建筑玻璃抗风压设计

合集下载

建筑门窗的抗风压计算

建筑门窗的抗风压计算

一、计算依据二、风荷载计算1、基本情况:门窗计算风荷最大标高取70米;根据工程所处的地理位置,其风压高度变化系数按C类算。

平开窗的受力杆件MQ25-24a最大计算长度为2400mm,杆件两边的最大受力宽度为:1375mm,;推拉窗的受力杆件QLC30-25最大计算长度为:1960mm,杆件两边的最大受力宽度为1480mm。

2、风荷载标准值的计算风荷载标准值ωk=βzμSμZωO (资料③P24式7.1.1-1)ωk―风荷载设计标准值βZ―高度Z处的阵风系数,(资料③P44表7.5.1)μS―风荷载体型系数,取μS =0.8 (资料③P27表7.3.1)ωO―基本风压,取ωO =0.7KPa (资料③全国基本风压分布图)μz―风压高度变化系数, (资料③P25表7.2.1)风荷载标准值计算:ωk=βzμSμZωO =1.66×0.8×1.45×0.7=1.35KPa三、主要受力构件的设计及校核1、受力构件的截面参数根据(BH^3-bh^3 )/12 Ix=0.0491(D4点评(0)举报sun.jack发表于2005-8-31 | 只看该作者楼3建筑门窗的抗风压计算一、概况1.1计算依据风荷载标准按GB50009-2001《建筑结构荷载规范》的规定计算任何材料制作的门窗玻璃按JGJ113-2003《建筑玻璃应用技术规范》的规定计算玻璃幕墙按JGJ102-2003《玻璃幕墙工程技术规范》的规定计算建筑外窗抗风强度计算方法1.2说明1.2.1门窗幕墙不是承重结构,是围护结构,应采用围栏结构的计算公式。

什么是围护结构呢?指建筑物及房间的围档物,包括墙壁、挡板等,按是否与室内外空气分割而言,包括内外围护结构,有透明与不透明之分。

1.2.2GB50009中第7.1.2条也是强制性条文。

“对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构设计规范具体规定。

建筑玻璃抗风压计算的比较

建筑玻璃抗风压计算的比较

建筑玻璃抗风压计算的比较摘要:在中华人民共和国行业标准《建筑玻璃应用技术规程》JGJ 113-2009和中华人民共和国行业标准《玻璃幕墙工程技术规范》JGJ 102-2003中,对玻璃抗风压计算的方法均为“考虑几何非线性的有限元法”,但它们的计算结果却不尽相同,文本通过对折减系数来比较计算结果的不同。

关键词:建筑玻璃;玻璃幕墙;抗风压计算;折减系数中华人民共和国行业标准《建筑玻璃应用技术规程》JGJ 113-2009(以下简称“规程”)已于2009年12月1日起实施,中华人民共和国行业标准《玻璃幕墙工程技术规范》JGJ 102-2003(以下简称“规范”)早在2004年1月1日即已实施。

“规程”和“规范”中均有各自的玻璃抗风压计算公式。

1问题的提出尽管“规程”中除中空玻璃以外的建筑玻璃和“规范”中对玻璃承载力极限状态设计均为“考虑几何非线性的有限元法”,但实际工作中却发现它们的计算结果并不相同。

以长宽比为1,厚度为6mm的四边支承矩形单片钢化玻璃在承受4.2kPa的风荷载设计值(风荷载标准值为3kPa)为例,按“规程”规定的方法进行承载力极限状态计算,其结果见下表1:表1按照“规程”计算玻璃承载力极限状态计算表仍以上述玻璃和风荷载为例,按“规范”规定的方法进行最大应力计算,其中玻璃的短边长度取为2027mm。

其结果详见下表2:表2按照“规范”计算玻璃承载力极限状态计算表通过对上述结果可以看出,6mm厚边长为2027mm的四边支承正方形单片钢化玻璃在承受4.2kPa的风荷载设计值时,按“规程”规定的公式计算其最大应力设计值已经达到玻璃强度设计值84MPa;按“规范”规定的公式计算其最大应力设计值只有63.6MPa,结果相差24.3%。

