期末测试题(一)
人教版2024--2025学年度第一学期一年级数学上册期末测试卷及答案(含两套题)

6+4-5= 15-5+6= 8+4-10=
20.在括号填上“>”“<”或“=”。
14( )17 3+6( )8 5+5( )6+4 7+4( )9+2
10( )8+2 6( )7-2 19-5( )19 8+5( )7+6
21.在□填上适当的数。
人教版2024--2025学年度第一学期期末测试卷
一年级 数学
(满分:100分 时间:60分钟)
题号
一
二
三
四
五
六
总分
分数
一、填一填。(第6题6分,第7题4分,其余每空1分,共30分)
1.看图写数。
( ) ( ) ( )
2.16里面有( )个十和( )个一。
3.
上面这些数中,最小的是( ),最大的是( ),从左边数起,第4个数是( )。
△△△△△△
______________________________
18.画□,□的个数与★同样多。
★ ★ ★ ★ ★ ★ ★ ★
________________
五、我会算。(共33分)
19.直接写出得数。
9+4= 6+6= 5+3= 9-3= 7+4=
15-3= 9-0= 7-2= 10+4= 8+2=
10.①. 15 ②. 8 ③. 20 ④. 1
二、小小法官。(对的在前面的括号里打“√”错的打“×”)(每空1分,共5分。)
11.√ 12.× 13.√ 14.√ 15.×
三、填一填6分。)
17.〇〇〇〇〇〇〇〇〇〇〇
18.□□□□□□□□
五、我会算。(共33分)
9.(1)2 (2)△△△
财务软件应用期末测试题及答案(一)

期末测试题(一)一、单项选择题(本大题共20 小题,每小题1 分,共20 分)1. 期初余额试算不平衡,将()。
A.不能填制凭证B.不能删除期初余额C.不能记账D.不能修改期初余额2. 下列对于会计科目的描述,不正确的是()。
A.已录入期初余额的科目不能直接修改B.没有余额的末级科目可以直接删除C.已制过单的科目不能直接修改D.已有余额的科目可以直接删除3. 凭证一旦输入并保存,则()不能修改。
A.凭证编号B.制单日期C.摘要D.金额4. 在报表文件中,编辑报表公式时要处于()状态。
其他状态、B、数据C格式或数据状态均可D格式5. 在财务软件中,银行存款科目必须设置为(),才能进行银行对帐工作。
A银行帐B多栏帐C、日记帐D、明细帐6. 科目编码中的()科目编码根据企业自身需要来确定A、二级、B、明细C一级、D、各级7. 在存货管理子系统中,不能根据()生成会计凭证。
A、销售出库单B、存货调拨单C、采购入库单D、材料出库单8. 固定资产卡片项目定义完毕,系统投入使用后,对卡片项目一般()。
A、可以删除B、可以修改C、可以增删D、不可以修改9. 建账的内容一般不包括()。
A.操作人员B.编码规则C.核算方法D.单位基本信息10. 转帐凭证模板中,各科目的数据主要是从()中提取的。
A、原始凭证B记帐凭证C、报表D、帐簿11. 下例哪个不属于项目设置的内容()。
A、定义项目目录B定义项目分类C、凭证类别设置D指定核算科目12. 余额和累计发生额的录入要从()开始。
A.明细科目B.最末级科目C.一级科目D.二级科目13. 如果有未()的当月凭证,系统将不能结账。
A.审核B.查询C.输入D.打印14. 只能由()取消某张凭证的审核签字。
A.系统管理员B.凭证的原审核人C.制单人D.账套主管15. 下列()不属于系统控制参数的设置。
A资金赤字控制B制单序时控制C明细权限设置D会计科目设置16. ()余额在计算机内用负数表示。
苏科版数学七年级上学期期末测试题 (1) (1)含答案

苏科版数学七年级上学期期末测试题一.选择题(共8小题)1.﹣3的倒数是()A.3 B.﹣3 C.D.2.“比a的3倍大5的数”用代数式表示为()A.3a+5 B.3(a+5)C.3a﹣5 D.3(a﹣5)3.下列计算结果正确的是()A.3x2﹣2x2=1 B.3x2+2x2=5x4C.3x2y﹣3yx2=0 D.4x+y=4xy4.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1 B.3x﹣x﹣1=1 C.3x﹣x﹣1=6 D.3x﹣(x﹣1)=6 5.如图是一个几何体的三视图,该几何体是()A.球B.圆锥C.圆柱D.棱柱6.下列说法正确的个数是()①射线MN与射线NM是同一条射线;②两点确定一条直线;③两点之间直线最短;④若2AB=AC,则点B是AC的中点A.1个B.2个C.3个D.4个7.如图射线OA的方向是北偏东30°,在同一平面内∠AOB=70°,则射线OB的方向是()A.北偏东40°B.北偏西40°C.南偏东80°D.B、C都有可能8.找出以如图形变化的规律,则第2020个图形中黑色正方形的数量是(A.3030 B.3029 C.2020 D.2019二.填空题(共8小题)9.比较大小:﹣5﹣4.10.已知地球上海洋面积约为316000000km2,316000000这个数用科学记数法可表示为.11.若﹣5x m+3y与2x4y n+3是同类项,则m+n=.12.当a=时,方程2x+a=x+10的解为x=4.13.如图是一个数值运算的程序,若输出y的值为3.则输入的值为.14.如图,若D是AB的中点,E是BC的中点,若AC=8,BC=5,则AD=.15.如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC=∠AOD,则∠AOD =°.16.甲、乙两人从长度为400m的环形运动场同一起点同向出发,甲跑步速度为200m/min,乙步行,当甲第三次超越乙时,乙正好走完第二圈,再过min,甲、乙之间相距100m.(在甲第四次超越乙前)三.解答题17.计算:(1)﹣(﹣3)+7﹣|﹣8|(2)(﹣1)4﹣8÷(﹣4)×(﹣6+4)18.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.19.解下列方程:(1)2x﹣3=3x+5(2)20.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?21.如图,直线AB、CD相交于点O,OE平分∠AOC,OE⊥OF,∠AOE=32°.(1)求∠DOB的度数;(2)OF是∠AOD的角平分线吗?为什么?22.(1)由大小相同的小立方块搭成的几何体如图1,请在图2的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一个几何体,使得它的俯视图和左视图与你在方格中所画的一致,则这样的几何体最少要个小立方块,最多要个小立方块.23.如图,所有小正方形的边长都为1个单位,A、B、C均在格点上.(1)过点C画线段AB的平行线CD;(2)过点A画线段BC的垂线,垂足为E;(3)过点A画线段AB的垂线,交线段CB的延长线于点F;(4)线段AE的长度是点到直线的距离;(5)线段AE、BF、AF的大小关系是.(用“<”连接)24.如图是某涌泉蜜桔长方体包装盒的展开图.具体数据如图所示,且长方体盒子的长是宽的2倍.(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是与,与,与;(2)若设长方体的宽为xcm,则长方体的长为cm,高为cm;(用含x的式子表示)(3)求这种长方体包装盒的体积.25.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?26.如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t的值;如果不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.﹣3的倒数是()A.3 B.﹣3 C.D.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:D.2.