圆知识点复习
初中数学 圆知识点归纳

《圆》整章知识点复习《圆》章节知识点复习名词解释:1.弦——连接圆上任意两点的线段叫做弦。
2.弧——圆上任意两点间的部分叫做圆弧,简称弧。
3.半圆——圆的任意一条直径的两个端点把圆分成两条弧,第一条弧都叫做半圆。
4.等圆——能够重合的两个圆叫做等圆。
5.等弧——在同圆或等圆中,能够互相重合的弧叫做等弧。
6.圆心角——顶点在圆心的角叫做圆心角。
7.圆周角——顶点在圆上,且两边都与圆相交的角叫做圆周角。
8.圆内接多边形——如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
9.外心——外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形外心。
10.内心——三角形三条角平分线的交点,叫做三角形的内心。
11.内切圆——与三角形各边相切的圆叫做三角形的内切圆。
12.割线——直线和圆有两个公共点(直线和圆相交),这条直线叫做圆的割线。
13.切线——直线和圆只有一个公共点(直线和圆相切),这条直线叫做圆的切线,这个点叫做切点。
14.切线长——经边圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。
15.圆心距——两个圆圆心的距离叫做圆心距。
16.中心——正多边形的外接圆的圆心叫做这个正多边形的中心。
17.中心角——正多边形每一边所对的圆心角叫做正多边形的中心角。
18.边心距——中心到正多边形的一边的距离叫做正多边形的边心距。
19.扇形——由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。
20.母线——连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线。
一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);(补充)3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
圆——知识点

◆圆与拼成的长方形有如下关系:圆的半径是r
长方形的长近似于圆周长的一半(
),长方形的宽近似于圆的半径(r)。
因为 长方形的面积=长 ×宽,相当于 圆周长的一半×圆的半径
S外方内圆之间=4r2-πr2=0.86 r2
外圆内方
圆的面积:S圆 =πr2
圆内接正方形的面积=三角形的面积×2=底×高÷2×2
S内方=2r×r÷2×2=2r2
正方形与圆之间的面积=圆的面积-正方形的面积
S外圆内方之间=πr2-2r2=1.14 r2
圆外切正方形的面积是圆内接正方形的面积的2倍。
(四)扇形
所以 圆的面积= πr × r =πr2
用S表示圆的面积,圆的面积计算公式为: S圆 =πr2 已知圆面积,可以求半径的平方:r2 = S ÷ π
2、圆环是从一个较大的圆中去掉一个较小的同心圆得到的。 外圆的半径是R,内圆的半径是r。(R=r+环宽) 圆环的面积=外圆面积-内圆面积
4、半圆周长=圆周长的一半+直径 C半圆= πr +2r=(π+2 )r 或 C半圆= πd+d=( π+1)d 已知半圆周长,求半径:r=C半圆÷(π+2 )
求直径:d=C半圆÷( π+1)
(三)圆的面积:
圆所占平面的大小叫做圆的面积。 1、圆面积公式的推导:
拼成的长方形的面积=圆的面积 拼成的长方形的周长=圆的周长+2条半径
(二)圆的周长
围成圆的曲线的长度叫做圆的周长,周长用字母C表示。 1、圆的周长总是它的直径的3倍多一些。 2、圆周率:圆的周长与它的直径的比值是一个固定的数,这个固定的
中考圆的知识点总结总结

