.∠AEB=∠AFE答案:B解题思路:利用旋转的思想来进行解题,延长EB使得BH=DF,易证△ABH≌△ADF(SAS)可得∠EAH=∠EAF=45°,进而求证△AEH≌△AEF可得EF=BE+DF解:延长EB到点H,使得BH=DF,连接AH,可得△ABH≌△ADF(SAS),∴∠DAF=∠BAH,AF=AH,∠EAH=∠EAF=45°∴△AEG≌△AEF(SAS)∴EF=EH=BE+DF试题难度:三颗星知识点:旋转与全等。
全等三角形证明题【精选试题】

全等三角形证明题1已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且角B+角D=180度,求证:AE=AD+BEABDCE 122已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。
求证:AF=CE 。
3已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
4如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。
① AB=AC ② BD=CD ③ BE=CF5、如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。
6、如图,在△ABC中,点D在AB上,点E在BC上,BD=BE。
(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明。
FE A C D BA E D CB F E DC A B F ED C A BGH你添加的条件是:________ ___(2)根据你添加的条件,再写出图中的一对全等三角形:______________(不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)7、已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。
求证:EB=ED 。
DA E CB8、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。
求证:∠ACE=∠BDF 。
9. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。
求证:BF ⊥AC 。
10. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。
(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(含答案解析)

一、选择题1.如图,在ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,EF 经过点O 且//EF BC ,若7AB =,8AC =,9BC =,则AEF 的周长是( )A .15B .16C .17D .242.如图,在Rt △ABC 中,∠BAC=90°,∠C=45°,AD ⊥BC 于点D ,∠ABC 的平分线分别交 AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交 BC 于点N ,连接EN ,下列结论:①△AFE 为等腰三角形;②DF= DN ;③AN = BF ;④EN ⊥NC .其中正确的结论有( )A .1个B .2个C .3个D .4个3.如图,在ABC 中,4AB AC ==,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//MN BC 分别交AB 、AC 于M 、N ,则AMN 的周长为( )A .12B .4C .8D .不确定 4.如图,在等腰三角形ABC 中,AB AC =,DE 垂直平分AB ,已知40ADE ∠=︒,则DBC ∠度数为( )A .5︒B .15︒C .20︒D .25︒5.下列命题中,假命题是( )A .直角三角形的两个锐角互余B .等腰三角形的两底角相等C .面积相等的两个三角形全等D .有一个角是60︒的等腰三角形是等边三角形6.如图,30MON ∠=︒点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ,223A B A ,334A B A ,…均为等边三角形,若11OA =,则边67B B 的长为( )A .63B .123C .323D .6437.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于点D .若∠A =30°,AE =10,则CE 的长为( )A .5B .4C .3D .28.如图,△ABC 中,DC =2BD =2,连接AD ,∠ADC =60°.E 为AD 上一点,若△BDE 和△BEC 都是等腰三角形,且AD =31+,则∠ACB =( )A .60°B .70°C .55°D .75°9.如图,在ABD ∆中,AD AB =,90DAB ︒∠=,在ACE ∆中,AC AE =,90EAC ︒∠=,CD ,BE 相交于点F ,有下列四个结论: ①BDC BEC ∠=∠;②FA 平分DFE ∠;③DC BE ⊥;④DC BE =.其中,正确的结论有( )A .①②③④B .①③④C .②③D .②③④ 10.如图,ACB △和DCE 均为等腰直角三角形,且90ACB DCE ∠=∠=︒,点A 、D 、E 在同一条直线上,CM 平分DCE ∠,连接BE .以下结论:①AD CE =;②CM AE ⊥;③2AE BE CM =+;④//CM BE ,正确的有( )A .1个B .2个C .3个D .4个11.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .612.如图,一棵高5米的树AB 被强台风吹斜,与地面BC 形成60︒夹角,之后又被超强台风在点D 处吹断,点A 恰好落在BC 边上的点E 处,若2BE =,则BD 的长是( )A .2B .3C .218D .247二、填空题13.如图.在ABC 中,2AB AC ==,40B C ∠=∠=︒,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E .(1)点D 从B 向C 的运动过程中,BDA ∠逐渐变____(填“大”或“小”);(2)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数,若不可以,请说明理由._____.14.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.15.如图,ABC 中,45ABC ∠=︒,高AD 和BE 相交于点,30H CAD ∠=︒,若4AC =,则点H 到BC 的距离是_____________.16.在ABC ∆中,45A ∠=︒,60B ∠=︒,4AB =,点P 、M 、N 分别在边AB 、BC 、CA 上,连接PM 、MN 、NP ,则PMN ∆周长的最小值为__________17.等腰三角形一腰上的高与另一腰的夹角为40︒,则这个等腰三角形的底角度数为____________.18.已知,在等腰ABC ∆中,AD BC ⊥于点D ,且2BC AD =,则等腰ABC ∆底角的度数为_________.19.如图,在ABC 中,,AB AC AD =是BC 边上的中线,50B ∠=︒,则DAC ∠=___________20.在第1个△ABA 1中,∠B =30°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,第1个三角形的以A 1为顶点的内角的度数为__________;第n 个三角形的以A n 为顶点的内角的度数为__________.三、解答题21.如图,ABC ,其中AC BC >.(1)尺规作图:作AB 的垂直平分线交AC 于点P (要求:不写作法,保留作图痕迹); (2)若8,AB PBC =的周长为13,求ABC 的周长;(3)在(2)的条件下,若ABC 是等腰三角形,直接写出ABC 的三条边的长度. 22.已知:如图,ABC 是等腰三角形,AB AC =,36A ∠=︒(1)利用尺规作B平分线BD,交AC于点D;(保留作图痕迹,不写作法)△是否为等腰三角形,并说明理由.(2)判断ABD中,AD是BC边上的高线,AD的垂直平分线分别交AB,AC于点E,23.如图,在ABCF.(1)若∠DAC=30°,求∠FDC的度数;(2)试判断∠B与∠AED的数量关系并说明理由.24.如图,在△ABC中,AC=BC,∠ACB=90°,延长CA至点D,延长CB至点E,使AD=BE,连接AE,BD,交点为O.(1)求证:OB=OA;(2)连接OC,若AC=OC,则∠D的度数是度.25.如图.在△ABC中,∠C=90 °,∠A=30°.(1)用直尺和圆规作AB的垂直平分线,分别交AB、AC于D、E,交BC的延长线于F,连接EB.(不写作法,保留作图痕迹)(2)求证:EB平分∠ABC.(3)求证:AE=EF.26.已知:如图,,,C D Rt AC BD AD ∠=∠=∠=与BC 相交于点P .求证:(1)Rt ABC Rt BAD ≌.(2)PAB △是等腰三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据平行线的性质、角平分线的定义、等边对等角得到BE =OE ,OF =CF ,再进行线段的代换即可求出AEF 的周长.【详解】解:∵EF ∥BC ,∴∠EOB =∠OBC ,∵BO 平分ABC ∠,∴∠EBO =∠OBC ,∴∠EOB =∠EBO ,∴BE =OE ,同理可得:OF =CF ,∴AEF 的周长为AE +AF +EF =AE +OE +OF +AF = AE +BE +CF +AF =AB +AC =7+8=15.故答案为:A【点睛】 本题考查了等腰三角形的判定“等边对等角”,熟知平行线的性质,角平分线的定义和等腰三角形的判定定理是解题关键.2.D解析:D利用等腰三角形的性质,直角三角形的性质,线段垂直平分线的性质,三角形的全等,角平分线的定义,逐一判断即可.【详解】∵∠BAC=90°,AD⊥BC,BE平分∠ABC ,∴∠DBF+∠DFB=90°,∠ABE+∠AEF=90°,∠ABE=∠DBF,∴∠AEF=∠DFB=∠AFE,∴△AFE为等腰三角形,∴结论①正确;∵△AFE为等腰三角形,M为EF 的中点,∴∠AMF=90°,∴∠DBF=∠DAN,∵∠BAC=90°,∠C=45°,AD⊥BC于点D,∴AD=BD,∴△DBF≌△DAN,∴DF= DN,AN=BF,∴结论②③正确;∵∠ABM=∠NBM,∴∠BMA=∠BMN= 90°,BM=BM,∴△BMA≌△BMN,∴AM=MN,∴BE是线段AN的垂直平分线,∴EA=EN,∴∠EAN=∠ENA=∠DAN,∴AD∥EN,∵AD⊥BC∴EN⊥NC,∴结论④正确;故选D.