2018高考冲刺二项式、排列组合、概率统计难题突破(含解析)
高三数学-2018《排列、组合、概率、统计》高考题解析(

18-18《排列、组合、概率、统计》高考题解析(文科)一选择题1.从正方体的八个顶点中任取三个点作为三角形,直角三角形的个数为( 10.C ) A .56 B .52 C .48 D .40(18湖南10)2.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子里,每个盒内放一个球,恰好3个球的标号与其在盒子的标号不.一致的放入方法种数为( B )A .120B .240C .360D .720(18湖北11)3.已知8)(xax -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 (C ) A .28 B .38C .1或38D .1或28 (18福建9)4 若nxx )2(3+展开式中存在常数项,则n 的值可以是( C )(A) 8 (B) 9 (C) 10 (D) 12(18浙江7)5.73)12(xx -的展开式中常数项是( A )A .14B .-14C .42D .-42(18河北5)(6) 61x ⎫⎪⎭展开式中的常数项为(A )A . 15B . 15-C . 20D . 20-(18广西6)7从长度分别为1,2,3,4的四条线段中,任取三条的不同取法有n 种.在这些取法中,以取出的三条线段为边可组成的三角形的个数为m,则nm等于5. B (A) 0 (B) 41 (C) 21 (D) 43(18北京5)8.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成这两项调查宜采用的抽样方法依次为( 6.B )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法(18湖南6)9.某地2018年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下,则根据表中数据,就业形势一定是( B )A .计算机行业好于化工行业.B .建筑行业好于物流行业.C .机械行业最紧张.D .营销行业比贸易行业紧张. (18上海16) 10.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( D )A .2140B .1740C .310D .7120(18重庆1111.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任), 要求这3位班主任中男、女教师都要有,则不同的选派方案共有( B )A .210种B .420种C .630种D .840种(18甘肃9)(12) 4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有(C ) A . 12 种B . 24 种C 36 种D . 48 种 (18广西12)13.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( C )A .95 B .94 C .2111 D .2110(18河北11) 14.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有 ( C )A .56个B .57个C .58个D .60个(18四川12)15在8(1)(1)x x -+的展开式中5x 的系数是B(A )-14 (B )14 (C )-28 (D )28(18四川3)计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表: 例如,用十六进制表示:E+D=1B ,则A ×B= A(A )6E (B )72 (C )5F (D )B0(18四川12) 16五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(8)B(A )1444C C 种 (B )1444C A 种 (C )44C 种 (D )44A 种(18北京8) 17若n x )21(+展开式中含3x 的项的系数等于含x 的项的系数的8倍,则n 等于(8.A ) A .5 B .7 C .9 D .11(18重庆8) 18把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是( 9.D ) A .168 B .96 C .72 D .144(18湖北9) 19某初级中学有学生270人,其中一年级118人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,118,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 (12.D ) A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样(18湖北12) 20如果(3n x -的展开式中各项系数之和为128,则展开式中31x 的系数是(C ) (A )7 (B) 7- (C) 21 (D)21- (18山东6) 21 10张奖券中只有3张有奖,5个人购买,每人1张,至少有1人中奖的概率是(D ) (A )310 (B) 112 (C) 12 (D)1112(18山东10) 22123)(x x +的展开式中,含x 的正整数次幂的项共有 3.B )A .4项B .3项C .2项D .1项(18江西3) 