中考圆的知识点总结总结一、圆的定义和性质1. 圆的定义圆是一个平面上和一个确定点的距离都相等的点的集合。
这个确定点就是圆心,而圆心到圆上的任意点的距离就是半径。
2. 圆的性质(1)圆心角圆心角是以圆心为顶点的角,它的两条边分别是圆周上的两条弦。
圆心角的度数等于对应的弧所对的圆周的度数。
如果圆心角的度数为360度,那么这个角就是周角。
(2)弧圆上的一段弧是圆周的一部分。
圆的周长就是圆周的长度,可以用角度和弧度来表示。
(3)切线和切点切线是一个直线,它与圆相切于一个点。
在圆上,切线与半径的夹角为90度。
(4)同位角同位角是两条平行线被一条截线所切割而形成的一对内角和一对外角。
同位角的性质也可以应用到圆上。
(5)相似两个或者更多的圆是相似的,如果它们有着相同的形状但是不同的尺寸。
相似的圆的半径之比等于它们的直径之比。
二、圆的相关定理1. 圆周角定理圆周角等于圆心角的一半。
2. 圆的面积和周长圆的面积等于πr^2,圆的周长等于2πr,其中r是圆的半径,π是一个无理数,约等于3.14159。
3. 弦长定理在同一个圆上,相交弦的两个切点到圆心的距离相等。
4. 弧长定理同样的圆上,相对的圆周弧长相等。
5. 切线定理切线和半径的夹角为90度。
6. 弧上的角定理同样的圆上,一个圆周弧所对的圆心角等于这个弧上的其他角的和。
7. 线段对定理在一个圆上,两条相交的弧所对的线段互为比例。
三、圆的应用1. 圆的周长和面积的应用圆的周长和面积是经常在实际生活中用到的数学概念。
比如在工程测量中,需要计算环形的周长和面积。
2. 圆的图形补充圆的图形补充,包括扇形、环形等概念,也是圆的知识点之一。
3. 圆的运动学应用在运动学中,圆的运动规律和路径也是一个重要的应用。
四、典型例题下面列举一些典型的中考圆的例题,帮助大家更好地复习和巩固知识。
1. 如果一条切线和一条半径分割了一个角为30度的圆心角,那么这条切线和半径的夹角是多少度?A. 60度B. 45度C. 30度D. 15度答案:A. 60度2. 已知圆的半径为8cm,求圆的面积和周长。
圆形的知识点归纳总结

圆形的知识点归纳总结圆形是平面几何中的重要概念之一,它具有丰富的性质和应用。
本文将对圆形的相关知识进行归纳总结,包括圆的定义、性质、相关定理和应用等方面的内容。
一、圆的基本概念和定义1. 圆的定义圆是平面上到定点距离等于定长的所有点的集合。
这个定点叫做圆心,定长叫做半径。
2. 圆的符号表示通常用符号“O”来表示圆心,小写字母“r”表示半径,大写字母“C”表示圆。
3. 圆的元素圆的元素包括圆心、半径、直径、弧、圆周、扇形等。
4. 圆心角和圆周角圆的圆心角是以圆心为顶点的角,圆周角是以圆周上两点为顶点的角。
5. 圆的相关概念圆的相关概念包括圆内切多边形、圆内接多边形、圆外接多边形、圆外切多边形等。
二、圆的性质1. 圆的性质圆的性质包括圆的对称性、圆的等分性、圆上点的性质等。
2. 圆的对称性圆具有无数个对称轴,其中包括直径、半径、切线等。
3. 圆的等分性圆的周长是半径的倍数,圆的面积是半径的平方倍数。
4. 圆上点的性质圆上的任意一点到圆心的距离等于半径,圆上的弦长等于半径的两倍。
5. 圆与线的位置关系直径与圆的位置关系、弦与圆的位置关系、切线与圆的位置关系等。
三、圆的相关定理1. 圆的基本定理圆的基本定理包括:相交弦定理、切线定理、弧长定理、圆心角定理、圆周角定理等。
2. 圆的周长和面积定理圆的周长和面积定理包括:周长公式、面积公式、扇形面积公式、弓形面积公式等。
3. 圆的切线定理圆的切线定理包括:切线与半径垂直定理、切线的切点定理、切线的两条切点定理等。
4. 圆心角定理圆心角定理包括:圆心角的对应弧相等定理、圆心角的补角定理、圆心角的平分弧定理等。
四、圆的应用1. 圆的应用领域圆的应用广泛,包括建筑工程、数学研究、工程设计、地理测量、日常生活等领域。
2. 圆的应用案例圆的应用案例包括建筑中的圆形结构、数学研究中的圆的性质和定理、工程设计中的圆形零件、地理测量中的圆的测量方法等。
3. 圆的应用技术圆的应用技术包括圆周率的计算、圆形结构的设计、圆的测量方法等。
小学六年级人教版数学上册第四单元《圆》知识点汇总