【点睛】本题考查了等腰三角形的判定和性质,三角形的全等,线段的垂直平分线的定义和性质,平行线的判定和性质,直角三角形的性质,角平分线的定义,熟练掌握知识,灵活运用知识是解题的关键.3.C【分析】由角平分线的定义和平行线性质易证△BME和△CNE是等腰三角形,即BM=ME,CN=NE,由此可得△AMN的周长=AB+AC.【详解】解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN//BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=4+4=8.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质,熟记各性质是解题的关键.4.B解析:B【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【详解】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=1(180°-∠A)=65°,2∴∠DBC=∠ABC-∠ABD=65°-50°=15°,故选:B.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键.5.C解析:C根据直角三角形的性质、等腰三角形的性质、全等三角形的概念、等边三角形的判定定理判断即可.【详解】解:A、直角三角形的两个锐角互余,本选项说法是真命题;B、等腰三角形的两底角相等,本选项说法是真命题;C、面积相等的两个三角形不一定全等,本选项说法是假命题;D、有一个角是60°的等腰三角形是等边三角形,本选项说法是真命题;故选:C.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.C解析:C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出B1B2B2B3,B3B4B n B n+1的长为 2,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2∵B3A3=2B2A3,∴A3B3=4B1A2=4,∴B2B3∵A4B4=8B1A2=8,∴B3B4=43,以此类推,B n B n+1的长为2n-13,∴B6B7的长为323,故选:C.【点睛】本题考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题的关键.7.A解析:A【分析】先根据含30°角的直角三角形的性质求出DE=5,再根据角平分线的性质求出CE=DE=5即可.【详解】解:∵DE⊥AB,∴∠ADE=90°,在Rt△ADE中,∠A=30°,AE=10,∴DE=1AE=5,2∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴CE=DE=5,故选:A.【点睛】本题考查的是角平分线的性质、含30°角的直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.D解析:D【分析】根据等腰三角形的性质求解即可;【详解】∵60EDC ∠=︒,∴60EBD BED ∠+∠=︒,∵△BDE 是等腰三角形,∴30EBD BED ∠=∠=︒,1BD DE ==,∵△BEC 是等腰三角形,∴30EBD ECD ∠=∠=︒,∵60EDC ∠=︒,∴90DEC ∠=︒,在Rt △DEC 中,∵30ECD ∠=︒,1DE =,∴tan 30DEEC ==︒又∵AD1,∴AE AD DE EC =-==,∴△AEC 为等腰三角形,又∵90DEC AEC ∠=∠=︒,∴45ECA EAC ∠=∠=︒,∴453075ACB ACE ECD ∠=∠+∠=︒+︒=︒;故答案选D .【点睛】本题主要考查了等腰三角形的性质应用,准确计算是解题的关键.9.D解析:D【分析】由△ABD 和△ACE 都是等腰直角三角形得出AB=AD ,AE=AC ,∠BAD=∠CAE=90°,再进一步得出∠DAC=∠BAE 证得△ABE ≌△ADC ,可以判断①③④;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,利用面积相等证得AP= AQ ,再利用角平分线的判定定理即可判断②.【详解】∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,∠BDA=∠ECA=45︒,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即:∠DAC=∠BAE ,在△ABE 和△ADC 中,AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC (SAS ),∴BE=DC ,故④正确;∠ADF=∠ABF ,∴∠BDC=45︒-∠ADF ,∠BEC=45︒-∠AEF ,而∠ADF=∠ABF ≠∠AEF ,∴∠BDC ≠∠BEC ,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD ⊥BE ,故③正确;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,∵△ABE ≌△ADC ,∴ABE ADC S S =,∵BE=DC ,∴AP= AQ ,∵AP ⊥CD ,AQ ⊥BE ,∴FA 平分∠DFE ,故②正确;综上,②③④正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,角平分线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.10.C解析:C【分析】由“SAS ”可证ACD BCE ≅∆∆,可得AD BE =,ADC BEC ∠∠=,可判断①,由等腰直角三角形的性质可得45CDE CED ∠=∠=︒.CM AE ⊥,可判断②,由全等三角形的性质可求90AEB CME ,可判断④,由线段和差关系可判断③,即可求解. 【详解】解:ACB ∆和DCE ∆均为等腰直角三角形,CA CB ∴=,CD CE =,90ACB DCE ∠=∠=︒,∵∠ACD+∠DCB=90°,∠DCB+∠BCE=90°,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,ADC BEC ∠∠=,故①错误,DCE ∆为等腰直角三角形,CM 平分DCE ∠,45CDE CED ∴∠=∠=︒,CM AE ⊥,故②正确,点A ,D ,E 在同一直线上,135ADC .135BEC ∴∠=︒.90AEB BEC CED ∴∠=∠-∠=︒,90AEB CME ,//CM BE ∴,故④正确,CD CE =,CM DE ⊥,DM ME ∴=.90DCE ∠=︒,1=2DM ME CM DE ∴==. 2AE AD DE BE CM ∴=+=+.故③正确,故选择:C .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明ACD BCE ≅∆∆是本题的关键.11.C解析:C【分析】连接OC ,过点O 作OF BC ⊥于F ,求得212CE DE ==,60CED ∠=︒,再根据条件得出9030EOF OEF ∠=︒-∠=︒,得到122EF OE ==,即可得解;【详解】连接OC ,过点O 作OF BC ⊥于F ,如图,∵2OD =,4OE =,∴6DE OD OE =+=, 在Rt △CDE 中,30C ∠=︒,∴212CE DE ==,9060CED C ∠=︒-∠=︒, ∵D 为AC 的中点,DE AC ⊥,∴OA OC =,∵OA OB =,∴OB OC =,∵OF BC ⊥, ∴12CF BF BC ==, 在Rt △OEF 中,∵60OEF ∠=︒, ∴9030EOF OEF ∠=︒-∠=︒, ∴122EF OE ==, ∴10CF CE EF =-=,∴8BE BC CE =-=;故答案选C .【点睛】本题主要考查了等腰三角形的判定与性质,准确分析计算是解题的关键.12.C解析:C【分析】过点D 作DM ⊥BC ,设BD=x ,然后根据题意和含30°的直角三角形性质分别表示出BM ,EM ,DE 的长,结合勾股定理列方程求解.【详解】解:过点D 作DM ⊥BC ,设BD=x ,由题意可得:AB=5,AD=DE=5-x∵∠ABC=60°,DM ⊥BC ,∴在Rt △BDM 中,∠BDM=30° ∴1122BM BD x ==,则122ME BE BM x =-=- ∴2222BD BM DE ME -=-,222211()(5)(2)22x x x x -=---解得:218x =,即BD=218米 故选:C .【点睛】本题考查含30°的直角三角形性质和勾股定理解直角三角形,正确理解题意掌握相关性质定理列方程求解是关键.二、填空题13.小80°或110°【分析】(1)由题意易得由点D 从B 项C 的运动过程中逐渐变大可求解问题;(2)由题意可分①若AD=DE 时②若时③若时则点D 与点B 重合点E 与点C 重合与题意矛盾故不符合题意;然后根据等腰解析:小 80°或110°【分析】(1)由题意易得140BDA BAD ∠=︒-∠,由点D 从B 项C 的运动过程中,BAD ∠逐渐变大可求解问题;(2)由题意可分①若AD =DE 时,②若AE DE =时,③若AE AD =时,则点D 与点B 重合,点E 与点C 重合,与题意矛盾,故不符合题意;然后根据等腰三角形的性质及角的等量关系可进行求解.【详解】解:(1)∵180BDA B BAD ∠+∠+∠=︒,∴140BDA BAD ∠=︒-∠,∵点D 从B 项C 的运动过程中,BAD ∠逐渐变大,∴BDA ∠逐渐变小;故答案为小;(2)若AD =DE 时,∵,40AD DE ADE =∠=︒,∴70DEA DAE ∠=∠=︒,∵DEA C EDC ∠=∠+∠,40B C ∠=∠=︒,∴30EDC ∠=︒,∴180110BDA ADE EDC ∠=︒-∠-∠=︒;若AE DE =时,∵,40AE DE ADE =∠=︒,∴40EDA DAE ∠=∠=︒,∴100DEA ∠=︒,∵DEA C EDC ∠=∠+∠,∴60EDC ∠=︒,∴18080BDA ADE EDC ∠=︒-∠-∠=︒;若AE AD =时,则点D 与点B 重合,点E 与点C 重合,与题意矛盾,故不符合题意; 综上所述:当80BDA ∠=︒或110°时,△ADE 的形状可以是等腰三角形;故答案为80°或110°.【点睛】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 14.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.15.2【分析】根据含30°角的直角三角形的性质可求解CD 的长然后利用AAS 证明△BDH ≌△ADC 可得HD=CD 进而求解【详解】解:∵AD ⊥BC ∴∠ADB=∠ADC=90°∴∠HBD+∠BHD=90°∵∠解析:2【分析】根据含30°角的直角三角形的性质可求解CD 的长,然后利用AAS 证明△BDH ≌△ADC ,可得HD =CD ,进而求解.