“比a的3倍大5的数”用代数式表示为()A.3a+5 B.3(a+5)C.3a﹣5 D.3(a﹣5)【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【解答】解:比a的3倍大5的数”用代数式表示为:3a+5,故选:A.3.下列计算结果正确的是()A.3x2﹣2x2=1 B.3x2+2x2=5x4C.3x2y﹣3yx2=0 D.4x+y=4xy【分析】根据同类项的定义和合并同类型的法则(合并同类项,系数相加字母和字母的指数不变)进行判断.【解答】解:A、3x2﹣2x2=x2,故本选项错误;B、3x2+2x2=5x2,故本选项错误;C、3x2y﹣3yx2=3x2y﹣3x2y=0,故本选项正确;D、4x与y不是同类项,不能合并.故本选项错误;故选:C.4.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1 B.3x﹣x﹣1=1 C.3x﹣x﹣1=6 D.3x﹣(x﹣1)=6 【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线起到括号的作用,以及去分母时不能漏乘没有分母的项.【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选:D.5.如图是一个几何体的三视图,该几何体是()A.球B.圆锥C.圆柱D.棱柱【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选:C.6.下列说法正确的个数是()①射线MN与射线NM是同一条射线;②两点确定一条直线;③两点之间直线最短;④若2AB=AC,则点B是AC的中点A.1个B.2个C.3个D.4个【分析】根据射线的表示法以及两点之间的距离的定义即可作出判断.【解答】解:①射线MN的端点是M,射线NM的端点是N,故不是同一条射线,故选项错误;②两点确定一条直线;正确;③两点之间线段最短,而不是两点之间直线最短,故选项错误④若2AB=AC,则点B是AC的中点,错误,因为点A,B,C不一定在同一条直线上,故选项错误;.故选:A.7.如图射线OA的方向是北偏东30°,在同一平面内∠AOB=70°,则射线OB的方向是()A.北偏东40°B.北偏西40°C.南偏东80°D.B、C都有可能【分析】根据OA的方向是北偏东30°,在同一平面内∠AOB=70°即可得到结论.【解答】解:如图,∵OA的方向是北偏东30°,在同一平面内∠AOB=70°,∴射线OB的方向是北偏西40°或南偏东80°,故选:D.8.找出以如图形变化的规律,则第2020个图形中黑色正方形的数量是(A.3030 B.3029 C.2020 D.2019【分析】仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.【解答】解:∵当n为偶数时第n个图形中黑色正方形的数量为n+n个;当n为奇数时第n个图形中黑色正方形的数量为n+个,∴当n=2020时,黑色正方形的个数为2020+1010=3030个.故选:A.二.填空题(共8小题)9.比较大小:﹣5<﹣4.【分析】先求出两数的绝对值,再根据绝对值大的反而小比较即可.【解答】解:∵|﹣5|=5,|﹣4|=4,∴﹣5<﹣4,故答案为:<.10.已知地球上海洋面积约为316000000km2,316000000这个数用科学记数法可表示为 3.16×108.【分析】根据科学记数法定义得到316000000这个数用科学记数法可表示3.16×108.【解答】解:316000000=3.16×108.故答案为3.16×108.11.若﹣5x m+3y与2x4y n+3是同类项,则m+n=﹣1.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出m,n的值,再代入代数式计算即可.【解答】解:∵﹣5x m+3y与2x4y n+3是同类项,∴m+3=4,n+3=1,解得m=1,n=﹣2,则m+n=1﹣2=﹣1.故答案为:﹣112.当a=6时,方程2x+a=x+10的解为x=4.【分析】直接把x的值代入求出a的值即可.【解答】解:∵2x+a=x+10的解为x=4,∴8+a=4+10,则a=6.故答案为:6.13.如图是一个数值运算的程序,若输出y的值为3.则输入的值为±7.【分析】把输出y的值代入程序中计算即可确定出输入的值.【解答】解:输出y的值3代入程序中得:(|x|﹣1)÷2=3,整理得:|x|=7,解得:x=±7,则输入的值为±7.故答案为:±7.14.如图,若D是AB的中点,E是BC的中点,若AC=8,BC=5,则AD=.【分析】根据中点的性质可知AD=DB,BE=EC,结合AB+BC=2AD+2EC=AC,即可求出AD的长度.【解答】解:∵D是AB中点,E是BC中点,∴AD=DB,BE=EC,∴AB=AC﹣BC=3,∴AD=1.5.故答案为:1.5.15.如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC=∠AOD,则∠AOD =144°.【分析】根据互余的意义和平角的定义,可得∠AOE=∠BOC,再由平角,列方程解答即可.【解答】解:延长DO到E,∵∠AOE+∠AOC=90°=∠AOC+∠BOC,∴∠AOE=∠BOC,∵∠BOC=∠AOD,∴∠AOE=∠AOD,∵∠AOE+∠AOD=180°,∴∠AOD+∠AOD=180°,∴∠AOD=144°,故答案为:144.16.甲、乙两人从长度为400m的环形运动场同一起点同向出发,甲跑步速度为200m/min,乙步行,当甲第三次超越乙时,乙正好走完第二圈,再过min,甲、乙之间相距100m.(在甲第四次超越乙前)【分析】根据速度=路程÷时间,即可求出乙步行的速度,设再经过xmin,甲、乙之间相距100m,根据甲跑步的路程﹣乙步行的路程=100,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:乙步行的速度为400×2÷[400×(2+3)÷200]=80(m/min).设再经过xmin,甲、乙之间相距100m,依题意,得:200x﹣80x=100,解得:x=.故答案为:.三.解答题17.计算:(1)﹣(﹣3)+7﹣|﹣8|(2)(﹣1)4﹣8÷(﹣4)×(﹣6+4)【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:(1)﹣(﹣3)+7﹣|﹣8|=3+7﹣8=2;(2)(﹣1)4﹣8÷(﹣4)×(﹣6+4)=1﹣(﹣2)×(﹣2)=1﹣4=﹣3.18.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.19.解下列方程:(1)2x﹣3=3x+5(2)【分析】(1)直接移项合并同类项进而解方程得出答案;(2)直接去分母进而移项合并同类项进而解方程得出答案.【解答】解:(1)2x﹣3=3x+5则2x﹣3x=5+3,合并同类项得:﹣x=8,解得:x=﹣8;(2)去分母得:3(4x﹣3)﹣15=5(2x﹣2),去括号得:12x﹣9﹣15=10x﹣10,移项得:12x﹣10x=24﹣10,合并同类项得:2x=14,解得:x=7.20.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?【分析】找准等量关系:人数是定值,列一元一次方程二元一次方程组或可解此题.【解答】解:设有x辆车,则有(2x+9)人,依题意得:3(x﹣2)=2x+9.解得,x=15.∴2x+9=2×15+9=39(人)答:有39人,15辆车.21.如图,直线AB、CD相交于点O,OE平分∠AOC,OE⊥OF,∠AOE=32°.(1)求∠DOB的度数;(2)OF是∠AOD的角平分线吗?为什么?【分析】(1)根据角平分线的定义得到∠AOC=2∠AOE=64°,根据对顶角的性质即可得到结论;(2)由垂直的定义得到∠EOF=90°,求得∠AOF=∠EOF﹣∠AOE=58°,推出∠AOD =2∠AOF于是得到结论.【解答】解:(1)∵OE平分∠AOC,∴∠AOC=2∠AOE=64°,∵∠DOB与∠AOC是对顶角,∴∠DOB=∠AOC=64°;(2)∵OE⊥OF,∴∠EOF=90°,∴∠AOF=∠EOF﹣∠AOE=58°,∵∠AOD=180°﹣∠AOC=116°,∴∠AOD=2∠AOF,∴OF是∠AOD的角平分线.22.