AC-DC-DC电源技术方案设计

AC-DC-DC电源技术方案设计
AC-DC-DC电源技术方案设计

直流电源设计方案

目录

1.概述 (1)

2 系统的整体结构设计 (3)

3.三相六开关APFC电路设计 (23)

4. 移相全桥ZVS PWM变换器分析与设计 (28)

5.高压直流二次电源DC/DC变换器设计 (34)

6. 器材选取 (40)

7. 电源系统散热分析 (55)

8. 参数设计仿真结果 (58)

1.概述

1.1 目的和意义

目前,越来越多的电力电子设备投入到电网中,由于不可控整流器在大功率电源设备中的广泛应用,其对电网造成的谐波污染日益严重,使得电能生产、传输和利用的效率降低,并影响电网的安全运行。为了保证电网的正常运行,现在采取的办法往往是限制接入电网的整流设备的容量,这就限制了一些大功率直流电源的使用。电力电子装置,尤其是各种直流变换装置向高频化、高功率密度化发展,其关键技术是软开关技术。因此,大功率开关电源的功率因数校正技术及DC/DC变换器软开关技术是当前研究的热点。

1.2 开关电源技术发展现状

开关电源是采用功率半导体器件作为开关元件,通过控制开关元件的占空比进而调整输出电压的电源变换装置,开关电源的前置级将电网工频电压经整流滤波为直流电压,再经直流变换电路即开关电源后即处理后输出、整流、滤波。为了稳定输出电压,设计电压反馈电路对输出的电压进行采样,并把所采样的电压信号送到控制电路中,进行比较处理,调节输出的控制脉冲的占空比,最终使输出电压的纹波及电源的稳定满足设计指标。

开关电源通常包括EMI滤波模块、AC/DC变换模块、DC/DC变换模块、控制、驱动及保护模块、辅助电源模块等。传统的开关电源输入电流中谐波含量高,功率因数低,开关损耗大、电磁干扰严重等一系列问题阻碍了电源技术向着高效率、绿色化、实用化的方向发展。自20世纪80年代以来,随着有源功率因数校正技术和软开关技术的发展,上述问题得到了较好的解决,开关电源技术也步入了一个新的迅速发展的阶段。

1.3 本次设计的主要容

本次设计一款符合《航天地面直流电源通用规》要求的直流电源系统。其采用两级结构,前级AC/DC部分采用三相六开关APFC电路,后级采用移相全桥ZVS

PWM变换电路。

前级采用三相APFC整流电路,保证系统在6KW功率下平稳工作,功率因素大于0.99,具有较强鲁棒性,具有过压、欠压指示,输出过压、限流等保护功能。后级采用全桥变换器,采用软开关技术,减小系统能量损耗,且保证输出电压在45V-100V连续可调,且电压稳定(峰峰值小于500mV,电压稳定度不大于1%),具有良好的屏蔽性能,屏蔽性能大于40dB,系统具有双模式(电压源模式,电流源模式)工作特点。具有友好的人机界面,提供外接显示屏,可实时显示输出电压、电流、输入侧功率因数等实时信息,方便用户调整系统参数,并预留CAN 总线端口。整体尺寸不大于600mm*500mm*500mm,整体质量不大于50Kg,产品符合GJB 1412-92《航天地面直流电源通用规》。