【详解】解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,∴∠HBD +∠BHD =90°,∵∠CAD =30°,AC =4, ∴122CD AC ==, ∵BE ⊥AC ,∴∠HBD +∠C =90°,∴∠BHD =∠C ,∵∠ABD =45°,∴∠BAD =45°,∴BD =AD , 在△BDH 和△ADC 中,BHD C BDH ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDH ≌△ADC (AAS ),∴HD =CD =2,故点H 到BC 的距离是2.故答案为:2.【点睛】本题主要考查全等三角形的性质与判定,含30°角的直角三角形的性质,等腰直角三角形的性质和判定,证明△BDH ≌△ADC 是解题的关键.16.2【分析】作点M 关于AC 的对称点M′作点M 关于AB 的对称点M′′连接AMM′M′′M′M′′交AB 于点P′交AC 于点N′作AH ⊥BC 于点H 由对称性可知:当点M 固定时周长的最小值=M′M′′再推出M′解析:26 【分析】 作点M 关于AC 的对称点M′,作点M 关于AB 的对称点M′′,连接AM ,M′M′′,M′M′′交AB 于点P′,交AC 于点N′,作AH ⊥BC 于点H ,由对称性可知:当点M 固定时,PMN ∆周长的最小值= M′M′′,再推出M′M′′=2AM ,进而即可求解.【详解】如图,作点M 关于AC 的对称点M′,作点M 关于AB 的对称点M′′,连接AM ,M′M′′,M′M′′交AB 于点P′,交AC 于点N′,作AH ⊥BC 于点H ,由对称性可知:MN′=M′N′,MP′=M′′P′,AM=AM′=AM′′,∴当点M 固定时,PMN ∆周长的最小值=MN′+MP′+N′P′= M′N′+M′′P′+N′P′= M′M′′, ∵45A ∠=︒,∠M′AC=∠MAC ,∠M′′AB=∠MAB ,∴∠M′A M′′=90°,即∆ M′A M′′是等腰直角三角形,∴M′M′′=2=2AM AM ′,∴当AM 最小时,M′M′′的值最小,即AM 与AH 重合时,M′M′′的值最小,∵60B ∠=︒,4AB =,AH ⊥BC ,∴∠BAH=30°,∴AH=3AB =23,此时,M′M′′的值最小=2AH =26, ∴PMN ∆周长的最小值=26.故答案是:26.【点睛】本题主要考查轴对称—线段和的最小值,直角三角形的性质,作点M 关于AB ,AC 的对称点,把PMN ∆周长化为两点间的线段长,是解题的关键.17.65°或25°【分析】在等腰△ABC 中AB =ACBD 为腰AC 上的高∠ABD =40°讨论:当BD 在△ABC 内部时如图1先计算出∠BAD =50°再根据等腰三角形的性质和三角形内角和计算;当BD 在△ABC解析:65°或25°【分析】在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,讨论:当BD在△ABC内部时,如图1,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形内角和计算;当BD 在△ABC外部时,如图2,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形外角性质计算.【详解】解:在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,当BD在△ABC内部时,如图1,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB=1(180°﹣50°)=65°;2当BD在△ABC外部时,如图2,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,而∠BAD=∠ABC+∠ACB,∴∠ACB=1∠BAD=25°,2综上所述,这个等腰三角形底角的度数为65°或25°.故答案为:65°或25°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理以及三角形的外角性质,正确分类、熟练掌握上述知识是解题的关键.18.45°或15°或75°【分析】分三种情况讨论先根据题意分别画出图形当AB=AC 时根据已知条件得出AD=BD=CD从而得出△ABC底角的度数;当AB=BC时先求出∠ABD的度数再根据AB=BC求出底角解析:45°或15°或75°【分析】分三种情况讨论,先根据题意分别画出图形,当AB=AC时,根据已知条件得出AD=BD=CD,从而得出△ABC底角的度数;当AB=BC时,先求出∠ABD的度数,再根据AB=BC,求出底角的度数;当AB=BC时,根据AD=12BC,AB=BC,得出∠DBA=30°,从而得出底角的度数.【详解】①如图1,当AB=AC时,∵AD⊥BC,∴BD=CD,∵AD=12BC,∴AD=BD=CD,∴底角为45°;②如图2,当AB=BC时,∵AD=12BC,∴AD=12AB,∴∠ABD=30°,∴∠BAC=∠BCA=75°,∴底角为75°.③如图3,当AB=BC时,∵AD=12BC,AB=BC,∴AD=12AB,∴∠DBA=30°,∴∠BAC=∠BCA=15°;∴△ABC底角的度数为45°或75°或15°.故答案为:45°或15°或75°.【点睛】本题考查了含30度角的直角三角形和等腰三角形的性质,关键是根据题意画出图形,注意不要漏解.19.40【分析】首先根据等腰三角形的三线合一的性质得到AD⊥BC然后根据直角三角形的两锐角互余得到答案即可【详解】解:∵AB=ACAD是BC边上的中线∴AD⊥BC∠BAD=∠CAD∴∠B+∠BAD=90解析:40【分析】首先根据等腰三角形的三线合一的性质得到AD ⊥BC ,然后根据直角三角形的两锐角互余得到答案即可.【详解】解:∵AB =AC ,AD 是BC 边上的中线,∴AD ⊥BC ,∠BAD =∠CAD ,∴∠B +∠BAD =90°,∵∠B =50°,∴∠BAD =40°,∴∠CAD =40°,故答案为:40.【点睛】考查了等腰三角形的性质,理解等腰三角形底边的高、底边的中线及顶角的平分线互相重合是解答本题的关键,难度不大.20.75°【分析】先根据等腰三角形的性质求出∠BA1A 的度数再根据三角形外角及等腰三角形的性质分别求出∠CA2A1∠DA3A2及∠EA4A3的度数找出规律即可得出∠An 的度数【详解】解:∵在△ABA1中解析:75° 1752n ︒- . 【分析】先根据等腰三角形的性质求出∠BA 1A 的度数,再根据三角形外角及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出∠A n 的度数.【详解】解:∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1A =1802B ︒-∠=75°, ∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角, ∴∠CA 2A 1=17522BA A ∠︒==37.5︒, 同理可得∠DA 3A 2=2752,∠EA 4A 3=3752︒, ,∴∠A n =1752n , 故答案为:75°;1752n . 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,找出规律是解答此题的关键.三、解答题21.(1)画图见解析;(2)△ABC的周长=21;(3)AB=8,AC=8,BC=5.【分析】(1)根据垂直平分线的作法作出图形即可;(2)根据垂直平分线的性质可得AP=BP,从而得出AC+BC的值,再根据AB=8,即可求得△ABC的周长;(3)分两种情况进行讨论即可.【详解】解:(1)如图所示:即PQ为所求;;(2)如图所示:∵AB的垂直平分线交AC于点P,∴PA=PB,∵△PBC的周长为13,∴PB+PC+BC=13,∴PA+PC+BC=13,即AC+BC=13,∴△ABC的周长=AB+AC+BC=8+13=21;(3)∵AC>BC,∴分两种情况,①AC=AB=8时,BC=21-AC-BC=21-8-8=5;②BC=AB=8时,AC=21-AB-BC=21-8-8=5,∵AC>BC,∴不合题意舍去;综上所述,若△ABC是等腰三角形,△ABC的三条边的长度为AB=8,AC=8,BC=5.【点睛】本题是三角形综合题目,考查了线段垂直平分线的性质、等腰三角形的性质、尺规作图、三角形周长等知识.本题综合性强,熟练掌握等腰三角形的性质和线段垂直平分线的性质是解题的关键.22.(1)见详解;(2)是等腰三角形,证明见详解.【分析】(1)以B为圆心,以任意长为半径画弧交AB、AC于两点,再以这两点为圆心,以大于这两点的距离的一半为半径画弧,交于一点,过点B和这点作射线交AC与点D即可;(2)由∠A=36°,求出∠ABC=72°,进而求出∠ABD,根据等角对等边即可证明结论.【详解】解:(1)如图所示:BD即为所求;△是等腰三角形.(2)ABD∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠ABD=∠A,∴AD=BD,△是等腰三角形.∴ABD【点睛】本题主要考查了等腰三角形的性质和判定,三角形的内角和定理,角平分线的性质,尺规作图-作已知角的平分线等知识点,解此题的关键是能正确画图和求出∠ABD的度数.23.(1)∠FDC=60°(2)∠AED=2∠B,理由见解析【分析】(1)根据垂直平分线及高线的性质即可求解.(2)根据高的定义和、线段垂直平分线的性质和等腰三角形的性质可得EF//BC,∠AED=2∠AEF,再根据平行线的性质得∠AEF=∠B,故可得∠AED=2∠B.【详解】解:(1)∵AD 是BC 边上的高线,EF 是AD 的垂直平分线,∠DAC=30°∴AF=FD ,∠ADC=90°∴∠FDA=30°,∴∠FDC=90°-30°=60°.(2)∵AD 是BC 边上的高线,EF 是AD 的垂直平分线,∴EF //BC ,EA=ED ,∴∠AED=2∠AEF ,∴∠AEF=∠B ,∴∠AED=2∠B .【点睛】本题考查了垂直平分线及高线的性质,平行线的判定及性质,解题的关键是熟练掌握垂直平分线、高线、平行线性质.24.(1)见解析;(2)22.5【分析】(1)根据全等三角形的判定和性质得出△ABD ≌△BAE ,进而得出OB=OA ;(2)根据全等三角形的判定和性质以及三角形内角和解答.【详解】证明:(1)∵AC=BC ,∠ACB=90°,∴∠ABC=∠BAC=45°.∴∠EBA=∠DAB=135°.在△ABD 与△BAE 中,135BE AD EBA DAB AB AB =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△BAE (SAS ),∴∠DBA=∠EAB ,∴OB=OA ;(2)由(1)得:OB=OA ,在△OBC 与△OAC 中,OB OA OC OC BC AC =⎧⎪=⎨⎪=⎩,∴△OBC ≌△OAC (SSS ),∴∠OCB=∠OCA=12∠ACB=12×90°=45°, ∵AC=BC ,AC=OC ,∴OC=BC , ∴∠CBO=∠COB 1801804567.522OCB ︒︒︒︒-∠-===, 在Rt △BCD 中,∠D=180°-90°-∠CBO=22.5°.