(1)由大小相同的小立方块搭成的几何体如图1,请在图2的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一个几何体,使得它的俯视图和左视图与你在方格中所画的一致,则这样的几何体最少要9个小立方块,最多要14个小立方块.【分析】(1)从上面看得到从左往右3列正方形的个数依次为3,2,1,依此画出图形即可;从左面看得到从左往右3列正方形的个数依次为3,2,1,;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少个数和最多个数相加即可.【解答】解:(1)如图所示:(2)由俯视图易得最底层有6个小立方块,第二层最少有2个小立方块,第三层最少有1个小立方块,所以最少有6+2+1=9个小立方块;最底层有6个小立方块,第二层最多有5个小立方块,第三层最多有3个小立方块,所以最多有6+5+3=14个小立方块.故答案为:9;14.23.如图,所有小正方形的边长都为1个单位,A、B、C均在格点上.(1)过点C画线段AB的平行线CD;(2)过点A画线段BC的垂线,垂足为E;(3)过点A画线段AB的垂线,交线段CB的延长线于点F;(4)线段AE的长度是点A到直线BC的距离;(5)线段AE、BF、AF的大小关系是AE<AF<BF.(用“<”连接)【分析】(1)(2)(3)利用网格的特点直接作出平行线及垂线即可;(4)利用垂线段的性质直接回答即可;(5)利用垂线段最短比较两条线段的大小即可.【解答】解:(1)直线CD即为所求;(2)直线AE即为所求;(3)直线AF即为所求;(4)线段AE的长度是点A到直线BC的距离;(5)∵AE⊥BE,∴AE<AF,∵AF⊥AB,∴BF>AF,∴AE<AF<BF.故答案为:A,BC,AE<AF<BF.24.如图是某涌泉蜜桔长方体包装盒的展开图.具体数据如图所示,且长方体盒子的长是宽的2倍.(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是①与⑤,②与④,③与⑥;(2)若设长方体的宽为xcm,则长方体的长为2x cm,高为cm;(用含x 的式子表示)(3)求这种长方体包装盒的体积.【考点】32:列代数式;I8:专题:正方体相对两个面上的文字.【专题】551:线段、角、相交线与平行线.【分析】(1)对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答;(2)根据题意列代数式即可;(3)根据题意列方程即可得到结论.【解答】解:(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是①与⑤,②与④,③与⑥;故答案为:①,⑤,②,④,③,⑥;(2)设长方体的宽为xcm,则长方体的长为2xcm,高为cm,故答案为:2x,;(3)∵长是宽的2倍,∴(96﹣x﹣)×=2x,解得:x=15,∴这种长方体包装盒的体积=15×34×20=10200cm3,答:这种长方体包装盒的体积是10200cm3.25.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?【考点】8A:一元一次方程的应用.【专题】124:销售问题;69:应用意识.【分析】(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元.根据总进价3600元列出方程即可解决问题.(2)求出甲、乙两种商品的利润和即可.(3)根据第二次的利润1600+260=1860元,列出方程即可.【解答】解:(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得x=15,x+5=15+5=20.答:该超市第一次购进甲种商品每件15元,乙种商品每件20元.(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润.(3)由题意80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得a=5.答:a的值是5.26.如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t的值;如果不存在,请说明理由.【考点】8A:一元一次方程的应用;IK:角的计算.【专题】521:一次方程(组)及应用;551:线段、角、相交线与平行线;69:应用意识.【分析】(1)利用∠AOB=180°﹣∠AOM﹣∠BON,即可求出结论;(2)利用∠AOM+∠BON=180°+∠AOB,即可得出关于t的一元一次方程,解之即可得出结论;(3)分0≤t≤18及18≤t≤60两种情况考虑,当0≤t≤18时,利用∠AOB=180°﹣∠AOM﹣∠BON=90°,即可得出关于t的一元一次方程,解之即可得出结论;当18≤t ≤60时,利用∠AOM+∠BON=180°+∠AOB(∠AOB=90°或270°),即可得出关于t的一元一次方程,解之即可得出结论.综上,此题得解.【解答】解:(1)当t=3时,∠AOB=180°﹣4°×3﹣6°×3=150°.(2)依题意,得:4t+6t=180+72,解得:t=.答:当∠AOB第二次达到72°时,t的值为.(3)当0≤t≤18时,180﹣4t﹣6t=90,解得:t=9;当18≤t≤60时,4t+6t=180+90或4t+6t=180+270,解得:t=27或t=45.答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9、27或45.。
四年级英语下册期末测试题1(附听力及答案)

四年级英语下册期末测试题1(答题时间40分钟,满分100分)听力部分(满分60分)一、听一听,圈一圈。
根据录音内容,将下面每组中你认为最符合录音内容的图片的字母画一圆圈圈住。
(每小题1分,共10分).( )6. A.sweater B.wear C. weather( ) 7. A. sheep B. jeep C. cheap( ) 8. A. clock B. cloudy C. cold( ) 9. A. It is a clock. B . It's cloudy. C. It is ten o'clock.( )10. A. How many watermelons do you buy?B. How much are the watermelons?C. How much is the watermelon?二、听一听,辨一辩:根据录音内容,判断下面的图片是否与相应的录音内容相符的在该图片的括号内打"√",不相符的打"×"。
(共10分)三、听录音,根据录音内容补全句子,每空一词。
(每空1分,共10分)1. Look at my new _________. It's __________.2. The ________ is white and the __________ is brown.3. It's __________ o'clock. It's time for ___________.4. We have __________ hens and __________ lambs on the farm.5. There are two new _____________ and a new ___________ in the classroom.四、听录音,根据录音内容给下列图片排序。
2022九年级下册数学 期 末 测试题(一)

C. ①②③D. ①③
9.在湖边高出水面50 m的山顶A处看见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°,则飞艇底部P距离湖面的高度为(参考等式: = )()
A.(25 +75)米
B.(50 +50)米
C.(75 +75)米
D.(50 +100)米
【解析】
【分析】△AOC的面积可以分为△AOM和△AMC的面积之和.
