《平面与平面垂直的性质》

合集下载

第十二课时 平面与平面垂直的性质

第十二课时  平面与平面垂直的性质
()求二面角 1 M BC D的正切值; (2)求CN与平面ABCD所成角的正切值;
( 3 )求CN与BD所成角的余弦值;
(4)求平面SBC与SDC所成角的正弦值。
S
M A B C
N
D
过 关 落 实
如图所示,四边形ABCD是边长为6的正方形, SA 平面ABCD,SA 8,M 是SA的中点, 过M 和BC的平面交SD于N。
( 1 )求二面角M BC D大小的正切值; (2)求CN与平面ABCD所成角的正切值;
( 3 )求CN与BD所成角的余弦值;
(4)求平面SBC与SDC所成角大小的正弦值。
S
M A B
Q
N E
D
F
C
小结
A
α a B β
线线垂直
线面垂直
α
β
线线平行 面面平行
面面垂直
A B
面面垂直 线面垂直
思考:若α ⊥β ,过平面α 内一点A 作平面β 的垂线,垂足为B,那么点 B在什么位置?
α
A
β
B
结论: 如果两个平面互相垂直,那么 经过一个平面内一点且垂直于另一 个平面的直线,必在这个平面内.
α A
β
B
概念巩固
判断正误
已知平面α⊥平面β,α∩
β=l下列命题
(1)平面α内的任意一条直线必垂直于平面β ( ×)
a // b b a

a //
例3、如图,已知PA⊥平面ABC, 平面PAB⊥平面PBC,求证:BC⊥平面PAB
证明:过点A作AE⊥PB,垂足 P 为E, ∵平面PAB⊥平面PBC, 平面PAB∩平面PBC=PB, A ∴AE⊥平面PBC ∵BC 平面PBC ∴AE⊥BC ∵PA⊥平面ABC,BC 平面ABC ∴PA⊥BC ∵PA∩AE=A,∴BC⊥平面PAB B

人教版高中数学必修2《平面与平面垂直的性质》PPT课件

人教版高中数学必修2《平面与平面垂直的性质》PPT课件

3,∴h=
3 2.
在△BCD 中,BF=BD·cos 60°=2×12=1,DF=BD·sin 60°= 3,∴DC=2 3,
故 S△BCD=12BF·DC=12×1×2 3= 3.
∴VD-BCG=VG-BCD=13S△BCD·h=13× 3× 23=12.
[方法技巧] (1)在有关垂直问题的证明过程中要注意线线垂直、线面垂直、面面垂直的 相互转化.因此,判定定理与性质定理的合理应用是证明垂直问题的关键. (2)空间问题转化成平面问题是解决立体几何问题的一个基本原则.解题时, 要通过几何图形自身的特点,如等腰(等边)三角形的“三线合一”、中位线定理、 菱形的对角线互相垂直等,得出一些题目所需要的条件.对于一些较复杂的问 题,注意应用转化思想解决问题.
【对点练清】 如图,在四棱锥 P-ABCD 中,平面 PAB⊥平面 ABCD,BC∥平 面 PAD,∠ABC=90°,PA=PB= 22AB.求证: (1)AD∥平面 PBC; (2)平面 PBC⊥平面 PAD. 证明:(1)∵BC∥平面 PAD,BC⊂平面 ABCD,平面 ABCD∩平面 PAD=AD, ∴BC∥AD. ∵AD⊄平面 PBC,BC⊂平面 PBC,∴AD∥平面 PBC.
若①m⊥n,③n⊥β,④m⊥α 成立,则②α⊥β 一定成立; 若②α⊥β,③n⊥β,④m⊥α 成立,则①m⊥n 一定成立. ∴①③④⇒②(或②③④⇒①). 答案:①③④⇒②(或②③④⇒①)
• 题型二 垂直关系的综合应用
• [探究发现]
• 试总结线线垂直、线面垂直、面面垂直之间的转化关 系.
提示:在线线垂直、线面垂直、面面垂直的相互转化中.每一种垂直的
判定都是从某一垂直开始转向另一垂直,最终达到目的,其转化关系如下:

2.3.4平面与平面的垂直的性质

2.3.4平面与平面的垂直的性质

性质
若两个平面垂直,则在一个平面内 性质定理:
垂直于它们交线的直线垂直于另一个平面.
在β内作直线BE⊥CD于B, 则∠ABE是二面角α-CD-β 的平面角 由α⊥β知,AB⊥BE ∴AB⊥β


A
D C B
E
又AB⊥CD 而BE和CD是β内的两条相交直线
面面垂直
线面垂直
举例
例: 已知
l , , ,
判定定理 判定定理
线线垂直
定义
线面垂直
性质定理
面面垂直
作业 1. 求证:两条异面直线不能同时
和一个平面垂直;
2. 求证:三个两两垂直的平面的 交线两两垂直.
平面与平面 垂直的性质
先直观感受平面与平面 垂直的情形
复习
1.定义:两个平面相交,如果它们所成 的二面角是直二面角,则两个平面垂直

记作α⊥β



性质:
1.凡是直二面角都相等; 2.两个平面相交,可引成四个二面角,如果其中有一 个是直二面角,那么其他各个二面角都是直二面角.
复习
若一个平面经过另一个平面 2.判定定理: 的一条垂线,则这两个平面互相垂直.

D
A垂直
思考
(1) 黑板所在平面与地面所在平面垂直,你能 否在黑板上画一条直线与地面垂直? (2) 如图,长方体中, 平面A1ADD1与平面 ABCD垂直,直线A1A A1 垂直于其交线AD,平 面A1ADD1内的直线 A A1A与平面ABCD垂 直吗? D1 B1 D B C C1
求证: l

l
m

n

a
b P
证明:在平面 a m,b n

平面与平面垂直的性质

平面与平面垂直的性质


面面垂直 图形表示:
C
线面垂直
A D

B

符号表示:
CD AB
AB AB CD AB CD B
定理剖析
1) 面面垂直线面垂直; (线是一个平面内垂直于两平面交线的 一条直线)
α
C
2)它为判定和作出线面垂直提供依据。
求证 : AB .
证明:在平面 内作BE⊥CD,

A D
垂足为B.
则∠ABE就是二面角 -CD- 的平面角 ∵

B C
E

, ∴AB⊥BE(平面与平面垂直的定义)
又由题意知AB⊥CD,且BE CD=B
∴AB⊥ (直线与平面垂直的判定定理)
定理
两个平面垂直,则一个平面内垂直于交线的直 线与另一个平面垂直.
D
C
B

定理的应用,你也可以
a. 求证: a
如图,已知 ,
b , , c ,

a
证明:过平面 内一点P作PA⊥ b 于A,作PB⊥ c 于B. ∵

a
∴PA⊥
∴a

A P
b
c
B


∴PA⊥ a
∵PB PA=P, PA , PB
3、平面与平面垂直的定义
两个平面相交,如果它们所成的二面角是 直二面角,就说这两个平面互相垂直。
4、平面与平面垂直的判定定理
一个平面过另一个平面的垂 线,则这两个平面垂直。
符号表示:
该命题正确吗?


b
b b

2.3.4平面与平面垂直的性质

2.3.4平面与平面垂直的性质

面面垂直
性质定理 判定定理
线面垂直
1、平面与平面垂直的性质定理:两个平面 垂直,则一个平面内垂直于交线的直线与另 一个平面垂直。 2、证明线面垂直的两种方法: 线线垂直→线面垂直;面面垂直→线面垂直 3、线线、线面、面面之间的关系的转化是解 决空间图形问题的重要思想方法。
平面与平面垂直的性质定理