故答案为:22.5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,关键是根据全等三角形的判定和性质解答.25.见解析【分析】(1)先作线段AB 的垂直平分线DE ,再延长BC 即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE ,得到答案; (3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC ,证得BE=EF ,又因为AE= BE ,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE∴EB平分∠ABC.(3)证明:∵DE是AB的垂直平分线∴DE⊥AB∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC∴BE=EF又∵AE= BE∴AE=EF【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形.26.(1)见解析;(2)见解析【分析】(1)利用HL即可证明;(2)根据全等三角形的性质可得∠ABP=∠BAP,从而得到PA=PB,即可得证.【详解】解:(1)∵∠C=∠D=Rt∠,AC=BD,AB=BA,∴Rt△ABC≌Rt△BAD(HL);(2)∵Rt△ABC≌Rt△BAD,∴∠ABP=∠BAP,∴PA=PB,∴△PAB是等腰三角形.【点睛】本题主要考查了全等三角形的判定及性质,证明Rt△ABC≌Rt△BAD是解题的关键.。
(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试题(含答案解析)

一、选择题1.如图,P 为ABC 的边BC 上一点,且2PC PB =,已知45ABC ∠=︒,60APC ∠=︒,则ACB ∠的度数为( )A .75︒B .80︒C .85︒D .88︒2.如图,点A 为MON ∠的角平分线上一点,过A 点作一条直线分别与MON ∠的边OM ON 、交于,B C 两点,点P 为BC 的中点,过P 作BC 的垂线交OA 的延长线于点D ,连接DB DC 、,若130MON ∠=︒,则BDC ∠=( )A .70︒B .60︒C .50︒D .40︒3.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒= D .20,A AD BC BD ∠=︒=+4.如图,30MON ∠=︒点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ,223A B A ,334A B A ,…均为等边三角形,若11OA =,则边67B B 的长为( )A .63B .123C .323D .643 5.等腰三角形的底边长为6,腰长为5,则此三角形的面积为( )A .18B .20C .12D .15 6.如图,在平面直角坐标系中,点A 1在x 轴的正半轴上,B 1在第一象限,且△OA 1B 1是等边三角形.在射线OB 1上取点B 2,B 3,…,分别以B 1B 2,B 2B 3,…为边作等边三角形△B 1A 2B 2,△B 2A 3B 3,…使得A 1,A 2,A 3,…在同一直线上,该直线交y 轴于点C .若OA 1=1,∠OA 1C =30°,则点B 9的横坐标是( )A .2552B .5112C .256D .51327.如图,D 在BC 边上,ABC ADE △△≌,50EAC ∠=︒,则ADE ∠的度数为( )A .50°B .55°C .60°D .65°8.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5C .5D .7 9.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB ∠的度数为( )A .105︒B .120︒C .135︒D .150︒ 10.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( ) A .65° B .105° C .55°或105° D .65°或115° 11.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 平分∠BACB .∠ADC =60° C .点D 在AB 的垂直平分线上D .:DAC ABC S S =1:2 12.如图,每个小正方形的边长都相等,A ,B ,C 是小正方形的顶点,则ABC ∠的度数为( )A .45︒B .50︒C .55︒D .60︒二、填空题13.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.14.如图,在等边ABC 中,点D 在AC 边上,点E 在ABC 外部,若ACE ABD ∠=∠,CE BD =,连接AE ,DE ,则ADE 的形状是______.15.如图,在三角形ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,且AD =2CD ,AC =6,点E 是AB 上一点,连接DE ,则DE 的最小值为____.16.如图,在△ABC 中,∠ACB =90°,AC =6,AB =10,点O 是AB 边的中点,点P 是射线AC 上的一个动点,BQ ∥CA 交PO 的延长线于点Q ,OM ⊥PQ 交BC 边于点M .当CP =1时,BM 的长为_____.17.如图,D 是等边三角形ABC 外一点,3AD =,2CD =,则BD 的最大值是________________.18.已知:如图,在ABC 中,AB AC =,30C ∠=︒,AB AD ⊥,4cm AD =,则BC 的长为__________cm .19.如图,在ABC 中,90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.20.如图,AD 平分BAC ∠,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.则下列结论中:①AD 是ABC ∆的高;②ABC ∆是等边三角形;③ED FD =;④AB AE BF =+.其中正确的是______________(填写序号)三、解答题21.如图,等腰直角ACB △中,90ACB ∠=︒,E 为线段BC 上一动点(不含B 、C 端点),连接AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FG AC 交AC 于G 点,求证:≌AGF ECA ;(2)如图2,连接BF 交AC 于D 点,若3AD CD =,求证:E 点为BC 的中点. 22.在平面直角坐标系中,已知()30A -,,()0,3B ,点C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为()2,0,试求点E 的坐标;(2)如图②,若点C 在x 正半轴上运动,且3OC <,其它条件不变,连接OD ,求证:OD 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当AD CD OC -=时,求OCD ∠的度数.23.已知,如图在等边ABC 中,点D 为AB 边上一点,点E 为BC 边上一点,连接DE 并延长DE 交AC 延长线于点,F DE FE =,过点E 作EG BC ⊥交AC 于点G .(1)求证:BD CF =;(2)当DF AB ⊥时,试判断以D E G 、、为顶点的三角形的形状,并说明理由; (3)当点D 在线段AB 上运动时,试探究AD 与CG 的数量关系,并证明你的结论. 24.如图1,将三角形纸片ABC ,沿AE 折叠,使点B 落在BC 上的F 点处;展开后,再沿BD 折叠,使点A 恰好仍落在BC 上的F 点处(如图2),连接DF .(1)求∠ABC的度数;(2)若△CDF为直角三角形,且∠CFD=90°,求∠C的度数;(3)若△CDF为等腰三角形,求∠C的度数.25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(3)若Q以(2)中的速度从C点出发,同时P以原来的速度从B点出发,在△ABC的三边上逆时针运动,问:经过多少时间P、Q两点第一次相遇?在何处相遇?26.如图,∠BAC=∠DAE=90°,AB=AC,AD=AE,BE、CD交于F.(1)求证:BE=CD;(2)连接CE,若BE=CE,求证:从“①DE⊥AC”、“②DE∥AB”中选择一个填入(2)中,并完成证明【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形内角和定理求出∠DCP=30°,求证PB=PD;再根据三角形外角性质求证BD=AD,再利用△BPD是等腰三角形,然后可得AD=DC,∠ACD=45°从而求出∠ACB的度数.【详解】解:过C作AP的垂线CD,垂足为点D.连接BD;∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=45°-15°=30°,∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°,故选A.【点睛】此题主要考查学生三角形内角和定理,等腰三角形的判定与性质,三角形外角的性质等知识点,综合性较强,有一定的拔高难度,属于难题.2.C解析:C【分析】过D作DE⊥OM于E,DF⊥ON于F,求出∠EDF,根据角平分线性质求出DE=DF,根据线段垂直平分线性质求出BD=CD,证Rt△DEB≌Rt△DFC,求出∠EDB=∠CDF,推出∠BDC=∠EDF,即可得出答案.【详解】解:如图:过D作DE⊥OM于E,DF⊥ON于F,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°-90°-90°-130°=50°,∵DE⊥OM,DF⊥ON,OD平分∠MON,∴DE=DF,∵P为BC中点,DP⊥BC,∴BD=CD,在Rt△DEB和Rt△DFC中,DB DC DE DF=⎧⎨=⎩,∴Rt△DEB≌Rt△DFC(HL),∴∠EDB=∠CDF,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:C.【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.3.D解析:D【分析】设∠ABC=∠C=2x,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF,BC=BE=EF,在△BDC中利用内角和定理列出方程,求出x值,可得∠A,再证明AF=EF,从而可得AD =BC+BD.