以上讨论的是玻璃在承载力极限状态的情况,那么玻璃在正常使用极限状态的情况又如何呢?仍以上面提到的玻璃及风载来加以讨论,详见下表3、表4:表3按照“规程”计算玻璃正常使用极限状态计算表6mm厚边长为2082mm的四边支承正方形单片钢化玻璃在承受3.0kPa的风荷载标准值时,按“规程”规定的公式计算的玻璃最大挠度为34.7mm;按“规范”规定的公式计算的玻璃最大挠度为84.8mm,两者相差竟高达144%。

玻璃幕墙抗风压 气密 水密 保温 隔声性能和检测要求

玻璃幕墙抗风压 气密 水密 保温 隔声性能和检测要求

玻璃幕墙抗风压气密水密保温隔声性能和检测要求4建筑设计4.1一般规定4.1.1玻璃幕墙应根据建筑物的使用功能、立面设计,经综合技术经济分析,选择其型式、构造和材料。

4.1.2玻璃幕墙应与建筑物整体及周围环境相协调。

4.1.3玻璃幕墙立面的分格宜与室内空间组合相适应,不宜妨碍室内功能和视觉。

在确定玻璃板块尺寸时,应有效提高玻璃原片的利用率,同时应适应钢化、镀膜、夹层等生产设备的加工能力。

4.1.4幕墙中的玻璃板块应便于更换。

4.1.5幕墙开启窗的设置,应满足使用功能和立面效果要求,并应启闭方便,避免设置在梁、柱、隔墙等位置。

开启扇的开启角度不宜大于30°,开启距离不宜大于300mm。

4.1.6玻璃幕墙应便于维护和清洁。

高度超过40m的幕墙工程宜设置清洗设备。

4建筑设计4. 1一般规定4.1.1~4.1.2玻璃幕墙的建筑设计是由建筑设计单位和幕墙设计单位共同完成的。

建筑设计单位的主要任务是确定幕墙立面的线条、色调、构图、玻璃类别、虚实组合和协调幕墙与建筑整体、与环境的关系,并对幕墙的材料和制作提供设计意图和要求。

幕墙的具体设计工作往往由幕墙设计单位(一般是幕墙公司)完成。

玻璃幕墙的选型是建筑设计的重要内容,设计者不仅要考虑立面的新颖、美观,而且要考虑建筑的使用功能、造价、环境、能耗、施工条件等诸因素。

4.1.3玻璃幕墙的分格是立面设计的重要内容,设计者除了考虑立面效果外,必须综合考虑室内空间组合、功能和视觉、玻璃尺度、加工条件等多方面的要求。

4.1.5玻璃幕墙作为建筑的外围护结构,本身要求具有良好的密封性。

如果开启窗设置过多、开启面积过大,既增加了采暖空调的能耗、影响立面整体效果,又增加了雨水渗漏的可能性。

JGJ102-96中,曾规定开启面积不宜大于幕墙面积的15%,即是这方面的考虑。

但是,有些建筑,比如学校、会堂等,既要求采用幕墙装饰,又要求具有良好的通风条件,其开启面积可能超过幕墙面积的15%。

建筑幕墙玻璃计算公式

建筑幕墙玻璃计算公式

风压力=抗风压力× 风力系数抗风压力=0.56 × 风力系数× 风速的2次方比如风力系数是1 玻璃设计抗风压力是1500N/㎡1500=0.56 × 1 × 风速的2次方所以此玻璃最大可以抵抗风速51.7米/秒玻璃抗风压设计4.1风荷载的确定4.1.1 作用在建筑玻璃上的风荷载标准值应按下式计算:wk=βgz μs μz Wο(4.1.1)式中wk——作用在建筑玻璃上的风荷载标准值,kPa;βgz——阵风系数,应按现行国家标准《建筑结构荷载规范》GB 50009的有关规定采用;μs——风荷载体型系数,应按现行国家标准《建筑结构荷载规范》GB 50009采用;μz——风压高度变化系数,应按现行国家标准《建筑结构荷载规范》GB 50009采用;Wο——基本风压(kPa),应按现行国家标准《建筑结构荷载规范》GB 50009采用。