并根据相关要求依据设计所需采购工业级以上(含工业级)电源元件。

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

基于PWM芯片UC3842的医疗开关电源设计方案

基于PWM芯片UC3842的医疗开关电源设计方案 基于UC3842 高性能电流模式PWM 芯片,提出一种医疗开关电源设计方案。该设计AC-DC 给医疗设备供电,采用单端反激式结构,实现90-264Vac 供电,12V 的直流输出,具有瞬态响应快、电磁兼容好、输出电压精度高等优点,能 够很好地满足医疗设备供电需求。引言医疗电源是对安规及EMI、EMC 比较 高的设备,作为绿色开关电源,将在21 世纪给人类社会带来巨大的变化。性 能优良的医疗设备系统离不开性能优良的控制模块,而控制模块的性能在很大 程度上取决于供电电源的性能,所以高质量的供电电源系统在整个医疗系统中 占有相当重要的位置。本文基于UC3842 高性能电流模式PWM 发生器控制的 开关电源适合应用于此类系统。本设计通过小型高频变压器实现输出和输入的 完全隔离,不仅提高了电源的效率,简化了外围电路,也降低了电源的成本和 体积。电源输出电压稳定,波纹小,不间断性能可靠同时又不会对其他设备产 生辐射和传导干扰。单端反激式变换电路的基本结构单端反激式变换的典型结 构如图一所示。单端是指变压器的磁心仅工作在磁滞回线的一侧;反激是指当 开关管导通时,在初级线圈中储存能量,而次级线圈不通,当开关管关闭的时候,初级线圈中的能量通过次级线圈释放给负载。这是一种成本低的调整器, 可以做到输入输出部分的完全隔离,有较好的电压调整率。 图一单端反激式变换器UC3842 芯片的性能特点UC3842 芯片是Unit rode 公司的产品,是一种高性能的单端输出式电流控制型脉宽调制器芯片,其原理框 图如图二所示。由5V 基准电压源、控制占空比调定的振荡器、电流测定比较器、PWM 锁存器、高增益E/A 误差放大器和适用于驱动功率MOSFET 的大电流推挽输出电路等组成。其主要特点是:①外接元件少,外围电路简单,价格

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

精通开关电源设计

《精通开关电源设计》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电又如何使直流电压(电流)稳定这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A;

③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=±; 发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

各种开关电源介绍-开关电源设计知识大全

开关电源介绍 一、基础知识: 新型变压器:磁性元件,新型磁材料和新型变压器的开发。如集成磁路,平面型磁心,超薄型变压器;以及新型变压器如压电式,无磁芯印制电路变压器等,使开关电源的尺寸重量都可减少许多。 硬开关的条件下MOSFET和IGBT开关损耗分析: 1).开通损耗方面:由于MOSFET的输出电容大,器件处于断态时,输入电压加在输出电容上,输出电容储存较大能量。在相继开通时这些能量全部消耗在器件内,开通损耗大。器件的开通损耗和输出电容成正比,和频率成正比和输入电压的平方成正比[12]。而IGBT的输出电容比MOSFET小得多,断态时电容上储存的能量较小,故开通损耗较小。 2).关断损耗方面:MOSFET属单极型器件,可以通过在施加栅极反偏电压的方法,迅速抽走输入电容上的电荷,加速关断,使MOSFET关断时电流会迅速下降至零,不存在拖尾电流,故关断损耗小[10];而IGBT由于拖尾电流不可避免,且持续时间长(可达数微秒),故关断损耗大。 综合以上分析,硬开关条件下MOSFET的开关损耗主要是由开通损耗引起,而IGBT则主要是由关断损耗引起。因此使用MOSFET作为主开关器件的电路,应该工作于ZVS条件下,这样在器件开通前,漏极和源极之间的电压先降为零,输出电容上储存能量很小,可以大大降低MOSFET的开通损耗;而使用IGBT作为主开关器件的电路,应该工作于ZCS条件下,这样在器件关断前,流过器件的电流先降为零,可以大大降低因拖尾电流造成的关断损耗。 软开关:当电流过零时,使器件关断;当电压过零时,使器件开通-实现开关损耗为零。 变流器:把输入的电源,进行电压、电流变换,达到规定的要求后输出给用电设备。 DC-DC:直流变压器。斩波器。 为什么反激开关电源只能适合小功率?200W以下。正激开关电源适合大功率开关电源? 高效率小体积(高功率密度)一直是DC-DC变换器用户的追求,也是设计的要点。提高功率密度最有效的方式就是提高开关频率,线圈和变压器对高速变化的磁力线感应灵敏度高、特别高效率,衰减特别小,传递效率特别高,而对低频变化的磁力线灵敏度低、衰减大,传递效率差,因此高频下的磁芯体积会大幅度减小,但频率的提高会使开关管的开关损耗加大,对变换器的效率造成影响。如何在高频下减小开关管的开关损耗,是DC-DC变换器是否能实现高效率高功率密度的关键,在这种背景下,高频软开关技术逐渐成为研究的热点,LLC谐振变换器是在串联谐振变换器的基础上增加了一个与负载并联的电感,是目前效率最高的开关电源。