【详解】解:∵AB=AC,BD平分∠ABC,设∠ABC=∠C=2x,则∠A=180°-4x,∴∠ABD=∠CBD=x,第一次折叠,可得:∠BED=∠C=2x,∠BDE=∠BDC,第二次折叠,可得:∠BDE=∠FDE,∠EFD=∠ABD=x,∠BED=∠FED=∠C=2x,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC,∴AD=AF+FD=BC+BD,故选D.【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.4.C解析:C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出B1B2B2B3,B3B4B n B n+1的长为 2,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2∵B3A3=2B2A3,∴A 3B 3=4B 1A 2=4,∴B 2B 3=23, ∵A 4B 4=8B 1A 2=8,∴B 3B 4=43,以此类推,B n B n+1的长为2n-13,∴B 6B 7的长为323,故选:C .【点睛】本题考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题的关键.5.C解析:C【分析】作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.【详解】解:如图,作底边BC 上的高AD ,则AB=5,BD=12×6=3, ∴AD=22AB BD -=2253-=4,∴三角形的面积为:12×6×4=12. 故选C .【点睛】本题考查了勾股定理和等腰三角形的性质,利用等腰三角形“三线合一”作出底边上的高,再根据勾股定理求出高的长度,作高构造直角三角形是解题的关键.6.B【分析】利用待定系数法求得两条直线的解析式,根据等边三角形的性质,点的坐标规律,即可求解.【详解】解:∵OA 1=1,∠OA 1C=30︒,∴∴点C 的坐标为(0,-,∵A 1、A 2、A 3所在直线过点A 1(1,0),C (0,3-,设直线A 1A 2的解析式为y kx =-∴0k =,∴k =∴直线A 1A 2的解析式为y x =, ∵△OA 1B 1为等边三角形,∴点B 1的坐标为(12,2),∵B 1、B 2、B 3所在直线过点O(0,0),B 1 (12,同理可求得直线O B 1的解析式为y =,∵△OA 1B 1和△B 1A 2B 2为等边三角形,∴∠B 1OA 1=∠B 2 B 1A 2=60︒,∴B 1A 2∥OA 1,∵B 1 (12,2),∴A 2x = 解得:52x =,∴点A 2的坐标为(52,2),同理点B 2的坐标为(32,点B 3的坐标为(72,点B 4的坐标为(152, ,总结规律: B 1的横坐标为12, B 2的横坐标为13122+=, B 3的横坐标为171222++=, B 4的横坐标为11512422+++=, ,∴B 9的横坐标为1511124816326422+++++++=, 故选:B【点睛】本题考查了待定系数法求一次函数的解析式,点的坐标规律,等边三角形的性质,解决本题的关键是寻找点的坐标规律.7.D解析:D【分析】由全等可得,AB=AD ,∠BAC=∠DAE ,可得∠BAD=EAC=50°,再根据等腰三角形性质求∠B 即可.【详解】解:∵ABC ADE △△≌,∴AB=AD ,∠BAC=∠DAE ,∠B=∠ADE ,∠BAD=∠BAC-∠DAC ,∠EAC=∠DAE-∠DAC ,∠BAD=∠EAC=50°,∵AB=AD ,∴∠B=180652BAD ︒-∠=︒, ∴∠ADE=∠B=65º,【点睛】本题考查了全等三角形的性质和等腰三角形的性质,解题关键是根据全等三角形得出等腰三角形和角的度数,依据等腰三角形的性质进行计算.8.A解析:A【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到5AC =,然后利用勾股定理计算即可;【详解】由做法得CE AB ⊥,则90AEC ∠=︒,145AC AB BE AE ==+=+=,在Rt △ACE 中,3CE ===; 故答案选A .【点睛】 本题主要考查了等腰三角形的性质,准确计算是解题的关键.9.B解析:B【分析】 由△ABC 为等边三角形,可求出∠BOA =90°,由△ADO 是等腰三角形求出∠ADO =∠AOD =30°,即可求出∠BOD 的度数.【详解】解:∵△ABC 为等边三角形,BO 为中线,∴∠BOA =90°,∠BAC =60°∴∠CAD =180°﹣∠BAC =180°﹣60°=120°,∵AD =AO ,∴∠ADO =∠AOD =30°,∴∠BOD =∠BOA +∠AOD =90°+30°=120°,故选:B .【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.10.D解析:D【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°−25°=65°.综上所述,顶角的度数为:65°或115°.故选D .【点睛】本题主要考查了等腰三角形的性质,注意此类题的两种情况.同时考查了:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.11.D解析:D【分析】由作图可得:AD 平分,BAC ∠ 可判断A ,再求解1302DAC DAB BAC ∠=∠=∠=︒, 可得60,ADC ∠=︒ 可判断B ,再证明,DA DB = 可判断C ,过D 作DF AB ⊥于,F 再证明,DC DF = 再利用 ACD ACD ABC ACD ABD S S S S S =+ ,可判断,D 从而可得答案. 【详解】解:90,30,C B ∠=︒∠=︒903060,BAC ∴∠=︒-︒=︒由作图可得:AD 平分,BAC ∠ 故A 不符合题意;1302DAC DAB BAC ∴∠=∠=∠=︒, 903060,ADC ∴∠=︒-︒=︒ 故B 不符合题意;30,DAB B ∠=∠=︒,DA DB ∴=D ∴在AB 的垂直平分线上,故C 不符合题意;过D 作DF AB ⊥于,F90,C AD ∠=︒平分,BAC ∠,DC DF ∴=30B ∠=︒,2,AB AC ∴= 11,,22ACD ABD S AC CDS AB DF ∴== 121122ACDACD ABC ACD ABD AC CD SS S S S AC CD AB DF ∴==++ 1.233AC AC AC AC AB AC AC AC ====++ 故D 符合题意; 故选:.D【点睛】 本题考查的是三角形的内角和定理,角平分线的作图,角平分线的性质,线段垂直平分线的判定,等腰三角形的判定,掌握以上知识是解题的关键.12.A解析:A【分析】由勾股定理及其逆定理可得三角形ABC 是等腰直角三角形,从而得到∠ABC 的度数 .【详解】解:如图,连结AC ,由题意可得:2222221310,125,125,AB AC BC +==+==+=∴AC=BC ,222AB AC BC =+,∴△ABC 是等腰直角三角形,∴∠ABC=∠BAC=45°,故选A .本题考查勾股定理的应用,熟练掌握勾股定理及其逆定理、等腰直角三角形的性质是解题关键.二、填空题13.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.14.等边三角形【分析】由等边三角形的性质可以得出AB=AC ∠BAD=60°由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°AD=AE 就可以得出△ADE 为等边三角形【详解】解:的形状是等边解析:等边三角形【分析】由等边三角形的性质可以得出AB=AC , ∠BAD=60°,由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°,AD=AE ,就可以得出△ADE 为等边三角形.解:ADE 的形状是等边三角形,理由:∵ABC 为等边三角形,∴AB=AC , ∠BAD=60°,在∆ABD 和∆CAE 中 AB AC ACE ABD CE BD =⎧⎪∠=∠⎨⎪=⎩, ∴∆ABD ≌∆ACE ,∴∠CAE=∠BAD=60°,AD=AE ,∴∆ADE 为等边三角形,故答案为:等边三角形.【点睛】本题考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是灵活运用相关性质.15.2【分析】根据题意当时DE 的值最小根据已知条件求解即可;【详解】如图所示当时DE 的值最小如图所示∵BD 平分∠ABC ∠C =90°∴∵∴∴∴∵∴即整理得:∴又∵∴即整理得:解得:∴故答案是2【点睛】本题解析:2【分析】根据题意,当DE AB ⊥时,DE 的值最小,根据已知条件求解即可;【详解】如图所示,当DE AB ⊥时,DE 的值最小,如图所示,∵BD 平分∠ABC ,DE AB ⊥,∠C =90°,∴CD DE =,∵2AD CD =,∴2AD DE =,∴30A ∠=︒,∴30CBD ABD ∠=∠=︒,2AB CB =,∵6AC =,∴222AB AC BC =+,即22246CB CB =+,整理得:2336CB =, ∴23CB =,又∵2BD CD =,∴222BD CD BC =+,即22412CD CD =+,整理得:2312CD =,解得:2CD =,∴2DE =.故答案是2.【点睛】本题主要考查了角平分线的性质、直角三角形的性质和勾股定理,准确分析计算是解题的关键.16.5或1【分析】如图设BM=x 首先证明BQ=AP 分两种情形利用勾股定理构建方程求解即可【详解】解:如图设BM =x 在Rt △ABC 中AB =10AC =6∴BC ===8∵QB ∥AP ∴∠A =∠OBQ ∵O 是AB 的解析:5或1【分析】如图,设BM=x ,首先证明BQ=AP ,分两种情形,利用勾股定理,构建方程求解即可.【详解】解:如图,设BM =x ,在Rt △ABC 中,AB =10,AC =6,∴BC 22AB AC -22106-8,∵QB ∥AP ,∴∠A =∠OBQ ,∵O 是AB 的中点,∴OA =OB ,在△OAP 和△OBQ 中,A OBQ OA OBAOP BOQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAP ≌△OBQ (ASA ),∴PA=BQ=6﹣1=5,OQ=OP,∵OM⊥PQ,∴MQ=MP,∴52+x2=12+(8﹣x)2,解得x=2.5.当点P在AC的延长线上时,同法可得72+x2=12+(8﹣x)2,解得x=1,综上所述,满足条件的BM的值为2.5或1.故答案为:2.5或1.