4.1.2 按本规程式(4.1.1)计算的风荷载标准值小于0.75 kPa时,应按0.75 kPa采用,高层建筑玻璃风荷载标准值宜按计算值加大10%采用。

4.2抗风压设计4.2.1 幕墙玻璃抗风压设计应按现行行业标准《玻璃幕墙工程技术规范》JGJ 102执行。

4.2.2 四边支承玻璃的最大许用面积可按本规程附录A选用,也可按下列公式计算:式中 wk ——风荷载标准值,kPa;Amax ——玻璃的最大许用面积,m2t——玻璃的厚度,mm;钢化、半钢化、夹丝、压花玻璃按单片玻璃厚度进行计算;夹层玻璃按总厚度进行计算;中空玻璃按两单片玻璃中薄片厚度进行计算;α——抗风压调整系数,应按表4.2.2的规定采用。

若夹层玻璃工作温度超过70℃,调整系数应为0.6;钢化玻璃和单片防火玻璃的抗风压调整系数应经试验确定;组合玻璃的抗风压调整系数应采用不同类型玻璃抗风压调整系数的乘积。

表4.2.2 玻璃的抗风压调整系数α安全玻璃最大许用面积2010/1/14 14:52:50 来源:中国建筑装饰网【摘要】本文介绍的建筑玻璃抗风压设计计算方法考虑了矩形玻璃长宽比、平板玻璃、半钢化玻璃和钢化玻璃内应力状态以及中空玻璃荷载分配系数等因素,较之目前采用的仅考虑玻璃抗风压调整系数计算玻璃的最大许用面积的方法精确高。

设计抗风压值与台风级别对应表

设计抗风压值与台风级别对应表

台风等级与风压窗户有内外之分,假如是外窗,要计算抗风压性能4 级能抗多大风力,还需要其他参数,只能给公式你自己计算:计算方法:1. 计算围护结构风荷载标准值:Wk = βgz μsl μzw o (建筑结构荷载规范7.1.1-2 )式中:Wk 为风荷载标准值(KN/㎡)Βgz为高度z 处的阵风系数(建筑结构荷载规范表7.5.1 )μsl 为局部风压体型系数(建筑结构荷载规范41 页取1.8 最大值)μz 为风压高度变化系数(建筑结构荷载规范表7.2.1 )wo 基本风压值(建筑结构荷载规范附表D4 中50 年一遇)2. 作用在建筑玻璃上的风荷载设计值:W = yw Wk (建筑玻璃应用技术规程5.1.1 )式中:W 为风荷载设计值(Kpa)(根据其计算结果查抗风压性能分级表,确定抗风压等级)yw 为风荷载分项系数取1.4Wk 为风荷载标准值(根据1 式计算的值)2、台风等级与风压关系?台风等级与风压差的大小有关。

3、台风等级与风压值如何对应?台风,中心风速32.7-41.4 米/秒,12-13 级风力强台风,中心风速41.5-50.9 米/秒,14-15 级风力超强台风,中心风速=〉51 米/秒,16 级以上14 级台风属于强台风,风速为41.5 ~ 46.1 米/秒强台风的破坏力主要由强风、暴雨和风暴潮三个因素引起。

强风台风是一个巨大的能量库,其风速都在17 米/秒以上,甚至在60 米/秒以上。

据测,当风力达到14 级时,垂直于风向平面上每平方米风压可达1700-2000 公斤(也就是说,如果你在车里,车的受风面积在一平方米以上、重量在1.7 吨以下的话,车子会被强风吹跑)。