最新开关电源学习笔记

开关电源学习笔记

开关电源学习笔记 阅读书记名称《集成开关电源的设计调试与维修》 开关电源术语: 效率:电源的输出功率与输入功率的百分比。其测量条件是满负载,输入交流电压标准值。 ESR:等效串联电阻。它表示电解电容呈现的电阻值的总和。一般情况下,ESR值越低的电容,性能越好 输出电压保持时间:在开关电源输出电压撤消后,依然保持其额定输出电压的时间。 启动浪涌保护:它属于保护电路。它对电源启动时产生的尖蜂电流起限制作作用。为了防止不必要的功率损耗,在设计这一电路时候,一定要保证滤波电容充满电之前,就起到限流的作用。 隔离电压:电源电路中的任何一部分与电源基板之间的最大电压。或者能够加在开关电源的输入与输出端之间的最大直流电压。 线性调整率:输出电压随负载在指定范围内的变化百分率。条件是线电压和环境温度不变。 噪音和波纹:附加在直流信号上的交流电压的高频尖锋信号的峰值。通常是mV度量。 隔离式开关电源:一般指开关电源。它从输入的交流电源直接进行整流滤波,不使用低频隔离变压器。 输出瞬态响应时间:从输出负载电路产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间。

过载过流保护:防止因负载过重,是电流超过原设计的额定值而造成电源的损坏的电。远程检测:电压检测的一种方法。为了补偿电源输出的电压降,直接从负载上检测输出电压的方法。 软启动:在系统启动时,一种延长开关波形的工作周期的方法。工作周期是从零到它的正常工作点所用的时间。 快速短路保护电路:一种用于电源输出端的保护电路。当出现过压现象时,保护电路启动,将电源输出端电压快速短路。 占空比:开关电源中,开关元件导通的时间和变换工作周期之比。 元件选择和电路设计: 一:输入整流器的一些参数 最大正向整流电流:这个参数主要根据开关电源输出功率决定,所选择的整流二极管的稳态电流容量至少应是计算值的2倍。 峰值反向截止电压(PIV):由于整流器工作在高压的环境,所以它们必须有较高的PIV值。一般600V以上。 要有能承受高的浪涌电流的能力:浪涌电源是用开关管导通时的峰值电流产生。 二:输入滤波电容 输入滤波电容对开关电源的影响 电源输出端的低频交流纹波电压 输出电压的保持时间 滤波电容的计算公式: C=(I*t)/ΔV

关于开关电源设计时的基本问题解答

关于开关电源设计时的基本问题解答 如何为开关电源电路选择合适的元器件和参数?很多未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的干扰问题,PCB layout问题,元器件的参数和类型选择问题等。其实只要了解了,使用开关电源设计还是非常方便的。一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。 开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很大影响。 输出部分设计包含了输出电容,输出电感以及MOSFET等等,这些器件的选择基本上就是要满足性能和成本的平衡,比如高的开关频率就可以使用小的电感值(意味着小的封装和便宜的成本),但是高的开关频率会增加干扰和对MOSFET的开关损耗,从而效率降低。低的开关频率带来的结果则是相反的。 对于输出电容的ESR和MOSFET的Rds_on参数选择也是非常关键的,小的ESR可以减小输出纹波,但是电容成本会增加,好的电容会贵嘛。开关电源控制器驱动能力也要注意,过多的MOSFET是不能被良好驱动的。 一般来说,开关电源控制器的供应商会提供具体的计算公式和使用方案供工程师借鉴的。如何调试开关电源电路?有一些经验可以共享给大家:(1)电源电路的输出通过低阻值大功率电阻接到板内,这样在不焊电阻的情况下可以先做到电源电路的先调试,避开后面电路的影响。(2)一般来说开关控制器是闭环系统,如果输出恶化的情况超过了闭环可以控制的范围,开关电源就会工作不正常,所以这种情况就需要认真检查反馈和采样电路。特别是如果采用了大ESR值的输出电容,会产生很多的电源纹波,这也会影响开关电源的工作的。

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

开关电源学习笔记(含推导公式)