b
l
Ⅱ.概括结论
l bl
b 该命题正确吗? 简述为移
如图,已知α ⊥β ,l⊥β , l ,试判断直线l与平面α 的位 置关系,并说明理由.
α a m β
2013-1-16
例1
l
例2 如图,四棱锥P-ABCD的底面是 BC 矩形,AB=2, 2 ,侧面PAB是 等边三角形,且侧面PAB⊥底面ABCD. (1)证明:侧面PAB⊥侧面PBC; (2)求侧棱PC与底面ABCD所成的角.
P
A E
2013-1-16
D
B
C
例3:如图,AB是⊙O的直径,C是圆周上不同 于A,B的任意一点,平面PAC⊥平面ABC, (1)判断BC与平面PAC的位置关系,并证明。 (2)判断平面PBC与平面PAC的位置关系。
2.3.4《平面与平面 垂直的性质》
问题提出
1.平面与平面垂直的定义是什 么?如何判定平面与平面垂直?
定义和判定定理
2.平面与平面垂直的判定定理, 解决了两个平面垂直的条件问题; 反之,在平面与平面垂直的条件下, 能得到哪些结论?
2013-1-16



提出问题:
1、平面与平面垂直的定义
两个平面相交,如果它们所成的二面角是 直二面角,就说这两个平面互相垂直。

面面垂直的性质

面面垂直的性质
解: 在内作垂直于 与 交线的直线b
, b
又 a , a / / b

a

b
即直线a与平面 平行
a / /
a ,b
探究: 已知平面 , ,直线a ,且 ,

=AB,a // ,a AB , 试判断 直线a与平面 的位置关系.
思考1:对于三个平面 α ,β ,γ ,若α γ , β γ ,α β l,那么直线l与平面γ 的位 置关系如何?为什么?
β
l
α b
a
γ
Ⅲ.知识应用
练习1:判断正误。 已知平面α ⊥平面β ,α ∩ β =l 下列命题
(1)平面α 内的任意一条直线必垂直于平面β (×) (2)垂直于交线l 的直线必垂直于平面β (× )
3:如图,已知PA⊥平面ABC, 平面PAB⊥平面PBC,求证:BC⊥平面PAB
证明:过点A作AE⊥PB, P 垂足为E, ∵平面PAB⊥平面PBC, 平面PAB∩平面PBC=PB, A ∴AE⊥平面PBC ∵BC 平面PBC ∴AE⊥BC ∵PA⊥平面ABC,BC 平面ABC ∴PA⊥BC ∵PA∩AE=A,∴BC⊥平面PAB B
E
(1)EF//PD
A
F
D C
作业: p74,第3题
(2)BF⊥平面PAD
B
A 如果平面 α ⊥平面 β ,那么平面α 内一定存在直 线平行于平面 β
B如果平面α ⊥平面 β ,那么平面α 内所有直线都垂 直于平面 β C如果平面α 不垂直于平面 β,则平面 α 内一定不 存在直线垂直于平面 β D如果平面 α 、β 都垂直于平面M,且 交于直线 a,则 a ⊥平面M
α与

高数数学必修一《8.6.3.2平面与平面垂直的性质》教学课件

高数数学必修一《8.6.3.2平面与平面垂直的性质》教学课件
1
AB=AD= CD=1,四边形ADEF是正方形,平面ADEF⊥平面ABCD.
2
证明:平面BCE⊥平面BDE.
1
2
证明:因为AB∥CD,AB⊥AD且AB=AD= CD=1,
所以BD=BC= 2,CD=2,所以BC⊥BD,
因为平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,
四边形ADEF是正方形,ED⊥AD,ED⊂平面ADEF,所以ED⊥平面
平面内;③直线必须垂直于它们的交线.
跟踪训练1 如图,在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥
平面PBC.
求证:BC⊥AB.
题型 2 垂直关系的综合应用
例2 如图,四棱锥P-ABCD,平面PAB⊥平面ABCD ,PA⊥AB,
AB∥CD,∠DAB=90°,PA=AD,DC=2AB,E为PC中点.
2.线线、线面、面面垂直关系的综合应用.
第2课时 平面与平面垂直的性质
预学案
共学案
预学案
一、平面与平面垂直的性质定理❶
一个平面内
两个平面垂直,如果__________有一直线垂直于这两
文字语言
交线
个平面的________,那么这条直线与另一个平面垂直
α⊥β
α∩β=
ൢ⇒a⊥β
符号语言
a⊂α
____________
a⊥l
____________
ABCD,
因为BC⊂平面ABCD,所以BC⊥ED,
因为BD,ED⊂平面BDE,BD∩ED=D,所以BC⊥平面BDE,
因为BC⊂平面BCE,所以平面BCE⊥平面BDE.