【详解】设 ,即
,
,
=6,
∴ ,
故答案为:4.
12.如图,直线 与 相切于点 , 且 ,则 ______.
【答案】
【解析】
【详解】解∶连接 、 , 的反向延长线交 与 ,如图,
∵直线 与 相切于点 ,
∴ ,
∵ ,
∴ ,
∴ ,
∴ ,
而 ,
A.(25 +75)米B.(50 +50)米C.(75 +75)米D.(50 +100)米
【答案】D
【解析】
【详解】分析:设AE=x,则PE=AE=x,根据山顶A处高出水面50m,得出OE=50,OP′=x+50,根据∠P′AE=60°,得出P′E= x,从而列出方程,求出x的值即可.
详解:设AE=xm,在Rt△AEP中∠PAE=45°,则∠P=45°,
A. B. C. D.
【答案】D
【解析】
【分析】过A作AB⊥x轴于点B,在Rt△AOB中,利用勾股定理求出OA,再根据正弦的定义即可求解.
【详解】如图,过A作AB⊥x轴于点B,
∵A的坐标为(4,3)
∴OB=4,AB=3,
在Rt△AOB中,
∴
故选:D.
2023-2024学年北京市九年级数学第一学期期末达标测试试题(含解析)

2023-2024学年北京市九年级数学第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,已知抛物线和直线.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个2.教育局组织学生篮球赛,有x 支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )A.B .C .D .3.下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上。
B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。
C .某彩票中奖率为,说明买100张彩票,有36张中奖。
D .打开电视,中央一套正在播放新闻联播。
4.如图是我们学过的反比例函数图象,它的表达式可能是( )21y x 4x =-+2y 2x =()11452x x -=()11452x x +=()145x x -=()145x x +=36%A .B .C .D .5.下列图案中,是中心对称图形的是( )A .B .C .D .6.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为()A .1 cmB .7cmC .3 cm 或4 cmD .1cm 或7cm 7.已知关于的一元二次方程有两个相等的实数根,则锐角等于( )A .B .C .D .8.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A.B .C .D .9.下列关系式中,y 是x 的反比例函数的是( )A .y =4xB .=3C .y =﹣D .y =x 2﹣110.如图,⊙O 的直径长10,弦AB=8,M 是弦AB 上的动点,则OM 的长的取值范围是( )A .3≤OM≤5B .4≤OM≤5C .3<OM <5D .4<OM <511.如图所示的工件的主视图是( )22y x =4y x =3y x =-3y x=-x 2cos 0x α+=α15 30 45 601325122542512y x 1xA .B .C .D .12.若△ABC ~△A ′B 'C ′,相似比为1:2,则△ABC 与△A 'B ′C '的周长的比为( )A .2:1B .1:2C .4:1D .1:4二、填空题(每题4分,共24分)13.若弧长为4π的扇形的圆心角为直角,则该扇形的半径为 .14.因式分解:_______;15.如图,在平面直角坐标系中,已知经过点,且点O 为坐标原点,点C 在y 轴上,点E 在x 轴上,A (-3,2),则__________.16.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________.17.已知关于的方程的一个根为-2,则方程另一个根为__________.18.在中,,,在外有一点,且,则的度数是__________.三、解答题(共78分)19.(8分)如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.20.(8分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.()()2a b b a ---=A E B O C 、、、tan OBC ∠=x 230x mx m ++=ABC ∆AC BC =90C ∠=︒ABC ∆M MA MB ⊥AMC ∠AB B BC AB 25AB(1)如图①,在Rt △ABC 中,∠C =90°,AC >BC ,若Rt △ABC 是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC :AC :AB 的值.(2)如图②,△ABC 是⊙O 的内接三角形,AB >AC ,∠BAC =45°,S △ABC =,将△ABC 绕点A 逆时针旋转45°得到△ADE ,点B 的对应点为D ,AD 与⊙O 交于点M ,若△ACD 是“匀称三角形”,求CD 的长,并判断CM 是否为△ACD的“匀称中线”.21.(8分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A ,B ,C ,D 四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a 的值为 ;(2)求C 等级对应扇形的圆心角的度数;(3)获得A 等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.22.(10分)如图,在中,,,,将线段绕点按逆时针方向旋转到线段.由沿方向平移得到,且直线过点.ABC 90C ∠=︒10AB =8AC =AB A 90︒AD EFG ABC CB EF D(1)求的大小;(2)求的长.23.(10分)如图,把Rt △ABC 绕点A .逆时针旋转40°,得到在Rt △ABʹCʹ,点Cʹ恰好落在边AB 上,连接BBʹ,求∠BBʹCʹ的度数.24.(10分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+ 1.(1)若从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7, 11, 19, 23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,25.(12分)(1)计算: (2)化简:26.已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式.参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:∵当y 1=y 2时,即时,解得:x=0或x=2,1∠AE 201224((18--+-⨯--2291(1)693x x x x -⋅+-++2x 4x 2x -+=∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -直线的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线的最大值为4,∴M 大于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,,解得.