第四单元圆一、基本概念1、圆心一个圆最中心的那一点,用大写字母O 表示(1) 圆心决定圆的位置。
(2) 圆心到圆上任意一点的距离都相等。
(3) 一张圆形纸片至少对折两次,就能找到圆心。
2、半径圆心到圆上任意一点的线段,用小写字母r 表示(1) 半径决定圆的大小。
(2) 在同一个圆里面,半径都相等。
(3) 在同一个圆里面,半径有无数条。
(4) 半径是直径的一半,即d 21r =3、直径通过圆心并且两端都在圆上的线段,用小写字母d 表示(1) 在同一个圆里面,直径都相等。
(2) 在同一个圆里面,直径有无数条。
(3) 直径是半径的两倍,即r 2d =(4) 在一个正方形内画最大的圆,圆的直径等于正方形的边长(5) 在一个长方形内画最大的圆,圆的直径等于长方形的宽二、使用圆规的步骤1、先确定圆心的位置和半径。
(1) 轴对称图形中,两条对称轴的交点就是中心点(2) 如果知道直径,那么直径的一半就是半径2、用直尺量出两脚之间的距离为半径。
(1) 量好后不能再改变两脚之间的距离3、把针尖放在圆心位置,保持针尖不动,旋转另一只脚一周,即可画出指定的圆。
(1)如果旋转圆规一周不顺手,可以保持圆规不动,旋转纸一周。
(2)如果旋转一周画出来的线条不清晰,可以多旋转几周加深线条。
三、轴对称图形1、轴对称图形沿对称轴对折之后,两边可以完全重合。
2、常见的轴对称图形以及它们的对称轴条数:(1)只有一条对称轴的图形:角、等腰三角形、等腰梯形、扇形、半圆(2)有2条对称轴的图形:长方形(3)有3条对称轴的图形:等边三角形(4)有4条对称轴的图形:正方形(5)有无数条对称轴的图形:圆、圆环【圆的对称轴就是直径】四、周长与面积1、圆周率ππ是一个无限不循环小数,一般取 3.14π≈。
我国数学家祖冲之是第一个把圆周率算出来的人。
2、圆的周长(1)圆的周长用大写字母C 表示,计算公式是πd πr 2C ==即圆的周长等于两倍的π乘以半径,也等于π乘以直径(2) 半圆的周长半圆的周长等于半个圆的周长加上直径,即r 2πr +3、圆的面积圆的面积用大写字母S 表示,计算公式是2πr S =4、周长与面积的关系(1) 在同一个圆中,半径扩大或缩小几倍,直径和周长就扩大或缩小几倍,而面积扩大或者缩小这个倍数的平方倍,例如:在同一个圆内,如果半径扩大3倍,那么直径和周长就扩大3倍,面积扩大9倍。
圆的知识点归纳总结大全

圆的知识点归纳总结大全一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:➢平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
➢平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
d< r(r > d)点P 在⊙O内d= r 点P 在⊙O 上d > r (r <d )点P 在⊙ O 外7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
( 2 )不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。
)8、直线与圆的位置关系。
d 表示圆心到直线的距离,r 表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
《圆》知识点及练习题