随堂练习
1.平面α⊥平面β,直线a∥α,则(
)

人教版高一数学《2.3.4平面与平面垂直的性质》课件

人教版高一数学《2.3.4平面与平面垂直的性质》课件
2.长方体ABCD-A1B1C1D1中,平面A1ADD1与 平面ABCD垂直,平面A1ADD1内的直线A1A 与平面ABCD垂直吗?
D1 A1
D
A
C1 B1
C B
平面与平面垂直的性质定理
1. 两视个察平实面验垂直,则一
个平面视内察垂两直垂于直交平线面的直
线中与,另一个一平个面平内面的垂直直线.
l
与符另号一表个示平:面的有哪
例1 如下图所示,P是四边形ABCD所在平面外的一点,
ABCD是∠DAB=60°且边长为a
的菱形.侧面PAD为正三角形,
其所在平面垂直于底面ABCD.
(1)若G为AD边的中点,求证: BG⊥平面PAD; (2)求证:AD⊥PB.
分析:①ABCD是边长为a的菱形;
②面PAD⊥面ABCD.
解答本题可先由面⊥面得线⊥面,再进一步得出线⊥线.
面面垂直
性质定理 判定定理
线面垂直
巩固提升:
1. 如图,已知平面 , , ,直线a满足
a , a ,试判断直线a与平面 的位置关系。
解:在 内作垂直于 与 交线的直线b,
因为 ,所以 b .
因为 a ,所以 a // b . 又因为 a ,所以a // .
a
b
即直线a与平面 平行
变式1 如图所示,α⊥β,CD⊂β,CD⊥AB, CE、EF⊂α,∠FEC=90°.
求证:面EFD⊥面DCE.
证明:∵α⊥β,CD⊂β, CD⊥AB,α∩β=AB,∴CD⊥α. 又∵EF⊂α,∴CD⊥EF. 又∠FEC=90°,∴EF⊥EC. 又EC∩CD=C,∴EF⊥面DCE. 又EF⊂面EFD,∴面EFD⊥面 DCE.
(2) 当 F 为 PC 的 中 点 时 , 满 足 平 面 DEF⊥ 平 面 ABCD.取PC的中点F,连接DE、EF、DF,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线线平行 面面平行
平面与平面垂直的性质定理
两个平面垂直,则一个平面内垂直于交线的
直线与另一个平面垂直.
符号表示:

bl
l
b
b
bl
简述为:
面面垂直
线面垂直
练习:
1、下列命题中错误的是(B )
α A 如果平面 ⊥平面 β ,那么平面 α 内一定存在
直线平行于平面 β
内观垂察两直垂于直平交面线中的,一直个平线面与内 另一 个的位平直置线关面与系垂?另一直个. 平面的有哪些