∴使得M=2的x 值是1或.∴④错误.综上所述,正确的有②③2个.故选B .2、A 【分析】先列出x 支篮球队,每两队之间都比赛一场,共可以比赛x (x-1)场,再根据题意列出方程为.【详解】解:∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为,故选:A .本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.3、B【解析】A 、掷一枚硬币的试验中,着地时反面向上的概率为,则正面向上的概率也为,不一定就反面朝上,故此选项错误;B 、从1,2,3,4,5中随机取一个数,因为奇数多,所以取得奇数的可能性较大,故此选项正确;C 、某彩票中奖率为36%,说明买100张彩票,有36张中奖,不一定,概率是针对数据非常多时,趋近的一个数并不能说买100张该种彩票就一定能中36张奖,故此选项错误;D 、中央一套电视节目有很多,打开电视有可能正在播放中央新闻也有可能播放其它节目,故本选项错误.故选B .4、B【分析】根据反比例函数图象可知,经过第一三象限,,从而得出答案.【详解】解:A 、为二次函数表达式,故A 选项错误;B 、为反比例函数表达式,且,经过第一三象限,符合图象,故B 选项正确;21y x 4x =-+2y 2x =()221y x 4x x 24=-+=--+2x 4x 2-+=12x 2x 2=+=-2+()11452x x -=()11452x x -=12120k >22y x =4y x=0k >C 、为反比例函数表达式,且,经过第二四象限,不符合图象,故C 选项错误;D 、为一次函数表达式,故D 选项错误.故答案为B .本题考查了反比例函数的图象的识别,掌握反比例函数的图象与性质是解题的关键.5、C【解析】根据中心对称图形的概念即可得出答案.【详解】A 选项中,不是中心对称图形,故该选项错误;B 选项中,是轴对称图形,不是中心对称图形,故该选项错误;C 选项中,是中心对称图形,故该选项正确;D 选项中,不是中心对称图形,故该选项错误.故选C本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.6、D【分析】分AB 、CD 在圆心的同侧和异侧两种情况求得AB 与CD 的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB 和CD 在圆心同侧时,如图①,过点O 作OF ⊥CD ,垂足为F ,交AB 于点E ,连接OA ,OC ,∵AB ∥CD ,∴OE ⊥AB ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF-OE=1cm ;当弦AB 和CD 在圆心异侧时,如图②,过点O 作OE ⊥AB 于点E ,反向延长OE 交AD 于点F ,连接OA ,OC ,∵AB ∥CD,3y x=-0k <3y x =-∴OF ⊥CD ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF+OE=7cm .故选D .本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.7、D【分析】根据一元二次方程根的判别式等于零,求出的值,进而即可得到答案.【详解】∵关于的一元二次方程有两个相等的实数根,∴∆=,解得:,∴=.故选D .本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键.8、A【分析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,即可得出答案.【详解】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为;故选A .cos αx 2cos 0x α-+=2(41cos 0α-⨯⨯=1cos 2α=α60 1325本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.9、C【分析】根据反比例函数的定义逐一判断即可.【详解】A 、y =4x 是正比例函数;B 、=3,可以化为y =3x ,是正比例函数;C 、y =﹣是反比例函数;D 、y =x 2﹣1是二次函数;故选:C .本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.10、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A .本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.11、B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B .12、B【分析】根据相似三角形的周长比等于相似比即可得出结论.【详解】解:∵∽,相似比为1:1,∴与的周长的比为1:1.故选:B .此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.二、填空题(每题4分,共24分)13、1.【分析】根据扇形的弧长公式计算即可,【详解】∵扇形的圆心角为90°,弧长为4π,∴,即4π=,则扇形的半径r=1.y x1x O OM AB ⊥OM 3OM =OM OA OM 5OM =OM 35OM ≤≤ABC A B C '''V ABC A B C '''V r l 180n π=90•180r π故答案为1考点:弧长的计算.14、(a-b )(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a -b )2+(a -b )=(a -b )(a -b +1),故答案为:(a -b )(a -b +1)此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15、【解析】分别过A 点作x 轴和y 轴的垂线,连接EC ,由∠COE =90°,根据圆周角定理可得:EC 是⊙A 的直径、,由A 点坐标及垂径定理可求出OE 和OC ,解直角三角形即可求得.【详解】解:如图,过A 作AM ⊥x 轴于M ,AN ⊥y 轴于N ,连接EC ,∵∠COE =90°,∴EC 是⊙A 的直径,∵A (−3,2),∴OM =3,ON =2,∵AM ⊥x 轴,AN ⊥y 轴,∴M 为OE 中点,N 为OC 中点,∴OE =2OM =6,OC =2ON =4,∴=.本题主要考查了同弧所对的圆周角相等、垂径定理和锐角三角函数定义,熟练掌握定理是解本题的关键.16、3或1.2【分析】由△PBE ∽△DBC ,可得∠PBE=∠DBC ,继而可确定点P 在BD 上,然后再根据△APD 是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,BC=8,∴BD=10,23∠=∠OBC CEO tan OBC ∠tan OBC ∠42tan 63∠===OC CEO OE∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为1.2或3.