《开关电源》笔记 三种基础拓扑(buck boostbuck-boost )的电路基础: 1,电感的电压公式V L dI =L I ,推出 I =V × T/L dt T 2,sw 闭合时,电感通电电压 VON ,闭合时间tONsw 关断时,电感电压 VOFF ,关断时间 tOFF 3,功率变换器稳定工作的条件: ION = I OFF 即,电感在导通和关断时, 其电流变化相等。 那么由 1,2的公式可知,V ON =L × ION/ tON ,VOFF =L ×ΔIOFF/ tOFF ,则稳定 条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4,周期T ,频率f ,T =1/f ,占空比D =tON/T =tON/(tON +tOFF )→tON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P5152 r =I/IL =2IAC/IDC 对应最大负载电流值和最恶劣输入电压 值 I =Et/L μH Et =V × T (时间为微秒)为伏微秒数, L μH 为微亨电感,单位便于计算 r =Et/(IL ×L μH )→IL ×L μH =Et/r →L μH =Et/(r*IL )都是由电感的电压公式推导出来 r 选值一般 0.4比较合适,具体 见 P53 电流纹波率r = I/IL = 2IAC/IDC 在临界导通模式下,IAC =IDC ,此时r =2 见P51 r =I/IL =VON ×D/LfI L =V O FF×(1-D )/LfI L →L =V ON ×D/rfI L 电感量公式:L =V O FF×(1-D )/rfI L =V ON ×D/rfI L 设置r 应注意几个方 面: A,I PK =(1+r/2)×IL ≤开关管的最小电流,此时 r 的值小于0.4 ,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方 式 P24-26, 最大负载电流 时 r ’= I/ILMAX,当r =2时进入临界导通模式,此时 r = I/Ix =2→ 负载电流I x =(r ’/2)I LMAX 时,进入临界导通模式 ,例如:最大负载电流 3A ,r ’=0.4,则负 载电流为(0.4/2)×3=0.6A 时,进入临界导通模 式 避免进入临界导通模式的方法有 1,减小负载电流 2,减小电感(会减小 I ,则减小r )3, 增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算 1/2×L ×I 2 PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的 r 值负载电流ILIPK 输入电压范围VIN 输 出电压VO 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于 EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m Wb/m 2 B 场:磁通密度或磁感应。单位是特斯拉 ( T )或韦伯每平方米 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为 dB =k ×I ×dl ×aR/R 2 dB 为磁通密度,dl 为电流方向的导线线元,aR 为由dl 指向点p 的单位矢量,距离矢量

单一电压输出ACDC开关电源设计方案

中文摘要 开关电源广泛应用,其效率可达80%以上,具有稳压范围宽、频率高、体积小等特点。特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源的发展与应用在节约能源及环保方面有重要意义。本论文主要介绍RCC型开关电源及其设计应用,RCC电路与其他<如半桥逆变)开关电源电路相比的优越性。它的体积小、不需专用PWM控制芯片、电路简单等优点使其应用更加广泛,特别是在各种新兴电子设备的电源、充电器方面的应用尤为突出,因此在各种开关电源中占有重要地位。RCC电路包括输入整流滤波,吸收电路,开关管保护电路,RC反馈振荡,输出整流滤波,输出过压、过流保护电路,另外最主要的是高频变压器部分。最后通过仿真、调试达到100—240V市电交流输入、5V电压0.5A电流输出的要求,并且纹波较小效率较高。 关键词:开关电源 RCC 自激反激变换器

外文摘要 Title Design of single output AC/DC Switching Power Supply Abstract SwitchingPower Supply is widely uesd,and its efficiency ismore than 80%.Meantime a wide range , high frequency and miniaturization is presented .It is particularly applied in the field of high and new technology and then brings miniaturization and convenice.The development and use of Switching Power Supply are of importance in the energy saving and environmental protection.This paper mainly introduce RCC cicuit and its specific designment。RCC cicuit ,who is small shape,simple structure and not using particular chips,has many more advantages than other circuits as same with it,such as half-bridge ciucuit.Therefore,RCC circuit is much more widely used,especially in the source and charger of all kinds of new electronical devices.So it is such a significance for Switching Power Supply.In the RCCcircuit,the circuit for rectification and filtering,absorption,protection,RCC fee- dback,output overvoltage and overcurrent are included.In addition,the transformer is the most importantcomponent.Finaly,this design get though tests with 100-240V AC input ,5V voltage and 1A current.Moerover,ripple wave is quite small. Key words:Switching power supply Flyback converter Self-excitatiion RCC