《圆》知识点及练习题一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
圆的知识点总结及典型例题

圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。
2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。
3. 圆的确定不在同一条直线上的三点确定一个圆。
4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
垂径定理及推论1可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。
推论2圆的两条平行弦所夹的弧相等。
5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。
圆心角的度数等于它所对的弧的度数。
6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
A
B 圆复习
一、圆的对称性
1、圆是轴对称图形, 是它的对称轴。
2、圆是中心对称图形, 是它的对称中心。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
几何语言: ∵AB =CD = = 二、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
几何语言 ∵ ⊥CD
三、圆周角定理
1、圆周角定理:同弧所对的圆周角 ,且等于它所对的圆心的角的 。
即:∵C ∠、D ∠都是弧AB 所对的圆周角
∴
推论:半圆或直径所对的圆周角是直角;90度的圆周角所对的弦是
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒
∴C ∠= ∴AB 是
四、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补 即:在⊙O 中, ∵四边ABCD 是内接四边形
S l
O ∴ ,180B D ∠+∠=︒ 五、切线的性质与判定
(1)判定定理:经过半径的 并且 这条半径的直线是圆的切线. 2个条件:①直线经过半径的外端;②直线与半径垂直. 即:∵MN ⊥OA 且MN 过半径OA 外端 ∴MN 是⊙O 的 线
(2)性质定理:圆的切线 于经过切点的
∵MN 是切线,点A 是 ∴MN OA
六、切线长定理: 从圆外一点引圆的两条切线,它们的切线长 ,
这点和圆心的连线 两条切线的夹角。
即:∵PA 、PB 是⊙O 的两条切线
∴PA PB PO 平分
七:三角形的外心与内心
1. 三角形的外心是三角形____________的交点.外心到 的距离相等
三角形的内心是三角形____________的交点.内心到 的距离相等
外心
内心 图形
作出钝角三角形的外接圆⊙O 与锐角三角形的内内切圆⊙I
性质(写几何语言) ∵点O 是△ABC 的外心
∴OA OB OC
∵点I 是△ABC 的内心
∴IA 平分 IB IC
八 、扇形、圆柱和圆锥的相关计算公式
1、扇形:(1)弧长公式:180
n R l π= )n ° N
M
O
C
B
A
C
B
A
B1
R
r
C
B
A
O
D
C B
A O E C
B A D O B A O
(2)扇形面积公式: lR R n S 2
13602==
π扇 n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积
请把上面两个公式默写两遍:
2、圆锥侧面展开图 (1)
rl S π=
其中l 是圆锥的母线长,r 是圆锥的底面半径
请把上面两个公式默写两遍:
九、圆内正多边形的计算(想想、记记)
(1)正三角形
在⊙O 中 △ABC 是正三角形,有关计算在Rt △BOD 中进行,OD:BD:OB=
(2)正四边形
同理,四边形的有关计算在Rt △OAE 中进行,OE :AE:OA=
(3)正六边形
同理,六边形的有关计算在Rt △OAB 中进行,AB:OB:OA=
巩固练习 1.如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是[ ]
A.110°
B.70°
C.55°
D.125°
2.在⊙O 中,弦AB 垂直并且平分一条半径,则劣弧AB 的度数等于[ ] A.30° B.120° C.150° D.60°
3如图,AB 是⊙O 的直径,弦 C D 交 A B 于点 E ,且 E 为 O B 的中点,
1:3:2
1:1:
21:
3:2
D E
B A C
O
∠CDB =30°,CD =4,则 阴影部分的面积为( ) A .π
B .4π
C . π
D . π
4、一条6cm 长的弦所对的圆周角为90°,则此圆的直径为 。
5.如图,圆内接四边形ABCD 的对角线AC ,BD 交于E 点,AB=120°,CD=70°则∠AEB= 。
6.已知⊙O 的直径10cm ,弦AB ∥CD ,且AB =8cm ,CD =6cm , 则AB 、CD 之间的距离是 . 7.AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,,已知∠BAC =80°,那么∠BDC = °.
第5题 第6题 第7题 第9题 8. 已知圆锥的母线长为5厘米,底面半径为3厘米,则它的侧面积为 。
侧面展开后所得扇形的圆心角是 (自画图)
9、正六边形的半径为1,则此六边形的面积为
10、 如图,矩形ABCD 中,BC=2,DC=4,以AB 为直径的半圆O 与DC 相切于点E ,则阴影部分的面积为 (结果保留).
11、.如图,在△ABC 中,,
(1) 若点O 是外心,∠A =65°,则∠BOC 的度数是 ;
(2) 若点O 是内心,∠ABC =70°,∠ACB =80°,∠BOC 的度数是 ; (3)若点O 是内心,∠BOC =120°,则∠A 的度数是 。
12.如图在△ABC 中,∠C=90°,点O 为AB 上一点,以O 为圆心的半圆切AC 于E ,交AB 于D ,AC=12,BC=9,求AD 的长。
13.如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A 、B 、C ,请在网格图中进行下列操作:
(1) 确定该圆弧所在圆的圆心D 点的位置(保留画图痕迹),则D 点的坐标为 ;
(2) 连接AD 、CD ,则⊙D 的半径为 ,∠ADC 的度数为 ; O C
B
A D O
C
B
A
(3) 若扇形ADC是一个圆锥的侧面展开图,求该圆锥底面半径.
(4)若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由。