23将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为(7.A ) A .70 B .140 C .280 D .840(18江西7)24为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a , b 的值分别为( 12.A )A .0,27,78B .0,27,83C .2.7,78D .2.7,83(18江西12)25从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:则取到号码为奇数的频率是(A )A .0.53B .0.5C .0.47D .0.37(18浙江6) 26在54(1)(1)x x +-+的展开式中,含3x 的项的系数是(C )(A)5- (B) 5 (C) -10 (D) 10 (18浙江5) 二填空题1.若在二项式(x +1)10的展开式中任取一项,则该项的系数为奇数的概率是 114. (结果用分数表示)(18上海9) 2.92)1(x x +的展开式中的常数项为___84 _______(用数字作答) (18湖南14) 3.8)1(xx -展开式中5x 的系数为 28 . (18甘肃13)4.已知nx x )(2121-+的展开式中各项系数的和是128,则展开式中x 5的系数是35 .(以数字作答)(18湖北14)5.已知a 为实数,10)(a x +展开式中7x 的系数是-15,则=a 21-. (18四川13) 6.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m+k 的个位数字相同,若m=6,则在第7组中抽取的号码是 63 .(18福建15)7.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;已知从女学生中抽取的人数为80人,则n= 192 . (18湖北15)8. 某工厂生产A 、B 、C 三种不同型号的产品。
考点26 排列与组合、二项式定理-2018届高考数学理30个

2018届高考30个黄金考点精析精训考点26 排列与组合、二项式定理(理)【考点剖析】1.最新考试说明:1.分类加法计数原理、分步乘法计数原理 (1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题. 2.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式. (3)能解决简单的实际问题. 3.二项式定理(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题. 2.命题方向预测:以实际问题为背景考查排列、组合的应用,同时考查分类讨论的思想.以选择题或填空题的形式考查,或在解答题中和概率相结合进行考查. 二项展开式中的特定项、特定项的系数、二项式系数等是高考的热点.常以选择题、填空题的形式考查,近几年试题难度呈降低趋势. 3.名师二级结论: 一个区别排列与组合,排列与组合最根本的区别在于“有序”和“无序”.取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合. 两个公式(1)排列数公式n !A ()!mn n m =-(2)组合数公式n !C !()!m n m n m =-,利用这两个公式可计算排列问题中的排列数和组合问题中的组合数.①解决排列组合问题可遵循“先组合后排列”的原则,区分排列组合问题主要是判断“有序”和“无序”,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现“有序”和“无序”.②要能够写出所有符合条件的排列或组合,尽可能使写出的排列或组合与计算的排列数相符,使复杂问题简单化,这样既可以加深对问题的理解,检验算法的正确与否,又可以对排列数或组合数较小的问题的解决起到事半功倍的效果. 四字口诀求解排列组合问题的思路:“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.” 一个防范运用二项式定理一定要牢记通项T r +1=C r n an -r b r,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C rn ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 一个定理二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续. 两种应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性; (2)增减性;(3)各项二项式系数的和;以上性质可通过观察杨辉三角进行归纳总结. 4.考点交汇展示: (1)与基本不等式相结合若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 .【答案】2(2)与定积分相结合已知11(1a dx -=⎰,则61()2a x x π⎡⎤--⎢⎥⎣⎦展开式中的常数项为 。
2018年高考数学分类汇编:专题排列组合、程序框图、二项展开式试题及答案详解