l
符号表示:
b

Ⅱ.概括结论
bbbll 面bb简面述垂为:直该命题正确线吗?面垂直
Ⅲ.知识应用
练习1:判断正误。
已知平面α⊥平面β,α∩ β=l下列命题
线线垂直 线面垂直 作PM ⊥ b于M,PN ⊥C于N.
因为 α⊥γ,β ⊥γ ,
所以 PM ⊥ α, PN ⊥ β. 因为 α ∩ β= a, 所以 PM ⊥ a, PN ⊥ a, γ 所以 a⊥γ.
αa β
cN P
已知:α⊥γ,β ⊥γ,α ∩ β= а,求证: a⊥γ.
证法二:
任取P∈a,过点P作b⊥γ.
解题反思
1、面面垂直的性质定理给我们提供了一 种证明线面垂直的方法
2、本题充分地体现了面面垂直与 线面 垂直之间的相互转化关系。
面面垂直
性质定理 判定定理
线面垂直
例 垂直于同一平面的两平面的交线垂直于这个平面。 已知:α⊥γ,β ⊥γ,α ∩ β= а,求证: a⊥γ. 证法一:
设α ∩ γ =b, β ∩ γ =c,在γ 内任取一点P,
因为α ⊥γ,
所以b α, 因为β ⊥γ,
同一法
因此b β, 故α ∩ β= b. 由已知 α∩ β= a, γ
αa Pβ b
所以a与 b重合,
所以a ⊥γ.
已知:α⊥γ,β ⊥γ,α ∩ β= а,求证: a⊥γ.
证法三:
设α⊥γ于b,β ⊥γ于c.
在α内作 b′ ⊥ b, 所以 b′ ⊥ γ.
D
D
折成
A
C
O
A
O
C
B
B
1、平面与平面垂直的性质定理:两个平面 垂直,则一个平面内垂直于交线的直线与另 一个平面垂直。
2、证明线面垂直的两种方法: 线线垂直→线面垂直;面面垂直→线面垂直
3、线线、线面、面面之间的关系的转化是解 决空间图形问题的重要思想方法。
线线垂直
小结
β A B αa
线面垂直
面面垂直
(2)判断平面PBC与平面PAC的位置关系。
(1)证明:∵ AB是⊙O的直径, P C是圆周上不同于A,B的任
意一点
∴∠ACB=90°∴BC⊥AC
又∵平面PAC⊥平面ABC,
C
平面PAC∩平面ABC=AC,
BC 平面ABC
A
O
B
∴BC⊥平面PAC
(2)又∵ BC 平面PBC ,∴平面PBC⊥平面PAC
(1)平面α内的任意一条直线必垂直于平面β
( ×)
(2)垂直于交线l的直线必垂直于平面β
( ×)
(3)过平面α内任意一点作交线的垂线,则此
√ 垂线必垂直于平面β( )
例1:如图,AB是⊙O的直径,C是圆周上不同 于A,B的任意一点,平面PAC⊥平面ABC,
(1)判断BC与平面PAC的位置关系,并证明。
同理在β内作c′ ⊥ c,有c ′ ⊥ γ,
所线以线b′ ‖c平′, 行
线面垂直
又b′ β, c′ β, 所以 b′ ‖ β.
又 b′ α, α ∩ β=a,
αa β
所以 b′ ‖ a, 故 a ⊥ γ.
b′ c′
γ
bc
练习2:如图,已知PA⊥平面ABC, 平面PAB⊥平面PBC,求证:BC⊥平面PAB
提出问题:
1、平面与平面垂直的定义
两个平面相交,如果它们所成的二面角是 直二面角,就说这两个平面互相垂直。
2、平面与平面垂直的判定定理
一个平面过另一个平面的垂
线,则这两该个命平面题垂正直确。吗?
符号表示:
b
bb
平面与平面垂直的性质定理
两Ⅰ个. 观平察面垂实直验,则一个平面
②一个平面内的已知直线必垂直于另一个平面内的无 数条直线;
③一个平面内的任意一条直线必垂直于另一个平面;
④过一个平面内的任意一点做交线的垂线,则此垂线 必垂直于另一个平面。
A3 B 2 C1 D 0
B如果平面 α ⊥平面 β ,那么平面 α 内所有直
线都垂直于平面 β
α C如果平面 不垂直于平面 β ,则平面 α 内一
定不存在直线垂直于平面 β
D如果平面 α 、β 都垂直于平面M,且 α 与 β
交于直线 a,则 a ⊥平面M
2、已知两个平面垂直,下列命题中正确的有(B )个
①一个平面内已知直线必垂直于另一个平面内的任意 直线;
证明:过点A作AE⊥PB,垂足 P 为E,
∵平面PAB⊥平面PBC,
平面PAB∩平面PBC=PB,
∴AE⊥平面PBC
A
C
∵BC 平面PBC ∴AE⊥BC
∵PA⊥平面ABC,BC 平面ABC
B
∴PA⊥BC
∵PA∩AE=A,∴BC⊥平面PAB
练习3:如图,以正方形ABCD的对角线AC为折 痕,使△ADC和△ABC折成相垂直的两个面, 求BD与平面ABC所成的角。
相关文档
最新文档