【点睛】本题考查勾股定理,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.17.5【分析】将AD顺时针旋转60°得连结可得AD=DD′=AD′可证△ABD′≌△ACD(SAS)可得BD′=CD由BD′+DD′≥BD当BD′D三点在一线时BD最大BD最大=BD′+DD′=5【详解解析:5【分析】将AD顺时针旋转60°,得AD',连结BD',可得AD=DD′=AD′,可证△ABD′≌△ACD (SAS),可得BD′=CD,由BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=5.【详解】解:∵将AD顺时针旋转60°,得AD',连结BD',则AD=DD′=AD′,∴△ADD′是等边三角形,又∵等边三角形ABC,∴∠BAC=∠D AD',∴∠BAD′+∠D′AC=∠CAD+∠D′AC=60°,∴AB=AC,AD′=AD,∴△ABD′≌△ACD(SAS),∴BD′=CD,∴BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=CD+AD=2+3=5.故答案为:5..【点睛】本题考查三角形旋转变换,等边三角形判定与性质,掌握三角形旋转变换的性质,等边三角形判定与性质,用三角形三边关系确定B 、D′、D 共线是解题关键.18.【分析】已知AB=AC 根据等腰三角形的性质可得∠B 的度数再求出∠DAC 的度数然后根据30°角直角三角形的性质求得BD 的长再根据等角对等边可得到CD 的长即可求得BC 的长【详解】∵AB=AC ∠C=30°解析:12【分析】已知AB=AC ,根据等腰三角形的性质可得∠B 的度数,再求出∠DAC 的度数,然后根据30°角直角三角形的性质求得BD 的长,再根据等角对等边可得到CD 的长,即可求得BC 的长.【详解】∵AB=AC ,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB ⊥AD ,AD=4,∴∠BAD=90°,BD=2AD=8,∴∠DAC=120°-90°=30°,∴∠DAC =∠C=30°,∴AD=CD=4,∴CB=DB+CD=12故答案为:12【点睛】本题考查了等腰三角形的判定与性质及30°角直角三角形的性质,熟练运用等腰三角形的性质及30°角直角三角形的性质是解决问题的关键.19.【分析】先利用同角的余角相等得到=再通过证得到即再利用三角形内角和得可得最后利用角的和差即可得到答案=【详解】证明:∵∴∴=又∵∴∴即∵∴即∴=故答案为:【点睛】本题考查了直角三角形的性质内角和定理 解析:=ACD CBA DAF ∠∠∠+【分析】先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证ACD CBE ≌,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.【详解】证明:∵90ACB ∠=︒,CE BE ⊥∴+90ACD ECB ∠=︒∠,+90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC =,CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.【点睛】 本题考查了直角三角形的性质、内角和定理以及全等三角形的判定和性质,能通过性质找到角与角之间的关系是解答此题的关键.20.①③④【分析】利用平行线的性质∠C=∠FBD 则可证明∠C=∠ABC 于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB 如图利用角平分线的性质得到DE=DHDH=DF 则可对③进行判断;证明△A解析:①③④【分析】利用平行线的性质∠C=∠FBD ,则可证明∠C=∠ABC ,于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB ,如图,利用角平分线的性质得到DE=DH ,DH=DF ,则可对③进行判断;证明△ADE ≌△ADH 得到AH=AE ,同理可得BH=BF ,则可对④进行判断.【详解】解:∵BC 恰好平分∠ABF ,∴∠ABC=∠FBD ,∵AC ∥BF ,∴∠C=∠FBD ,∴∠C=∠ABC ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,CD=BD ,∴AD 是ABC ∆的高;ABC ∆是等腰三角形;所以①正确;②错误;过D 点作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DE ⊥AC ,DH ⊥AB ,∴DE=DH ,∵AC ∥BF ,DE ⊥AC ,∴DF ⊥BF ,∵BD 平分∠ABF ,DH ⊥AB ,∴DH=DF ,∴DE=DF ,所以③正确;在△ADE 和△ADH 中,AD AD DE DH =⎧⎨=⎩, ∴△ADE ≌△ADH (HL ),∴AH=AE ,同理可得BH=BF ,∴AB=AH+BH=AE+BF ,所以④正确.故答案为:①③④.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质和等腰三角形的性质.三、解答题21.(1)见解析;(2)见解析【分析】(1)由余角的性质可得F EAC ∠=∠,从而运用“角角边”证明即可;(2)作FM AC ⊥,同(1)证明过程可得FM AC BC ==,AM CE =,从而证明CD MD =,则可得M 为AC 的中点,最终可得E 点为BC 的中点.【详解】(1)∵AF AE ⊥,∴90FAG EAC ∠+∠=︒,∵FG AC ,∴90AGF ∠=︒,90FAG F ∠+∠=︒,∴F EAC ∠=∠,在AGF 与ECA △中,AGF C F EAC AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AGF ECA AAS ≌;(2)如图所示,作FM AC ⊥,由(1)可知AMF ECA △≌△,则FM AC BC ==,AM CE =,在DFM 和DBC △中,MDF CDB DMF DCB FM BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()DFM DBC AAS △≌△, ∴CD MD =,∵3AD CD =,∴AM CM =,∴CM CE =,∵AC BC =,∴BE CE =,即:E 点为BC 的中点.【点睛】本题考查全等三角形的判定与性质,以及等腰直角三角形的性质,掌握等腰直角三角形中常考的证明模型是解题关键.22.(1)点E 的坐标为(0,2);(2)见解析;(3)60OCD ∠=︒【分析】(1)先根据ASA 判定△AOE ≌△BOC ,得出OE=OC ,再根据点C 的坐标为(2,0),得到OC=2=OE ,进而得到点E 的坐标;(2)先过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,根据△AOE ≌△BOC ,得到S △AOE =S △BOC ,且AE=BC ,再根据OM ⊥AE ,ON ⊥BC ,得出OM=ON ,进而得到OD 平分∠ADC ;(3)在DA 上截取DP=DC ,连接OP ,根据SAS 判定△OPD ≌△OCD ,再根据三角形外角性质以及三角形内角和定理,求得∠PAO=30°,进而得到∠OCB=60°.【详解】解:(1)如图①,∵AD ⊥BC ,BO ⊥AO ,∴∠AOE=∠BDE=90︒,又∵∠AEO=∠BED ,∴∠OAE=∠OBC ,∵A (-3,0),B (0,3),∴OA=OB=3,在△AOE 和△BOC 中,90AOE BOC OA OB OAE OBC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOC(ASA),∴OE=OC ,又∵点C 的坐标为(2,0),∴OC=2=OE ,∴点E 的坐标为(0,2);(2)如图②,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE=BC ,∵OM ⊥AE ,ON ⊥BC ,∴OM=ON ,∴OD 平分∠ADC ;(3)如图所示,在DA 上截取DP=DC ,连接OP ,∵∠PDO=∠CDO ,OD=OD ,在△OPD 和△OCD 中,DP DC PDO CDO OD OD =⎧⎪∠=∠⎨⎪=⎩,∴△OPD ≌△OCD(SAS),∴OC=OP ,∠OPD=∠OCD ,∵AD-CD=OC ,∴AD-DP=OP ,即AP=OP ,∴∠PAO=∠POA ,∴∠OPD=∠PAO+∠POA=2∠PAO=∠OCB ,又∵∠PAO+∠OCD=90°,∴3∠PAO=90°,∴∠PAO=30°,∴∠OCB=60°.【点睛】本题主要考查了全等三角形的判定与性质,角平分线的判定定理以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.23.(1)证明见详解;(2)以D E G 、、为顶点的三角形的形状是等边三角形,证明见详解(3)AD =CG .证明见详解.【分析】(1)过点D 作DH ∥AC 交BC 于H ,则∠DHB=∠ACB ,由ABC 是等边三角形,可得AB=AC ,∠B=∠ACB=60°,可证△DEH ≌△FEC (AAS ),DH=FC 即可;(2)以D E G 、、为顶点的三角形的形状是等边三角形,连结DG ,由ED ⊥AB 于D ,可求∠DEB=90°-∠B=30°,由EG BC ⊥,∠ACB=60°,可得∠GED=90°-∠DEB=60°,∠EGC=90°-∠GCE=30°可证△BHD 为等边三角形,∠BDH=60°,再证∠F=∠EGC=30°,GE=EF=DE ,结合∠GED=60°即可;(3)AD =CG 由ABC ,△BHD 为等边三角形,可得AD=HC ,可证△DEH ≌△FEC (AAS ),可得HE=CE ,由EG BC ⊥,∠ACB=60°,可得∠EGC=90°-∠GCE=30°利用含30°直角三角形性质GC=2EC=CH=AD 即可.【详解】证明:(1)过点D作DH∥AC交BC于H,则∠DHB=∠ACB,∵ABC是等边三角形,所以AB=AC,∠B=∠ACB=60°,∴∠B=∠DHB=60°,∴DB=DH,∵作法DH∥AC,∴∠HBE=∠F,∠DHE=∠FCE,∵DE FE=,∴△DEH≌△FEC(AAS),∴DH=FC,∴BD=CF;、、为顶点的三角形的形状是等边三角形,(2)以D E G连结DG,∵ED⊥AB于D,∴∠B+∠DEB=90°,∠B=60°,∴∠DEB=90°-∠B=30°,⊥,∠ACB=60°,又∵EG BC∴∠DEB+∠GED=90°,∠EGC+∠GCE=90°,∴∠GED=90°-∠DEB=60°,∠EGC=90°-∠GCE=30°,由(1)知DH=BD,∠B=60°,∴△BHD为等边三角形,∴∠BDH=60°,∴∠HDE=90°-∠BDH=30°,∠F=∠HDE=30°,∴∠F=∠EGC=30°,∴GE=EF=DE,∴△DEG为等边三角形;(3)AD=CG.