暴雨台风是非常强的降雨系统。

一次台风登陆,降雨中心一天之中可降下100-300 毫米的大暴雨,甚至可达500-800 毫米。

台风暴雨造成的洪涝灾害,是最具危险性的灾害。

台风暴雨强度大,洪水出现频率高,波及范围广,来势凶猛,破坏性极大。

玻璃幕墙工程技术规范玻璃幕墙的抗风压与抗震设计标准

玻璃幕墙工程技术规范玻璃幕墙的抗风压与抗震设计标准

玻璃幕墙工程技术规范玻璃幕墙的抗风压与抗震设计标准玻璃幕墙工程技术规范 - 玻璃幕墙的抗风压与抗震设计标准一、引言玻璃幕墙作为建筑外立面主要形式之一,具有美观、透明、轻质等特点,成为现代建筑设计的重要组成部分。

为确保玻璃幕墙的安全性和可靠性,抗风压与抗震设计标准是必不可少的规范性文件。

本文旨在阐述玻璃幕墙工程技术规范中有关抗风压与抗震设计的要求与标准。

二、抗风压设计标准1. 抗风压设计的概述玻璃幕墙面对强风荷载时需要具备足够的抗风压能力,以保证其整体结构的稳定性和安全性。

抗风压设计标准是根据建筑所处地区的气候特点、环境条件以及建筑高度等因素确定的。

标准规定了幕墙应具备的最低抗风压能力,以保证在极端气候条件下的使用安全性。

2. 设计参数的确定抗风压设计时需考虑建筑所处的地区气象条件,包括风速、风向、最大风速年数等因素。

此外,建筑的高度、形状、开口面积等也是确定设计参数的重要考虑因素。

3. 幕墙结构的抗风设计根据抗风压设计标准,玻璃幕墙的设计应满足以下要求:(1) 幕墙系统的主要结构和节点应具备足够的刚度和强度;(2) 玻璃及固定件的选择和固定方式应符合标准要求;(3) 幕墙设计应满足对结构整体性、密封性及防水性的要求。

4. 玻璃幕墙的抗风压测试为确保设计的可行性和准确性,玻璃幕墙需要经过抗风压测试。

测试时应按照标准要求,模拟实际风荷载条件,进行系统的结构性能和力学性能测试。

测试结果应符合抗风压设计标准,以保证幕墙的结构稳定性。

三、抗震设计标准1. 抗震设计的概述地震是造成建筑结构破坏的主要自然灾害之一,加强抗震设计对保障玻璃幕墙的安全性至关重要。

抗震设计标准是根据地震带分类、设计地震动参数、建筑结构形式等因素确定的,旨在提高幕墙系统的抗震性能。

2. 设计参数的确定抗震设计需要根据建筑所处地区的地震带和设计地震动参数来确定设计参数。

幕墙结构所需要承受的地震作用应超过设计地震动引起的力和变位。

3. 幕墙结构的抗震设计玻璃幕墙的抗震设计应满足以下要求:(1) 幕墙系统的整体刚度、强度需要经过专业验证,并满足规范要求;(2) 幕墙结构的设计应充分考虑其对整体建筑结构的影响和相互作用;(3) 幕墙结构的连接件和固定件应具备足够的抗震能力。

抗风压计算

抗风压计算

1、抗风压性能设计要求(1)建筑外窗所承受的风荷载应符合现行国家标准《建筑结构载荷规范》(GB50009)规定的维护结构风荷载标准值,且不应小于1.0KN/m2。

风荷载标准值:Wk=K×βgz×μz×μs×Wo式中: Wk - 风荷载标准值(KN/m2);βgz - 高度Z处阵风系数(表1);μs - 风荷载体型系数(取=1.2);μz - 风压高度变化系数(表2);Wo - 基本风压(KN/m2);(查表GB50009附表D.1全国各城市50年一遇风压)。

(2)门窗构件在风荷载标准值作用下产生的最大挠度应满足下式要求:f max≤[f]式中:f max –构件在外力作用下产生的最大挠度;[f]- 构建的允许挠度,门窗为柔性镶嵌单层玻璃[f]=L/120,门窗为柔性镶嵌中空玻璃[f]=L/180。