开关电源专业用语

开关电源术语 这些定义应被认为是有关于开关电源的 ,并不一定等同的适用于其它技术领域. 考虑到在其它出版物(标准,词典,制造商数据手册 ,技术笔记,手册)已经同时给出了定义,下列的术语仅代表作者本人的观点,并可能与使用本文档的特定用户有轻微的差别. 绝对额定最大值,元件: 如果超过将导致永久性的器件损坏的规定值. 这不是连续额定值,并不表示适当的操作. Ae, 有效区域: 对于给定几何尺寸的磁芯,是指具有同样磁性的同种原料的圆柱形磁芯的横截面积. 周围温度Ambient Temperature (1): 目标温度和SMPS周围静止空气的温度,在距离电源最小为4" (100mm)处测得. 周围温度Ambient Temperature (2): 根据MIL-STD-810E: 除了必要的支撑点,测试单元应完全出于空气的包围中.周围空气的温度梯度应为测量温度的2℃之内且不超过1℃每米. 安培匝数Ampere Turns (NI): 流过线圈的电流与线圈匝数的乘积. ATP: 验收测试步骤(Acceptance Test Procedure). BABT: 英国无线电通讯认证部(The British Approvals Board for Telecommunications).对英国市场上的无线电通讯设备进行认证的肚里组织.BABT对测试实验室进行认证和授权. 行为模型(Behavioral Model): 用数学关系表达的电路模块的模型.是最高的仿真层次. BJT: 双极结晶体管(Bipolar Junction Transistor.). BOM: 物料清单(Bill of Material). 升压式(Boost): 一种基本的开关电源结构,在开关导通时能量存储到电感中,在开关断开时能量

关于开关电源设计

一种基于TOP227Y 的脉冲开关电源设计 摘要:在研究脉冲开关电源技术的基础上 ,提出一种基于 TOP227Y的脉冲开关电源设计。首先给出脉冲开关电源的 总体结构 ,分析其工作原理 ,对系统中高频变压器、主电路、控制电路进行设计。接着介绍 TOP227Y芯片的工作原理及各个 功能块的主要作用 ,最后设计系统总电路图。 关键词:PWM;TOP227Y;开关电源;高频变压器 Design of Pulse Switch Power Supply Based on TOP227Y Abstract:A pulse switch power supply based on TOP227Yis introduced in the paper ,after analsing its working principle , the whole structure of switch power supply is also designed ,the main design content consists of the high frequency trans former ,the main circuit and the control circuit ,then the working principle and the main action of each function module of TOP227Yare introduced in the paper ,finally the whole circuit of system is designed. Keywords:PWM;TOP227Y;switch power supply;high frequency transformer 脉冲电源是各种电源设备中比较特殊的一种,它的电压或电流波形为脉冲状。其实质上是一种通断的直流电源,其基本工作原理是首先经过慢储能 ,使初级能源具有足够的能量,然后向中间储能和脉冲成形系统电或流入能量 ,能量经化 等复杂过程之后 ,形成脉冲电源。随着开关电源的发展 ,电源的小型化、模块化、智能化越来越受到人们的关注。各种电源控制芯片如雨后春笋纷纷涌现 ,美国电源集成 PI 公司相继推出 TOP系列芯片 ,这些芯片集脉冲信号控制电路和功率开关器件 MOSEFT 于一体 ,具有高集成度、最简外围电路、最佳性能指标等特点,能组成高效率无工频变压器的隔离式开关电源。所以,本文设计基于 TOP227Y芯片控制的开关电源。 一、绪论 1.设计的目的及意义 开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

开关电源的系统设计深度解读

开关电源的系统设计深度解读 开关电源的系统设计深度解读 时间:2013-03-05 214次阅读【网友评论0条我要评论】收藏 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关。