∵ABC,△BHD为等边三角形,∴AB=BC,DB=BH,∴AB-BD=BC-BH,∴AD=HC,∵作法DH∥AC,∴∠HBE=∠F,∠DHE=∠FCE,∵DE FE=,∴△DEH≌△FEC(AAS),∴HE=CE,⊥,∠ACB=60°,∵EG BC∴∠EGC+∠GCE=90°,∴∠EGC=90°-∠GCE=30°,∴GC=2EC=CH=AD,∴GC=AD.【点睛】本题考查等边三角形的判定与性质,平行线的性质,三角形全等的判定与性质,直角三角形性质,等腰三角形判定,掌握等边三角形的判定与性质,平行线的性质,三角形全等的判定与性质,直角三角形性质,等腰三角形判定是解题关键.24.(1)60°;(2)30°;(3)20°或40°.【分析】(1)由折叠的性质可知△ABF是等边三角形,即可得出结论;(2)根据折叠的性质及三角形内角和定理即可得出结论;(3)根据折叠的性质、三角形外角的性质及等腰三角形的性质表示出∠AFD,根据平角的定义表示出∠DFC,然后分三种情况讨论即可得出结论.【详解】解:(1)由折叠的性质可知:AB=AF,BA=BF,∴AB=BF=AF,∴△ABF是等边三角形,∴∠ABC=∠AFB=60°;(2)∵∠CFD=90°,∴∠BFD =90°.由折叠的性质可知:∠BAD =∠BFD ,∴∠BAC =∠BAD =90°,∴∠C =180°-∠BAC -∠ABC =180°-90°-60°=30°;(3)设∠C =x °.由折叠的性质可知,AD =DF ,∴∠FAD =∠AFD .∵∠AFB =∠FAD +∠C ,∴∠FAD =∠AFB -∠C =60°-x ,∴∠AFD =60°-x ,∴∠DFC =180°-∠AFB -∠AFD =180°-60°-(60°-x )=60°+x .∵△CDF 为等腰三角形,∴分三种情况讨论:①若CF =CD ,则∠CFD =∠CDF ,∴60°+x +60°+x +x =180°,解得:x =20°;②若DF =DC ,则∠DFC =∠C ,∴60°+x =x ,无解,∴此种情况不成立;③若DF =FC ,则∠FDC =∠C =x ,∴60°+x +x +x =180°,解得:x =40°.综上所述:∠C 的度数为20°或40°.【点睛】本题考查了等边三角形的判定与性质,等腰三角形的判定与性质,折叠的性质.分三种情况讨论是解答本题的关键.25.(1)全等,见解析;(2)Q 的运动速度为154cm /s ;(3)803s 在AB 边上,距离A 点6cm 处【分析】(1)由SAS 证明即可;(2)根据全等三角形的性质得出4BP PC cm ==,5CQ BD cm ==,则可得出答案; (3)由题意列出方程1532104x x =+⨯,解方程即可得解; 【详解】(1)∵1t s =,点Q 的运动速度与点P 的运动速度相等,∴313BP CQ cm ==⨯=,∵10AB cm =,点D 为AB 的中点,∴5BD cm =,又∵PC BC BP =-,8BC cm =,∴835PC cm =-=,∴PC BD =,又∵AB AC =,∴B C ∠=∠,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴()△△BPD CQP SAS ≅;(2)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP CQ ≠,∴若BPD CPQ ≅,且B C ∠=∠,则4BP PC cm ==,5CQ BD cm ==,∴点P 、点Q 的运动时间4()33BPt s ==, ∴515443Q CQ t υ=== cm /s ;(3)设经过x 秒后点P 与点Q 第一次相遇, 由题意可得:1532104x x =+⨯, 解得:803x =, 803803⨯=cm , △ABC 的周长为1010828cm ++=,运动三圈:28384cm ⨯=>80cm ,84804cm -=,1046cm -=,∴经过803后点P 与点Q 第一次相遇,在AB 边上,距离A 点6cm 处. 【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,特别是利用方程的思想解决几何问题,培养学生综合解题的能力.26.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可;(2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中,AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.。
三角形的试题及答案高中

三角形的试题及答案高中一、选择题1. 若一个三角形的三个内角分别为α、β、γ,且α + β + γ = 180°,则下列说法正确的是:A. α、β、γ 可以是任意角度B. α、β、γ 必须都是锐角C. α、β、γ 必须都是直角D. α、β、γ 可以是直角或钝角答案:A2. 在三角形ABC中,若∠A = 90°,AB = AC,则三角形ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰直角三角形答案:D3. 一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定答案:A二、填空题4. 若三角形的三边长分别为3、4、5,则该三角形的面积为______。
答案:65. 已知三角形的两边长分别为5cm和12cm,第三边长为奇数,求第三边的可能值。
答案:7cm或13cm三、解答题6. 已知三角形ABC中,∠A = 60°,∠B = 45°,求∠C的度数。
答案:∠C = 180° - ∠A - ∠B = 180° - 60° - 45° = 75°7. 一个三角形的周长为30cm,其中两边长分别为8cm和15cm,求第三边的长度。
答案:第三边的长度为30cm - 8cm - 15cm = 7cm四、证明题8. 已知三角形ABC中,AB = AC,BD是AC边上的中线,求证:∠ABD = ∠ACD。
答案:因为AB = AC,所以三角形ABC是等腰三角形。
根据等腰三角形的性质,底边的中线也是高线,所以BD垂直于AC。
因此,∠ABD和∠ACD是直角三角形的两个锐角,它们相等。
故∠ABD = ∠ACD。
9. 已知直角三角形ABC中,∠C = 90°,AB是斜边,求证:AC^2 + BC^2 = AB^2。
北师大版八年级数学下册第一章三角形的证明单元测试题(答案及解析)

北师大版八年级下册第一章三角形的证明测试题一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°2.一个等腰三角形的两边长分别为3,6,则它的周长为()A.9 B.12 C.15 D.12或153.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.37.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm²,则S阴影等于()A.2cm²B.1cm²C.cm²D.cm²二.填空题(共5小题)11.等边三角形是一个轴对称图形,它有______条对称轴.12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为______.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为______.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?北师大版八年级下册第一章三角形的证明测试题参考答案与试题解析一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选B.2.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.3.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.7.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°,∴2∠1+∠C=180°,∴2∠1+∠1﹣∠2=180°,∴3∠1﹣∠2=180°.故选B.8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠A=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ABC=∠ACB,∠1=∠2,∴∠PBA=∠PCB,∴∠1+∠ABP=∠PCB+∠2=140°×=70°,∴∠BPC=180°﹣70°=110°.故选A.9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°.故选:C.10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2 B.1cm2 C.cm2 D.cm2【解答】解:根据三角形的面积公式,知:等底等高的两个三角形的面积相等.即有:S阴影=S△BCE=S△ABC=1cm2.故选:B.二.填空题(共10小题)11.等边三角形是一个轴对称图形,它有 3 条对称轴【解答】解:等边三角形是轴对称图像,它有三个顶点,所以对应3条对称轴故答案为:312.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为32a .【解答】解:∵△A1B1A2是等边三角形∴∠B1A1A2=60°,A1B1=B1A2=A1A2∵∠MON=30°∴∠OB1A1=30°(三角形的一个外角等于和它不相邻的两个外角和∠OB1A1=∠B1A1A2-∠MON)∴OA1=A1B1(等边对等角)∴OA1=A1A2=a同理,根据∠MON=∠OB2A2,可得:A2A3=A2B2=OA1+A1A2=2A1A2=2a同理,可推出:A3A4=2A2A3=4a同理,可推出:A4A5=2A3A4=8a同理,可推出:A5A6=2A4A5=16a同理,可推出:A6A7=2A5A6=32a 即题目所求另外我们不难发现,第n个(△A1B1A2为第一个)等边三角形的边长为AnAn+1=(2^n-1)a 注:2的n-1次方倍的a三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.另外一种证法:证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°在Rt△ABD和Rt△BAC中∴Rt△ABD≌Rt△BAC(HL)∴AD=BC,在△AOD和△BOC中,∴△AOD≌△BOC(AAS),∴OA=OB,即△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.【解答】解:(1)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C,∴△ABC为等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.。
最新北师大版七年级下册三角形全等(SSS)的证明试题以及答案(共41道证明题)