本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.17、1【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:1.本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.24120x x --=122,6x x =-=18、、【分析】由,可知A 、C 、B 、M 四点共圆,AB 为圆的直径,则是弦AC 所对的圆周角,此时需要对M 点的位置进行分类讨论,点M 分别在直线AC 的两侧时,根据同弧所对的圆周角相等和圆内接四边形对角互补可得两种结果.【详解】解:∵在中,,,∴∠BAC =∠ACB =45°,∵点在外,且,即∠AMB =90°∵∴A 、C 、B 、M 四点共圆,①如图,当点M 在直线AC 的左侧时,,∴;②如图,当点M 在直线AC 的右侧时,∵,∴,故答案为:135°或45°.本题考查了圆内接四边形对角互补和同弧所对的角相等,但解题的关键是要先根据题意判断出A 、C 、B 、M 四点共圆.三、解答题(共78分)19、米【分析】根据坡度的定义可得,求出AB ,再根据勾股定理求135︒45︒90C ∠=︒MA MB ⊥AMC ∠ABC ∆AC BC =90C ∠=︒M ABC ∆MA MB ⊥180∠+∠=︒AMB C 180∠+∠=︒AMC ABC 180********∠=︒-∠=︒-︒=︒AMC ABC AC AC =45∠=∠=︒AMC ABC 25BC AC =AB =【详解】∵坡顶离地面的高度为20米,坡面的坡度为即, ∴米由勾股定理得答:坡面的长度为米.考核知识点:解直角三角形应用.把问题转化为解直角三角形是关键.20、(1)① “匀称中线”是BE ,它是AC 边上的中线,②BC :AC :AB;(2)CDa ,CM 不是△ACD 的“匀称中线”.理由见解析.【分析】(1)①先作出Rt △ABC 的三条中线AD 、BE 、CF ,然后利用匀称中线的定义分别验证即可得出答案;②设AC =2a ,利用勾股定理分别把BC,AB 的长度求出来即可得出答案.(2)由②知:AC :AD :CD ,设AC ,则AD =2a ,CD ,过点C 作CH ⊥AB ,垂足为H,利用的面积建立一个关于a 的方程,解方程即可求出CD 的长度;假设CM 是△ACD 的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【详解】(1)①如图①,作Rt△ABC 的三条中线AD、BE 、CF ,∵∠ACB =90°,∴CF =,即CF 不是“匀称中线”.又在Rt △ACD 中,AD >AC >BC ,即AD 不是“匀称中线”.∴“匀称中线”是BE ,它是AC 边上的中线,②设AC =2a ,则CE =a ,BE =2a ,在Rt △BCE 中∠BCE =90°,∴BC ,在Rt △ABC 中,AB ,∴BC :AC :AB (2)由旋转可知,∠DAE =∠BAC =45°.AD =AB >AC ,B BC AB 2525BC AC =2025AC =50AC =AB ==AB :2:7:2ABC 12AB AB ≠==:2:2a =∴∠DAC =∠DAE +∠BAC =90°,AD >AC ,∵Rt △ACD 是“匀称三角形”.由②知:AC :AD :CD设AC,则AD =2a ,CD ,如图②,过点C 作CH⊥AB ,垂足为H ,则∠AHC =90°,∵∠BAC =45°,∴ ∵解得a =2,a =﹣2(舍去),∴判断:CM 不是△ACD 的“匀称中线”.理由:假设CM 是△ACD 的“匀称中线”.则CM =AD =2AM =4,AM =2,∴又在Rt △CBH 中,∠CHB =90°,CH ,BH =4,∴即这与∠AMC =∠B相矛盾,∴假设不成立,2CH AH ===11222ABC S AB CH a ==⨯= CD ==tan AC AMC AM ∠===tan tan CH B AMC BH ===≠∠B AMC∠≠∠∴CM 不是△ACD 的“匀称中线”.本题主要为材料理解题,掌握匀称三角形和匀称中线的意义是解题的关键.21、(1)8 ;(2);(3)【分析】(1)根据D 等级的人数除以其百分比得到班级总人数,再乘以B 等级的百分比即可得a 的值;(2)用C 等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数;(3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可【详解】解:(1)班级总人数为 人,B 等级的人数为 人,故a 的值为8;(2)∴C 等级对应扇形的圆心角的度数为.(3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.∴P (一男一女) 答:恰好选中一男一女参加比赛的概率为.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 的结果数目m ,然后利用概率公式计算事件A的概率为.也考查了统计图.22、(1);(2)【分析】(1)根据旋转的性质可求得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)根据平移的性质及同角的余角相等证得∠DAE=∠CAB ,进而证得△ADE ∽△ACB ,利用相似的性质求出AE 即可.【详解】解:(1)∵线段AD 是由线段AB 绕点A 按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB ,∴∠ABD=∠ADB=45°,∵△EFG 是由△ABC 沿CB 方向平移得到,∴AB ∥EF ,∴∠1=∠ABD=45°;(2)由平移的性质得,AE ∥CG ,∴∠EAC=180°-∠C=90°,144︒121230%40÷=4020%8⨯=16360144 40⨯︒=︒ 144︒61122==12m n45︒12.5AE =∴∠EAB+∠BAC=90°,由(1)知∠DAB=90°,∴∠DAE+∠EAB=90°,∴∠DAE=∠CAB ,又∵∠ADE=∠ADB+∠1=90°,∠ACB=90°,∴∠ADE=∠ACB ,∴△ADE ∽△ACB ,∴,∵AC=8,AB=AD=10,∴AE=12.5.本题为平移的性质,旋转的性质,相似三角形的判定与性质的综合考查,熟练掌握基础的性质与判定是解题的关键.23、20°【分析】利用旋转的性质及等腰三角形的性质可得∠ABBʹ,再根据直角三角形两锐角互余可得解.【详解】解:由旋转可知:∠BABʹ=40°,AB=ABʹ.∴∠ABBʹ=∠ABʹB .∴∠ABBʹ==70°.∴∠BBʹCʹ=90°-70°=20°.本题考查了三角形的旋转,灵活利用旋转对应边相等,对应角相等且等于旋转角的性质是解题的关键.24、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解: (1) 因为7, 11, 19, 23共有4个数,其中素数7只有1个,所以从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是,故答案为. (2)由题意画树状图如下:AD AE AC AB=00180402-14231414由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.25、(1)1;(2)【分析】(1)根据实数的混合运算法则计算即可;(2)根据分式的运算法则计算即可.