2018年高考数学分类汇编----排列组合1、(2018年高考全国卷1理科第15题)(5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有16种.(用数字填写答案)【解答】解:方法一:直接法,1女2男,有C21C42=12,2女1男,有C22C41=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C63﹣C43=20﹣4=16种,故答案为:162、(2018年高考全国卷II文科第5题)(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6 B.0.5 C.0.4 D.0.3【解答】解:从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P==0.3,故选:D.3、(2018年高考上海卷第9题)(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.4、(2018年高考浙江卷第16题)(4分)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260个没有重复数字的四位数.(用数字作答)【解答】解:从1,3,5,7,9中任取2个数字有种方法,从2,4,6,0中任取2个数字不含0时,有种方法,可以组成=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有=540,故一共可以组成1260个没有重复数字的四位数.故答案为:1260.2018年高考数学分类汇编----程序框图1、(2018年高考全国卷II文科第8题)(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【解答】解:模拟程序框图的运行过程知,该程序运行后输出的是S=N﹣T=(1﹣)+(﹣)+…+(﹣);累加步长是2,则在空白处应填入i=i+2.故选:B.2、(2018年高考全国卷II理科第14题)(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【解答】解:模拟程序框图的运行过程知,该程序运行后输出的是S=N﹣T=(1﹣)+(﹣)+…+(﹣);累加步长是2,则在空白处应填入i=i+2.故选:B.3、(2018年高考北京卷文科第3题)(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.【解答】解:在执行第一次循环时,k=1,S=1.在执行第一次循环时,S=1﹣=.由于k=2≤3,所以执行下一次循环.S=,k=3,直接输出S=,故选:B.4、(2018年高考北京卷理科第3题)(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.【解答】解:在执行第一次循环时,k=1,S=1.在执行第一次循环时,S=1﹣=.由于k=2≤3,所以执行下一次循环.S=,k=3,直接输出S=,故选:B.5、(2018年高考江苏卷第4题)(5分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为8.【解答】解:模拟程序的运行过程如下;I=1,S=1,I=3,S=2,I=5,S=4,I=7,S=8,此时不满足循环条件,则输出S=8.故答案为:8.6、(2018年高考天津卷文科第4题)(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4【解答】解:若输入N=20,则i=2,T=0,==10是整数,满足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件.,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B.7、(2018年高考天津卷理科第3题)(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4【解答】解:若输入N=20,则i=2,T=0,==10是整数,满足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件.,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B.2018年高考数学分类汇编----二项展开式1、(2018年高考全国卷III理科第5题)(5分)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.80【解答】解:由二项式定理得(x2+)5的展开式的通项为:T r+1=(x2)5﹣r()r=,由10﹣3r=4,解得r=2,∴(x2+)5的展开式中x4的系数为=40.故选:C.2、(2018年高考上海卷第3题)(4分)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【解答】解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.3、(2018年高考天津卷理科第10题)(5分)在(x﹣)5的展开式中,x2的系数为.【解答】解:(x﹣)5的二项展开式的通项为=.由,得r=2.∴x2的系数为.故答案为:.4、(2018年高考浙江卷第14题)(4分)二项式(+)8的展开式的常数项是7.【解答】解:由=.令=0,得r=2.∴二项式(+)8的展开式的常数项是.故答案为:7.。
专题9排列组合二项式定理-2018年高考数学(理)名师押题冲刺系列含解析