开关电源学习笔记

开关电源学习笔记 阅读书记名称《集成开关电源的设计调试与维修》 开关电源术语: 效率:电源的输出功率与输入功率的百分比。其测量条件是满负载,输入交流电压标准值。 ESR:等效串联电阻。它表示电解电容呈现的电阻值的总和。一般情况下,ESR值越低的电容,性能越好 输出电压保持时间:在开关电源输出电压撤消后,依然保持其额定输出电压的时间。 启动浪涌保护:它属于保护电路。它对电源启动时产生的尖蜂电流起限制作作用。为了防止不必要的功率损耗,在设计这一电路时候,一定要保证滤波电容充满电之前,就起到限流的作用。 隔离电压:电源电路中的任何一部分与电源基板之间的最大电压。或者能够加在开关电源的输入与输出端之间的最大直流电压。 线性调整率:输出电压随负载在指定范围内的变化百分率。条件是线电压和环境温度不变。 噪音和波纹:附加在直流信号上的交流电压的高频尖锋信号的峰值。通常是mV度量。 隔离式开关电源:一般指开关电源。它从输入的交流电源直接进行整流滤波,不使用低频隔离变压器。 输出瞬态响应时间:从输出负载电路产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间。 过载过流保护:防止因负载过重,是电流超过原设计的额定值而造成电源的损坏的电。 远程检测:电压检测的一种方法。为了补偿电源输出的电压降,直接从负载上检测输出电压的方法。 软启动:在系统启动时,一种延长开关波形的工作周期的方法。工作周期是从零到它的正常工作点所用的时间。 快速短路保护电路:一种用于电源输出端的保护电路。当出现过压现象时,保护电路启动,将电源输出端电压快速短路。 占空比:开关电源中,开关元件导通的时间和变换工作周期之比。 元件选择和电路设计: 一:输入整流器的一些参数 最大正向整流电流:这个参数主要根据开关电源输出功率决定,所选择的整流二极管的稳态电流容量至少应是计算值的2倍。 峰值反向截止电压(PIV):由于整流器工作在高压的环境,所以它们必须有较高的PIV值。一般600V以上。 要有能承受高的浪涌电流的能力:浪涌电源是用开关管导通时的峰值电流产生。 二:输入滤波电容 输入滤波电容对开关电源的影响 电源输出端的低频交流纹波电压 输出电压的保持时间 滤波电容的计算公式: C=(I*t)/ΔV C:电容量,F I:负载电流,A t:电容提供电流的时间,S ΔV:所允许的峰-峰值纹波电压,V

开关电源设计设计

开关电源设计设计

开关电源设计 摘要 随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨重的线性电源。电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。开关电源技术的主要用途之一是为信息产业服务。信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文是基于芯片UC3842的小功率高频开关电源系统设计。 关键词开关电源;半桥全桥;高频变压器 - II -

目录 摘要...................................................................................................................... I 第1章绪论 (1) 1.1 课题背景 (1) 1.2 研究的目的及意义 (2) 1.2.1 课题研究的目的 (2) 1.2.2课题研究的意义 (2) 第2章开关电源输入电路设计 (3) 2.1 电压倍压整流技术 (3) 2.1.1 交流输入整流滤波电路原理 (3) 2.1.2 倍压整流技术 (3) 2.2 输入保护器件保护 (4) 2.2.1 浪涌电流的抑制 (4) 2.2.2 热敏电阻技术分析 (5) 2.3 本章小结 (6) 第3章开关电源主电路设计 (7) 3.1 单端反激式变换器电路的工作原理 (7) 3.2 开关晶体管的设计 (8) 3.3 变压器绕组的设计 (10) 3.4 输入整流器的选择 (11) 3.5 输出滤波电容器的选择 (12) 3.6 本章小结 (12) 第4章开关电源控制电路设计 (13) 4.1 芯片简介 (13) 4.1.1 芯片原理 (13) 4.1.2 UC3842内部工作原理简介 (13) 4.2 工作描述 (14) 4.3 UC3842常用的电压反馈电路 (18) 4.4 本章小结 (20) 结论 (21) 致谢 (22) 参考文献 (23) - II -

高效率开关电源设计实例

高效率开关电源设计实例 1 0 W同步整流Buck变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路 的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PW履计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压 Buck变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步 控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围:DC+10- +14V 输出电压:DC+5.0V

额定输出电流:2.0A 过电流限制:3.0A 输出纹波电压:+30mV (峰峰值) 输出调整:土1% 最大工作温度:+40 C “黑箱”预估值 输出功率:+5.0V *2A=10.0W最大) 输入功率:Pout/估计效率=10.0W^0.90=11.1W 功率开关损耗(11.1W-10W) * 0 . 5=0.5W 续流二极管损耗:(1I.IW-10W) *0.5=0.5W 输入平均电流 低输入电压时11.1W / 10V=1.1IA 高输入电压时:11.1W/ 14V=0. 8A 估计峰值电流:1 . 4lout(rated)=1 . 4X 2. 0A=2. 8A 设计工作频率为300kHz。

相关文档
最新文档