【详解】解:(1)原式=2+ =1; (2).本题考查了实数的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.26、y =1(x ﹣1)1+1.【分析】根据题意设抛物线解析式为y =a (x ﹣1)1+1,代入(3,10)求解即可.【详解】解:根据题意设抛物线解析式为y =a (x ﹣1)1+1,把(3,10)代入得a (3﹣1)1+1=10,解得a =1,所以抛物线解析式为y =1(x ﹣1)1+1.本题考查了抛物线的问题,掌握抛物线的性质以及解析法、待定系数法是解题的关键.82123P ==43x x +-201222()(18--++⨯--11--1442291(1)693x x x x -⋅+-++()()()2334•33x x x x x +-+=+-43x x +=-。
人教部编版五年级语文下册期末测试题含答案(一)

人教部编版五年级语文下册期末测试题(一)(根据部编版语文五年级下册教材编写)(时间:90分钟分值:100分)姓名:班级:等级:一、积累运用。
(45分)1.读拼音,写汉字。
(12分)línɡ dānɡ jiānɡ yí liáo zhài豆憾阔村náo sāi zhī zhěn biān miáo麻所炮小2. 猜字谜。
(5分)①池中没有水,地里没有土。
( ) ②林字多一半,别当森字猜。
( )③宋字去盖,勿做木猜。
( ) ④一点一横长,两点一横长。
( )⑤千字头,木字腰,太阳出来从下照。
( )3. 选词填空。
显然明显(1)天空乌云密布,( )要下雨了。
(2)事情很( ),任何人都动摇不了他援藏的决心。
因为因而(3)( )猴子知道水手们拿它取乐,所以更加放肆起来。
(4)猴子的放肆和水手的哄笑激怒了孩子,( )引得孩子爬上了桅杆去追猴子。
(本文档有心平如水编写,请勿转载。
)4.在括号里填上“看”的近义词。
(填的字不能重复)(4分)仰()参()检()()梢博()()觉东()西()5.品味探究,选择正确的答案。
(4分)(1)“鲁肃回来报告周瑜,果然不提借箭的事,只说……”从这句话中,我感受到鲁肃________A.忠厚守信;B.欺骗周瑜;C.不诚实(2)从“诸葛亮又下令把船掉过来,船头朝东、船尾朝西,仍旧擂鼓呐喊”从这句话中,我感受到诸葛亮 ________________。
A.胆量很大;B.谋划周密,安排巧妙;C.不拍牺牲(3)“雾这样大,曹操定不敢派兵出来。
我们只管饮酒取乐,雾散了就回去。
”这段话是________ 对________ 说的,表现了他________ 的特点。
A.鲁肃诸葛亮贪酒;B.诸葛亮周瑜勇敢;C.诸葛亮鲁肃自信(4)从“曹操的之江上的动静后,就下令说:‘江上雾很大……不要轻易出动。
拨水军弓弩手朝他们射箭便是。
’”从这句话中,我感受到诸葛亮________ ,曹操 ________。
2022年人教版历史七年级上册期末测试题附答案(一)

人教版历史七年级上册期末测试题(一)(时间60分钟分值:100分)一、选择题(60分)1.(3分)某同学在他的旅游日记中写道“他们使用的天然火不是人工取的,而是打雷正好击中干燥的木头,点燃了火,又或是火山爆发和森林火灾的火。
他们晚上轮流看火,用灰来保存火种。
”以下选项与日记中的“他们”不相符的是()A.生活在距今约170万年B.使用打制石器,过群居生活C.用火烧烤食物、防寒、照明、驱兽D.前额低平,眉骨粗大,颧骨突出2.(3分)在下列图片中,反映出我国长江流域河姆渡原始居民文化特征的是()A.①②B.①④C.②③D.②④3.(3分)如图所示是小明复习夏、商、周更迭知识时制作的年代尺。
可以更有效地学习历史。
下面是小明复习夏、商、周更迭知识时制作的年代尺。
其中空格部分应填()A.盘庚迁殷B.武王伐纣C.夏朝灭亡D.西周灭亡4.(3分)考古学家们发掘了数以万计的甲骨片,甲骨上所记的都是占卜语言。
凡祭祀、战争、风雨、天象、农业丰歌以及病疫等都是通过占卜向上天请命。
这种文字(见图)最早可能出现在()A.夏朝B.商朝C.秦朝D.晋朝5.(3分)春秋时期,“耕”“牛”二字经常同时出现在人名中,如孔子有个学生名冉耕,字伯牛;另一个学生名司马耕,字子牛。
这种现象可以用来佐证()A.当时牲畜是财富的象征B.春秋时期开始饲养牛C.春秋时期已经出现牛耕D.孔子的弟子注重农业6.(3分)如图“汉并天下”瓦当的出土,进一步证明了()A.西汉建筑技术高超B.汉王朝的兴盛和统一C.西汉统一国家的愿望D.震慑少数民族的手段7.(3分)关于造纸术的发明的叙述,不正确的是()A.中国是世界上最早发明纸的国家B.西汉前期就从“积漂絮成絮片”中得到启示,发明了纸C.东汉时期,蔡伦改进了造纸术,发明了“蔡侯纸”D.在秦始皇在位时期,纸的使用在我国已经相当普遍8.(3分)到河南南阳旅游,一定要参观医圣祠(如图).你知道这是为了纪念谁吗?()A.华佗B.扁鹊C.张仲景D.李时珍9.(3分)我国土生土长的宗教是()A.佛教B.道教C.伊斯兰教D.基督教10.(3分)被鲁迅称赞为“史家之绝唱,无韵之离骚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末测试题(满分:100分)一、单项选择题(每小题3分,共36分)1.如图1所示的事例中,属于减小压强的是 ( )2.2013年6月2日中午,一列G38由杭州南开往北京的高铁,在镇江被一只鸟撞到了挡风玻璃,导致玻璃大面积开裂,如图2所示。
飞鸟撞裂挡风玻璃相关说法中,正确的是( )A .鸟撞高铁的力大于高铁撞鸟的力B .鸟撞高铁的力小于高铁撞鸟的力C .飞鸟相对于高速运动的高铁具有较大的动能D .飞鸟相对于高速运动的高铁具有较大的重力势能 3.下列说法中正确的是( )A .飞机起飞升空时,机翼上方气流的流速较大,压强较大B .大气压随高度增加而增大C .船闸和茶壶属于连通器原理的应用D .潜水艇是靠改变浮力大小来实现上浮或下沉的 4.在下列四种情境中,人对物体做功的是( )A .提着水桶在水平地面上匀速前进B .背着书包慢慢爬上楼梯C .用力推汽车,汽车没动D .举着篮球原地不动 5.如图3所示是摄影师拍摄到的小蚂蚁搬运东西时犹如玩杂耍“叠罗汉”的精彩画面。
无风时,最上端的蚂蚁驮着果实静止不动,对于该静止的果实,下列说法正确的是( )A .果实受到的重力和蚂蚁对它的支持力是一对平衡力B .果实受到的重力和果实对蚂蚁的压力一对相互作用力C .果实能静止,是因为蚂蚁对它的支持力小于果实受到的重力D .果实能静止,是因为蚂蚁对它的支持力大于果实受到的重力 6.如图4所示,正在向左匀速运动的小车上立着一木块,如果小车碰到前方的物体突然停下来,木块将会( ) A .静止不动 B .加速运动 C .向左倒 D .向右倒A .饮料管一B .大型平板车C .切蛋器装有D .注射器的 端剪成斜口 装有很多轮子 很细的钢丝 针头做的很尖7.如图5所示,2013年6月11日17时38分,搭载着3名航天员的神舟十号载人飞船在酒泉卫星发射中心中国载人航天发射场成功发射,中国天地往返运输系统首次应用性太空飞行拉开序幕。