专题9排列组合二项式定理-2018年高考数学(理)名师押题冲刺系列含解析一.排列组合小题(一)命题特点和预测:分析近7年的高考试题全国卷1,发现7年1考,主要考查利用两个计数原理及排列组合的知识与方法计算分配等计数问题,试题难度为基础题.因近几年没有考查排列组合小题,2018年一定会回归,考一个排列组合小题,主要考查利用两个计数原理及排列组合的知识与方法计算分配等计数问题,试题难度为基础题.(二)历年试题比较:【解析与点睛】(三)命题专家押题A. B. 种 C. D.A. B. C. D.A. B. C. D. 【详细解析】景区,共有种选法,故方案有种,选D.3.【答案】A【解析】第一步:甲、乙两本书必须摆放在两端,有种排法;第二步:丙、丁两本书必须相邻视为整体与其它两本共三本,有种排法;∴,故选:A.4.【答案】B6.【答案】40【解析】当排队顺序为男女男女男女时:若甲位于第一个位置,则乙位于第二个位置,余下四人的站法有种方法,若甲位于第三个位置,则乙有种位置进行选择,余下四人的站法有种方法,据此可得,排队顺序为男女男女男女时,不同的站法有种;同理,当排队顺序为女男女男女男时,不同的站法有种,综上可得,满足题意的站法有种.7.【答案】B【解析】首先将甲排在中间,乙、丙两位同学不能相邻,则两人必须站在甲的两侧,选出一人排在左侧,有: 1122C A 种方法,另外一人排在右侧,有12A 种方法,余下两人排在余下的两个空,有22A 种方法,综上可得:不同的站法有1112222216C A A A =种,故选B .8.【答案】D二.二项式定理小题(一)命题特点和预测:分析近7年的高考题发现,7年6考,每年1题,主要考查利用二项式定理的通项求展开式的特定项、两个二项式乘积展开式的指定项、二项式系数的性质或三项式展开式的指定项的系数,难度是基础题.2018年仍将有一个二项式定理题,考查内容为求若干个二项式乘积展开式的指定项,难度仍为基础题.(二)历年试题比较:【解析与点睛】 (2017年)【解析】621(1)(1)x x ++展开式中含2x 的项为224426621130C x C x x x ⋅+⋅=,故2x 前系数为30,选C(2016年)【解析】1+r T =r rrx x C )()2(55-=25552r r rxC --,由题知,325=-r,解得4=r ,所以x 3的系数为454-52C =10.解得m =6,故选B.(2011年)【解析】令x =1得,5(1)(21)a +-=2,解得a =1,第2个因式的通项公式为1r T +=551(2)()r r r C x x--=5525(1)2r r r r C x ---⨯当第1个因式取x ,第2因式展开式取1x,即521r -=-,解得r =3,当第1个因式取1x,第2因式展开式取x ,即52r -=1,解得r =2,∴常数项为33535(1)2C --⨯+22525(1)2C --⨯=40,故选D.(三)命题专家押题__________.(用数字作答已知,,展开式的常数项为,则已知的展开式中所有偶数项系数之和为496若,则__________2552已知展开式的各个二项式系数的和为,则的展开式中的系数(A. B. C. D.已知二项式A. B. C.设,若,则(A. B. C. D.【详细解析】3.【答案】【解析】展开式的通项公式为,令,得,从而求的,整理得,而,故答案是.4.【答案】2706.【答案】D 【解析】()523x x y+-的展开式中通项公式: ()()52153rrrr T C y x x -+=-+,令52r -=,解得3r = ,()()()()()32232622333333x xx xx x x x ∴+=+⋅+⨯+, 52x y ∴的系数35990C =⨯=,故选D .7.【答案】D【解析】∵1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,∴n 为偶数,展开式共有13项,则12n =.121x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()1212211r r rr T C x -+=-,令1222r -=,即5r =. ∴展开式中含2x 项的系数是()12551792C -=-,故选D.8.【答案】A 【解析】∵展开式的各个二项式系数的和为∴,则,即.设的通项公式为.令,则,∴的展开式中的系数为,故选A.9.【答案】B。
2018年高三数学(理)11.排列组合、二项式定理Word版含解析

【答案】 B
【解析】
考点:排列、组合及简单计数问题. 2. 【河北省衡水中学 2016 届高三上学期七调考试数学(理)试题】在二项式
n
1 x
2 4x
的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理数都互不相
邻的概率为( )
1
A.
6
1
1
B.
C.
4
3
【答案】 D
5
D.
12
【解析】
试题分析:展开式通项为
(结果用数值表示) .
【答案】 45 【解析】
考点:二项式定理 .
7. 【河北省邯郸市第一中学 2016 届高三下学期研六考试数学(理)试题】已知
7
xm
a0
a1 x a2 x2
a7 x7 的展开式中 x4 的系数是 -35 ,则 a1 a2 a7
.
【答案】 1
【解析】
试题分析:∵
7
xm
a0 a1 x a2 x2
为: 1. 考点:二项式系数的性质. 8. 【河北省武邑中学 2016 届高三上学期期末考试数学(理)试题】若
项系数绝对值之和为 1024 ,则展开式中 x 项的系数为 _______.
( x 3 ) n 展开式的各 x
【答案】 15
【解析】
试题分析: 在 ( x 3 )n 的展开式中, 令 x 1 ,可得 ( x 3 ) n 展开式的各项系数绝对值之和
数时用插入法,即把 6 个无理数排列,形成 7 个空档(含两头的) ,在这 7 个空档中选取 3 个
排列这 3 个有理数可得方法数.