(3)门窗玻璃的抗风压设计现行行业标准《建筑玻璃应用技术规程》(JGJ113)的规定执行。

表1 阵风系数βgz ( GB50009表7.5.1)A 类指近海海面和海岛、海岸、湖岸及沙漠区;B 类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区:C 类指有密集建筑群的城市市区;D 类指有密集建筑群且房屋较高的城市市区。

表2 风压高度变化系数μz ( GB50009表7.2.1)附表D.4 全国各城市的50年一遇风压和雪压2、建筑门窗工程设计举例大连市某高层住宅楼建筑门窗加工安装工程 工程地点:大连市海边高层住宅楼建筑高度:80m (大连海边地面粗糙度为A 类)建筑外窗规格:平开塑钢窗 65平开系列(5+9+5 中空玻璃) 窗型立面图(图1) 荷载分布图(图2)图1Q 1Q 2Q 3Q 4Q51Q 2Q 3Q 4Q 5图23、 抗风压性能计算(1) 风载荷计算(50年一遇)风荷载标准值:Wk=K ×βgz ×μz ×μs ×Wo=1.1×2.27×1.47×1.0×0.65=2.39 KN/m 2(2)荷载计算 Q=A ×Wk式中:Q-受力构件所承受的总载荷; A- 受力构件所承受的受荷面积; Wk-施加在受荷面积上的单位风载荷。

建筑玻璃幕墙抵御超强台风的能力

建筑玻璃幕墙抵御超强台风的能力

建筑玻璃幕墙抵御超强台风的能力【摘要】建筑玻璃幕墙作为现代建筑中常用的外墙材料,其抵御超强台风的能力备受关注。

本文从玻璃幕墙的设计特点、材料选择、结构设计、安装技术和在超强台风中的表现等方面进行了探讨。

通过分析玻璃幕墙在抗风能力方面的重要性,提出了提高其抗风能力的必要性,并展望了未来建筑玻璃幕墙发展的方向。

建议在设计和施工过程中充分考虑超强台风的影响,加强玻璃幕墙的抗强风性能,以保障建筑物和人员的安全。

这也将促进玻璃幕墙技术的不断创新和发展,为建筑行业的可持续发展做出贡献。

【关键词】建筑玻璃幕墙,超强台风,设计特点,材料选择,结构设计,安装技术,抗风能力,重要性,发展方向1. 引言1.1 建筑玻璃幕墙抵御超强台风的能力建筑玻璃幕墙在抵御超强台风中扮演着至关重要的角色,其设计与材料选择直接影响了幕墙在台风袭击下的耐久性和安全性。

随着气候变化导致台风频率和强度的增加,建筑玻璃幕墙的抗风能力愈发受到关注。

一旦幕墙在台风中受损,不仅会对建筑结构造成严重威胁,还可能导致人员伤亡和财产损失。

如何提升建筑玻璃幕墙的抗风能力,成为建筑设计领域亟待解决的问题。

通过对玻璃幕墙的设计、材料选择、结构设计和安装技术等方面的不断创新和改进,可以有效提高幕墙抵御超强台风的能力,确保建筑物及其内部设施在极端天气条件下的安全性和稳定性。

建筑玻璃幕墙在抵御超强台风中的重要性不言而喻,未来的发展方向将更加注重提高幕墙的抗风能力,以应对日益严峻的气候挑战。

2. 正文2.1 玻璃幕墙的设计特点1. 透明度:玻璃幕墙作为建筑外墙的一种设计形式,其最大的特点就是透明度。

通过大面积的玻璃覆盖,室内外的视觉通透性得到了极大的提高,使得整体空间显得更加开阔明亮。

2. 环保节能:现代玻璃幕墙在设计时通常考虑到环保节能的原则。

通过采用特殊的玻璃材料和隔热设计,可以减少室内外的能量流通,降低空调加热和制冷的消耗,达到节能减排的效果。

3. 美观性:玻璃幕墙的设计可以极大地提高建筑的美观性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑玻璃抗风压设计
一、风荷载计算
1、作用在建筑玻璃上的风荷载设计值应按下式计算:
式中:w——风荷载设计值(kPa);
w k——风荷载标准值(kPa);
γw——风荷载分项系数,取1.4。