关于卫星和火箭加速升空....过程中的能量转化,下列说法中正确的是( )A .卫星的动能增加,重力势能增加,机械能增加B .卫星的动能不变,重力势能增加,机械能增加C .卫星的动能转化为重力势能,机械能不变D .火箭的动能转化为卫星的重力势能,卫星的机械能不变8.如图6所示,体积相同的A 、B 两实心球在液体中静止,则( )A .两球受到的浮力一定相等B .A 球受到的重力小于B 球C .两球的密度不相等,B 球的密度小D .两球受到的浮力不相等,B 球受到的浮力大9.如图7所示,如果忽略空气阻力,由空中A 处竖直抛向高处的小球经过B 、C 两位置时,以下物理量中,不变的是( ) A .速度 B .动能 C .重力势能 D .机械能10.如图8所示装置,重100N 的物体A 在水平面作匀速直线运动,作用在绳自由端的拉力F 是20N ,则下列判断正确的是(不计滑轮重和滑轮间摩擦) A .作用在物体A 上水平拉力是100NB .作用在物体A 上水平拉力是20NC .物体A 受到的滑动摩擦力是80ND .物体A 受到的滑动摩擦力是40N11.如图9所示,工人用滑轮提升重物,已知滑轮质量相同,若把同一货物匀速提升相同的高度(不计绳子与滑轮间的摩擦)( )A .使用定滑轮比动滑轮省力,但机械效率高B .使用定滑轮比动滑轮省力,但机械效率低C .使用定滑轮比动滑轮费力,但机械效率高D .使用定滑轮比动滑轮费力,但机械效率低12.如图10所示,放在M 、N 两水平桌面上的A 、B 两物体,分别在F 1=3N 、F 2=6N 的水平拉力作用下做匀速直线运动,可以确定( ) A .桌面M 一定比桌面N 粗糙B .A 的速度一定大于B 的速度C .A 的质量一定大于B 的质量ABC甲 (11题)图题图D .A 受到的摩擦力一定小于B 受到的摩擦力 二、填空题(每空2分,共14分)13.图11甲中小朋友的话,从物理学的角度分析是有一定道理的,其物理原理是_____________________________________________________。
乙图所示的弹簧测力计的示数是________N 。
14.如图12所示,Q 仔将箭搭在弦上并拉弦张满弓,松手后,箭被射出去。
在箭被射出去的过程中,弓箭具有的 能转化箭的 能。
15.如图13所示是我国某艘海监船前往我国固有领土钓鱼岛巡航的情景,若它以18km/h 的速度匀速航行1小时,假设船推进力做功的功率是5×106W ,则在这段时间内推进力做功_________J ,推进力是_________N ;巡航过程中,随着装备物质的消耗,海监船在海水中将________(选填“上浮”或“下沉”)些。
三、作图题(每小题5分,共10分)16.如图14所示,请根据要求组装滑轮组,要求是:使用该滑轮组提升重物时既能省力,又能改变力的方向。
17.在图15中画出力F 的力臂l ,并标记出来。
四、实验题(18题6分,19题8分,20题6分,共20分) 18.某实验小组在“测滑轮组机械效率”的实验中得到的数据如下表所示,第1、2、3次实验装置分别如图16中的甲、乙、丙所示。
(1)比较第1次实验和第2次实验,可得结沦:使用同样的滑轮组,提起的钩码越重,滑轮组的机械效率越____________。
额外功 (选填“增大”或“减小”),因而,由第2、3次实验可知:滑轮组的机械效率与_____________________有关。
(3)综合上述结论:提高机械效率的方法有_______有用功,________额外功(以上两空均选填“增大”或“减小”) 。
19.关于探究“杠杆的平衡条件”的实验。
(1)小明发现杠杆右端低左端高,要使它在水平位置平衡,应将杠杆右端的平衡螺母向 调节,或将杠杆左端的平衡螺母向 调节;小明调节杠杆在水平位置平衡的主要目的是 。
(2)杠杆平衡后,若在图17甲中的B 位置挂2个钩码,则应在A 位置挂______个相同的钩码,才能使杠杆保持在水平位置平衡。
(3)如图17乙所示,在B 位置仍挂2个钩码,改用弹簧测力计在C 位置竖直向上拉,使杠杆保持水平平衡。
若此时将弹簧测力计改为向右上方斜拉,要使杠杆继续保持水平平衡,拉力F 的大小将______(选填“变大”、“变小”或“不变”)。
20.小明通过网络搜集到世界短道速滑冠军王濛比赛中和一头大象漫步行走时的一些物理数据,如图18所示。
(1)研究比较王濛和大象的数据,质量和速度相比,________对物体的动能影响更大,说明你判断的理由:__________________________________________________。
(2)请你利用动能的知识解释,在同样的道路上,为什么对大型车辆的限制速度比小型车辆要小?五、计算题(每小题8分,共16分)21.用如图19所示滑轮组提升重物,人用250N 的拉力F ,在25s 内将重为675N 的物体匀速提升了1m 。
不计绳重和摩擦,求: (1)人拉绳子做的功及做功的功率。
(2)滑轮组的机械效率。
22.2013年5月2日,世界上最大的黄色橡皮鸭在香港维多利亚港展出,橡皮鸭由200多块PVC 制造而成,质量约为600kg 。
为了不让橡皮鸭漂走,橡皮鸭的底部有一个直径13米的浮床承托着,设计者还特制了9吨重的石码,这样可以将橡皮鸭固定在海中,如图20所示。
(设ρ海水=1.0×103kg/m 3,ρ石码=3×103kg/m 3,g 取10N/kg )则: (1)距离水面5米深处石码受到的压强是多大?(2)涨潮时,石码拉着浮床且石码刚好离开海底,石码受到多大浮力?石码受到浮床的拉力是多大?王濛 质量60kg ,短道速滑比赛中 速度可达11.1m/s ,动能约为3700J大象 质量6000kg ,以0.5m/s 的速度漫步时,动能约为750J参考答案一、单项选择题 1B2 C3 C4 B5 A6 C7 A8 C9 D 10 D 11 C 12 D 二、填空题13.物体间力的作用是相互的;1 14.弹性势;动15.1.8×1010 ;1.0×106;上浮 三、作图题16.如图1所示。
17.如图2所示。
四、实验题18.(1)高 (2)增大;机械自重(或动滑轮重,其他意思正确同样得分) (3)增大;减小19.(1)左;左;便于测量力臂(其他意思正确同样得分) (2)4 (3)变大20.(1)速度;王濛的速度是大象的22.2倍,大象的质量约是王濛的100倍,而王濛的动能却比大象的动能大得多(意思正确即可得分)(2)当速度相同时,质量越大的车辆,动能也越大,刹车时移动距离越大,所以对大型车辆的限制速度比小型车辆更小(意思正确即可得分) 五、计算题21.绳子自由端通过的距离S=2h =3×1m=3m 拉力做的功W=Fs =250N ×3m=750J 功率P =W t =750J 25s=30W所做的有用功:W 有=Gh =675N ×1m=675J机械效率:η=W有W=675J750J=90%22.(1)p=ρ海水gh=1.0×103kg/m3×10N/kg×5m=5×104Pa(2)石码的体积:V石码= m石ρ石=9×103kg3×103kg/m3=3m3石码受到的浮力:F浮=ρ海水gV=1.0×103kg/m3×10N/kg×3m3=3×104N石码重:G=mg=9×103kg×10N/kg=9×104N当石码拉着浮床且石码刚好离开海底时,石码受到浮床的拉力F拉、海水的浮力F 浮及重力G,且G=F拉+F浮所以F拉=G﹣F浮=9×104N﹣3×104N=6×104N。