3. 【湖南师范大学附属中学 2016 届高三上学期月考(三)理科数学试题】现有
高三数学冲刺专题练习—排列组合概率(含答案详解) (2)

高三数学冲刺专题练习——排列组合概率1. 概率1.已知某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为2125,则该队员每次罚球的命中率p 为 .【分析】根据题意,分析可得两次罚球中两次都名中的概率为21412525-=,由相互独立事件的概率公式可得关于p 的方程,解可得答案.【解答】解:根据题意,该队员在两次罚球中至多命中一次的概率为2125, 则两次罚球中两次都名中的概率为21412525-=, 则有2425p =,解可得25P =. 【点评】本题考查相互独立事件概率乘法公式和互斥事件概率加法公式,注意分析事件之间的关系,属于基础题.2.某市在创建“全国文明城市”活动中大力加强垃圾分类投放宣传.某居民小区设有“厨余垃圾”、“可回收垃圾”、“其它垃圾”、“有害垃圾”四种不同的垃圾桶.一天,居民小陈提着上述分好类的垃圾各一袋,随机每桶投一袋,则恰好有两袋垃圾投对的概率为 . 【分析】根据古典概率模型的概率公式即可求解.【解答】解:4袋不同垃圾投4个不同的垃圾桶有4424A =种不同投法, 而恰好有两袋垃圾投对的投法数为246C =, ∴恰好有两袋垃圾投对的概率61244P ==. 【点评】本题考查古典概率模型的概率公式,属基础题.3.某校为落实“双减”政策.在课后服务时间开展了丰富多彩的体育兴趣小组活动,现有甲、乙、丙、丁四名同学拟参加篮球、足球、乒乓球、羽毛球四项活动,由于受个人精力和时间限制,每人只能等可能的选择参加其中一项活动,则恰有两人参加同一项活动的概率为 .【分析】首先分析得到四名同学总共的选择为44个选择,然后分析恰有两人参加同一项活动的情况为2144C C ,则剩下两名同学不能再选择同一项活动,他们的选择情况为23A ,然后进行计算即可. 【解答】解:每人只能等可能的选择参加其中一项活动,且可以参加相同的项目,∴四名同学总共的选择为44个选择,恰有两人参加同一项活动的情况为2144C C ,剩下两名同学的选择有23A 种,∴恰有两人参加同一项活动的概率为21244349416C C A ⋅⋅=. 【点评】本题考查了古典概型及其概率的计算公式,解题的关键是能用排列组合的知识将满足条件的选择方案数计算出来.4.将7个人(含甲、乙)分成三个组,一组3人,另两组各2人,则甲、乙分在同一组的概率是 . 【分析】本题是一道平均分组问题,将7个人(含甲、乙)分成三个组,一组3人,另两组2人,有两个组都是两个人,而这两个组又没有区别,所以分组数容易重复,甲、乙分到同一组的概率要分类计算【解答】解:不同的分组数为3227421052!C C C a ==甲、乙分在同一组的方法种数有(1)若甲、乙分在3人组,有122542152!C C C =种(2)若甲、乙分在2人组,有3510C =种,故共有25种, 所以25510521P ==. 【点评】平均分组问题是概率中最困难的问题,解题时往往会忽略有些情况是相同的5.从1到10这十个自然数中随机取三个数,则其中一个数是另两个数之和的概率是 .【分析】所有的取法有310120C =种,其中一个数是另两个数之和的取法用力矩发求得共计20种,由此求得一个数是另两个数之和的概率.【解答】解:所有的取法有310120C =种,其中一个数是另两个数之和的取法有(1,2,3)、(1,3,4)、(1,4,5)、(1,5,6)、(1,6,7)、(1,7,8)、(1,9,10)、(2,3,5)、(2,4,6)、(2,5,7)、(2,6,8)、(2,7,9)、(2,8,10)、(3,4,7)、(3,5,8)、(3,6,9)、(3,7,10)、(4,5,9)、(4,6,10),共计20种,故其中一个数是另两个数之和的概率是2011206=. 【点评】本题考主要查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于基础题.6.把12枚相同的硬币分给甲、乙、丙三位同学,每位同学至少分到1枚,且他们拿到的硬币数量互不相同,则甲同学恰好拿到两枚硬币的概率为.【分析】利用插空法和古典概型可解决此题.