2、当风荷载标准值的计算结果小于1.0kPa时,应按1.0kPa取值。

二、抗风压设计
1、用于室外的建筑玻璃应进行抗风压设计,并应同时满足承载力极限状态和正常使用极限状态的要求。

幕墙玻璃抗风压设计应按现行行业标准《玻璃幕墙工程技术规范》JGJ 102执行。

2、除中空玻璃以外的建筑玻璃承载力极限状态设计,可采用考虑几何非线性的有限元法进行计算,且最大应力设计值不应超过短期荷载作用下玻璃强度设计值。

3、矩形建筑玻璃的最大许用跨度也可按下列方法计算:
(1)最大许用跨度可按下式计算:
式中:w——风荷载设计值(kPa);
L——玻璃最大许用跨度(mm);
k1、k2、k3、k4——常数,根据玻璃的长宽比进行取值。

(2)k1、k2、k3、k4的取值应符合下列规定:
1)对于四边支承和两对边支承的单片平板矩形玻璃、单片半钢化矩形玻璃、单片钢化矩形玻璃和普通夹层矩形玻璃,其k1、k2、k3、k4可按本规程附录C取值。

夹层玻璃的厚度应为去除胶片后玻璃净厚度和。

三边支撑可按两对边支撑取值。

2)对于压花玻璃,其k1、k2、k3、k4可按本规程附录C中平板玻璃的k1、k2、k
3、k4取值。

按公式(5.2.3)计算玻璃最大许用跨度时,风荷载设计值应按公式(5.
1.1)的计算值除以玻璃种类系数取值。

3)对于真空玻璃,其k1、k2、k3、k4可按本规程附录C中普通夹层玻璃的k1、k 2、k3、k4取值。

4)对于半钢化夹层玻璃和钢化夹层玻璃,其k1、k2、k3、k4可按本规程附录C 中普通夹层玻璃的k1、k2、k3、k4取值。

按本规程式(5.2.3)计算玻璃最大许用跨度时,风荷载设计值应按本规程式(5.1.1)的计算值除以玻璃种类系数取值。

5)当玻璃的长宽比超过5时,玻璃的k1、k2、k3、k4应按长宽比等于5进行取值。

6)当玻璃的长宽比不包含在本规程附录C中时,可先分别计算玻璃相邻两长宽比条件下的最大许用跨度,再采用线性插值法计算其最大许用跨度。

4、除中空玻璃以外的建筑玻璃正常使用极限状态设计,可采用考虑几何非线性的有限元法计算,且挠度限值[d]应取跨度的1/60。

四边支承和两对边支承矩形玻璃正常使用极限状态也可按下列规定设计:
(1)四边支承和两对边支承矩形玻璃单位厚度跨度限值应按下式计算:
式中:——玻璃单位厚度跨度限值;
w k——风荷载标准值(kPa);
k5、k6、k7、k8——常数,可按本规程附录C取值。

(2)设计玻璃跨度(a)除以玻璃厚度(t),不应大于玻璃单位厚度跨度限值。

5、作用在中空玻璃上的风荷载可按荷载分配系数分配到每片玻璃上,荷载分配系数可按下列公式计算:
(1)直接承受风荷载作用的单片玻璃:
式中:ξ——荷载分配系数;
t1——外片玻璃厚度(mm);
t2——内片玻璃厚度(mm)。

(2)不直接承受风荷载作用的单片玻璃:
式中:ξ2——荷载分配系数;
t1——外片玻璃厚度(mm);
t2——内片玻璃厚度(mm)。

6、中空玻璃的承载力极限状态设计和正常使用极限状态设计,可根据分配到每片玻璃上的风荷载,采用本规程第5.2.2条、第5.2.4条的方法进行计算。

相关文档
最新文档