最新七年级下册三角形全等的证明试题1、如图,AB=DE,AC=EF,BE=CF,证明∠A=∠D。
2、如图,AB=CD,BE=DF,AF=EC,证明AB∥CD。
3、如图,AC=DF,EF=BC,AD=BE,证明∠F=∠C。
4、如图,AB=AC,AD=AE,BE=DC,证明∠ABD=∠AEC。
5、如图,AB=AD,AE=AC,BC=ED,证明∠ABE=∠ACD。
6、如图,AD=AB,DC=BC,证明∠B=∠D。
7、如图,AB=AC,BD=DC,证明∠1=∠2.8、如图,∠C=90°,AD=BD,DE=DC,AE=BC,说明AB和DE的关系。
9、如图,AB=DE,BC=EF,AF=CD,证明AB∥DE。
10、如图,AB=AC,D是BC的中点,证明AD⊥BC。
11、如图,AE=DF,AB=CD,CE=BF,证明AE∥DF。
12、如图,AB=AD,AE=AC,BC=DE,证明∠E=∠C。
13、如图,BC=BE,DE=DC,∠C=90°,证明(1)DE⊥AB(2)BD是∠ABC的角平分线。
14、如图,AB=EF,AD=CF,DE=BC,证明∠B=∠E。
15、如图,OA=OB,AC=BD,AD=BC,证明∠ACB=∠ADB。
16、如图,AD=BC,A0=OB,OC=OD,证明∠BAD=∠ABC。
17、如图,AD=BD,BE=AC,AD+DE=BC,AD⊥BC,证明BE⊥AC。
18、如图,AD=BC,AF=EC,DE=BF,证明DE∥BF,AD∥BC。
19、如图,AB=DC,AC=BD,AO=OD,证明∠B=∠C。
20、如图,AB=AD,AE=AC,BC=DE,证明∠1=∠2.21、如图,AC⊥CE,AC=CE,AB=CD,且AB+DE=BD,AB∥DE。
22、如图,AE=AB,AC=AF,EC=BF,证明∠BAE=∠CAF。
23、如图,AD=BC,AC=BD,证明∠ADO=∠BCO。
24、如图,AB=AC,BD=CE,AD=AE,证明∠ABC=∠ADE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的证明
(本试卷满分:150分,时间:120分钟)
一、选择题(每小题4分,共48分)
1.具备下列条件的两个三角形可以判定它们全等的是()
A.一边和这边上的高对应相等B.两边和第三边上的高对应相等
C.两边和其中一边的对角对应相等D.两个直角三角形中的一条直角边、斜边对应相等2.已知MN是线段AB的垂直平分线,C,D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是()
A.∠CAD<∠CBDB.∠CAD=∠CBDC.∠CAD>∠CBDD.无法判断
3.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()
A.30°B.40°C.45°D.36°
4.下列命题:
①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()
个个个个
5.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()
或10或12
6.如图,已知∠E=∠F,∠B=∠C,AE=AF,下列结论:
①EM=FN②CD=DN③∠FAN=∠EAM④△ACN≌△ABM
其中正确的有()
个个个个
7.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,最短边BC=4cm,则最长边AB的长是()
A.5cm
B.6cm D.8cm
8.如图,已知∠BAC=∠DAE=90°,AB=AD,下列条件能使△ABC≌△ADE的是()
A.∠E=∠C=AC=DE三个答案都是
9.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()
个个个个
10.已知一个直角三角形的周长是,斜边上的中线长为2,则这个三角形的面积为()
如图,在△ABC中,AB的垂直平分线交AC于点D,交AB于点E,如果AC
=5cm,BC=4cm,那么△DBC的周长是()
A.6cm
B.7cm
C.8cm
D.9cm
12.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()
A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP
二、填空题(每小题4分,共24分)
13.如图所示,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF折叠后与点O重合,则∠OEC的度数是.
14.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是______三角形.
15.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=____ ____°.
16.如图,在△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,则点M到AB的距离是_____ __.
17.如图,在等边△ABC中,F是AB的中点,FE⊥AC于E,若△ABC的边长为10,则AE=__ _______,AE:EC=_________.
18.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.
三、解答题(共78分)
19.如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合),MD⊥BC,且交∠BAC的平分线于点D,求证:MA=MD.
20已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.
求证:△ADF是等腰三角形.
21.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E.求证:AD=CE.
22.如图所示,以等腰直角三角形ABC的斜边AB为边作等边△ABD,连接DC,以DC为边作等边△DCE,B,E在C,D的同侧,若AB=,求BE的长.
23.如图所示,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A,D重合,连接BE,EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.
24.如图,在△ABC中,AB=AC,DE是边AB垂直平分线交AB于E,交AC于D,连结BD.(1)若∠A=40°,求∠DBC的度数.
(2)若△BCD的周长为12cm,△ABC的周长为18cm,求BE的长.
25.联想三角形外心的概念,我们可引入如下概念.
定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
举例:如图(1),若PA=PB,则点P为△ABC的准外心.
(1)应用:如图(2),CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠A PB的度数.
(2)探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探PA的长.
26.如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.
(2)AB=AF+2EB.
27.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC于E、F.且B E=EO.
(1)说明OF与CF的大小关系;
(2)若BC=12cm,点O到AB的距离为4cm,求△OBC的面积.
参考答案
一、选择题
.二、填空题
°;14.直角;15,15°;16.20cm;17.;1:3;:3;
三.解答题
19.证明:∵MD⊥BC,∠B=90°,∴AD∥MD,∴∠BAD=∠D.
又∵AD为∠BAC的平分线,∴∠BAD=∠MAD,∴∠D=∠MAD,∴MA=MD.
20.∵AB=AC,∴∠B=∠C.
∵DE⊥BC于点E,∴∠FEB=∠FEC=90°.
∴∠B+∠EBD=∠C+∠EFC=90°.∴∠EFC=∠EDB.
∵∠EDB=∠ADF,∴∠EFC=∠ADF.∴△ADF是等腰三角形.
21.∵AE∥BD,∴∠EAC=∠ACB.∵AB=AC,∴∠B=∠ACB.∴∠EAC=∠B.
又∵∠BAD=∠ACE=90°,∴△ABD≌△CAE(ASA).∴AD=CE.
22.因为△ABD和△CDE都是等边三角形,
所以AD=BD,CD=DE,∠ADB=∠CDE=60°.
所以∠ADB-∠CDB=∠CDE-∠CDB,
即∠ADC=∠BDE.
在△ADC和△BDE中,因为AD=BD,CD=DE,∠ADC=∠BDE
所以△ADC≌△BDE,所以AC=BE.
又AC=BC,所以BE=BC.
在等腰直角△ABC中,AB=,所以AC=BC=1,故BE=1.
23.,BE⊥EC.
证明:∵,点D是AC的中点,∴.
∵∠∠45°,∴∠∠135°.
∵,∴△EAB≌△EDC.
∴∠∠.
∴∠∠90°.∴⊥.
24.(略)
25.应用:若PB=PC,连接PB,则∠PCB=∠PBC.
∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,
∴∠PBD=∠PBC=30°,∴PBN=2PD
∴
∴
与已知PD=AB矛盾,∴PB≠PC.
若PA=PC,连接PA,同理,可得PA≠PC.
若PA=PB,由PD=AB,得PD=BD,∴∠BPD=45°,∴∠APB=90°.
探究:若PB=PC,设PA=x,则x2+32=(4-x)2,∴x=,即PA=.
若PA=PC,则PA=2.
若PA=PB,由图(2)知,在Rt△PAB中,这种情况不可能.故PA=2或.
26.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DE=DC,
∵在Rt△DCF和Rt△DEB中,
,
∴Rt△CDF≌Rt△EBD(HL).
∴CF=EB;
(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴CD=DE.
在△ADC与△ADE中,
∵
∴△ADC≌△ADE(HL),
∴AC=AE,
∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
27.(1)OF=CF.
理由:∵BE=EO,
∴∠EBO=∠EOB,
∵△ABC中,∠ABC与∠ACB的平分线交于点O,
∴∠EBO=∠OBC,
∴∠EOB=∠OBC,
∴EF∥BC,∴∠FOC=∠OCB=∠OCF,
∴OF=CF;
(2)过点O作OM⊥BC于M,作ON⊥AB于N,
∵△ABC中,∠ABC与∠ACB的平分线交于点O,点O到AB的距离为4cm,∴ON=OM=4cm,
∴S△OBC=BCOM=×12×4=24(cm2).。