【解答】解:根据插空法得把12枚相同的硬币分给甲、乙、丙三位同学,每位同学至少分到1枚的情况共2 1155C=种,其中甲、乙、丙三位同学拿到硬币有相同情况有(1,1,10),(1,10,1),(10,1,1),(2,2,8),(2,8,2),(8,2,2),(3,3,6),(3,6,3),(6,3,3),(4,4,4),(5,5,2),(5,2,5),(2,5,5)共计13种,故他们拿到的硬币数量互不相同的情况共有551342-=(种),甲同学恰好拿到两枚硬币的情况共有1936C-=(种),∴甲同学恰好拿到两枚硬币的概率为61 427=.【点评】本题考查插空法和古典概型,考查数学运算能力及抽象能力,属于中档题.7.2021年7月,我国河南省多地遭受千年一遇的暴雨,为指导防汛救灾工作,某部门安排甲,乙,丙,丁,戊五名专家赴郑州,洛阳两地工作,每地至少安排一名专家,则甲,乙被安排在不同地点工作的概率为.【分析】分郑州安排1名专家,洛阳安排4名专家,郑州安排2名专家,洛阳安排3名专家,郑州安排3名专家,洛阳安排2名专家,郑州安排4名专家,洛阳安排1名专家,四类分别求出每地至少安排一名专家和甲,乙被安排在不同地点工作的排法种数,从而得出答案.【解答】解:当郑州安排1名专家,洛阳安排4名专家,则有155C=种排法;郑州安排2名专家,洛阳安排3名专家,则有2510C=种排法;郑州安排3名专家,洛阳安排2名专家,则有3510C=种排法;郑州安排4名专家,洛阳安排1名专家,则有455C=种排法;所以每地至少安排一名专家共有51010530+++=种不同的排法,若甲,乙被安排在不同地点工作,当郑州安排1名专家,洛阳安排4名专家,则有122C=种排法;郑州安排2名专家,洛阳安排3名专家,则有11236C C⋅=种排法;郑州安排3名专家,洛阳安排2名专家,则有12236C C⋅=种排法;郑州安排4名专家,洛阳安排1名专家,则有13232C C ⋅=种排法; 所以甲,乙被安排在不同地点工作,共有266216+++=种不同的排法, 所以甲,乙被安排在不同地点工作的概率为1683015=. 【点评】本题考查古典概型及其计算公式,考查学生的分析解决问题的能力,属于中档题.8.为了实施“科技下乡,精准脱贫”战略,某县科技特派员带着A ,B ,C 三个农业扶贫项目进驻某村,对仅有的四个贫困户进行产业帮扶.经过前期走访得知,这四个贫困户甲、乙、丙、丁选择A ,B ,C 三个项目的意向如表:扶贫项目 ABC选择意向贫困户甲、乙、丙、丁甲、乙、丙丙、丁若每个贫困户只能从自己登记的选择意向中随机选取一项,且每个项目至多有两户选择,则甲乙两户选择同一个扶贫项目的概率为 .【分析】由题意可知,甲乙只能选A ,B 项目,丁只能选A ,C 项目,丙则都可以.所以分成三类将所有情况计算出来,套用概率公式计算即可.【解答】解:由题意:甲乙只能选A ,B 项目,丁只能选A ,C 项目,丙则都可以. 由题意基本事件可分以下三类:(1)甲乙都选A ,则丁只能选C ,丙则可以选B ,C 任一个,故共有2种方法;(2)甲乙都选B ,则丁可以选A 或C ,丙也可选A 或C ,故共有11224C C =种方法. (3)甲乙分别选AB 之一,然后丁选A 时,丙只能选B 或C ;丁选C 时,丙则A ,B ,C 都可以选.故有211223()10A C C +=种方法.故基本事件共有241016++=种. 甲乙选同一种项目的共有246+=种. 故甲乙选同一项目的概率63168P ==. 【点评】本题考查了古典概型概率的计算方法,分类求基本事件时有一定难度.属于中档题, 9.在中国国际大数据产业博览会期间,有甲、乙、丙、丁4名游客准备到贵州的黄果树瀑布、梵净山、万峰林三个景点旅游参观,其中的每个人只去一个景点,每个景点至少要去一个人,则游客甲去梵净山的概率为 .【分析】分类计算游客甲去梵净山包含的基本事件的个数,代入古典概型的概率计算公式即可.【解答】解:设{A=游客甲去梵净山},则基本事件的总数为112321431236C CC AA⨯=个.事件A发生时①若甲单独去梵净山,有22326C A⨯个基本事件,②去梵净山的游客除甲外还有1人,则有12326C A⨯=个基本事件.P∴(A)661363+==.【点评】本题考查了古典概型的概率计算,在求事件A包含的基本事件个数时,牵扯到了平均分组问题,容易出错,本题为中档题.10.年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数2101-60岁至79岁的人数120133341380岁及以上的人数918149其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,1-代表“生活不能自理”.按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.则被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率是35(用分数作答).【分析】由分层抽样可知,被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0.列举出从这五人中抽取3人的选法,列举出恰有1位老龄人的健康指数不大于0的选法,代入古典概型概率公式求出.【解答】解;该小区健康指数大于0的老龄人共有280人,健康指数不大于0的老龄人共有70人,由分层抽样可知,被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0.设被抽取的4位健康指数大于0的老龄人为1,2,3,4,健康指数不大于0的老龄人为B.从这五人中抽取3人,结果有10种:(1,2,3),(1,2,4),(1,2,)B,(1,3,4),(1,3,)B,(1,4,)B,(2,3,4),(2,3,)B,(2,4,)B,(3,4,B,),其中恰有一位老龄人健康指数不大于0的有6种:(1,2,)B ,(1,3,)B ,(1,4,)B ,(2,3,)B ,(2,4,)B ,(3,4,B ,),∴被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率为63105= 故答案为:35【点评】本题考查概率的计算,考查学生利用数学知识解决实际问题,考查学生的计算能力,属于中档题. 11.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、候、公,共五级.现有每个级别的诸侯各一人,共五人要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m 个(m 为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是 .【分析】根据等差数列前n 项和公式得出首项与公差m 的关系,列举得出所有的分配方案,从而得出结论. 【解答】解:由题意可知等级从低到高的5个诸侯所分的橘子个数组成等差为m 的等差数列, 设“男”分的橘子个数为1a ,其前n 项和为n S ,则51545802S a m ⨯=+⨯=, 即1216a m +=,且1a ,m 均为正整数, 若12a =,则7m =,此时530a =, 若14a =,6m =,此时528a =, 若16a =,5m =,此时526a =, 若18a =,4m =,此时524a =, 若110a =,3m =,此时522a =, 若112a =,2m =,此时520a =, 若114a =,1m =,此时518a =, ∴ “公”恰好分得30个橘子的概率为17. 【点评】本题考查了等差数列的性质,古典概型的概率计算,属于中档题.12.某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为 .【分析】求出所有的分配方案和符合条件的分配方案,代入概率计算公式计算.【解答】解:将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每所高校至少有一个班级去,则共有42214-=种分配方案.恰有一个文科班和一个理科班分配到上海交通大学的方案共有224⨯=种,42147P ∴==. 【点评】本题考查了古典概型的概率计算,是基础题.13.2022年2月4日第24届冬季奥林匹克运动会在北京盛大开幕,中国冬奥健儿在赛场上摘金夺银,在国内掀起一波冬奥热的同时,带动了奥运会周边产品的热销,其中奥运吉祥物冰墩墩盲盒倍受欢迎,已知冰墩墩盲盒共有7个,6个是基础款,1个是隐藏款,随机购买两个,买到隐藏款的概率为 . 【分析】利用古典概型、排列组合直接求解.【解答】解:冰墩墩盲盒共有7个,6个是基础款,1个是隐藏款,随机购买两个, 基本事件总数2721n C ==,买到隐藏款包含的基本事件个数11166m C C ==, ∴买到隐藏款的概率62217m P n ===. 【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题. 14.抛挪一枚硬币,每次正面出现得1分,反面出现得2分,则恰好得到10分的概率是 6831024. 【分析】分类讨论,依据独立重复试验公式即可求得恰好得10分的概率. 【解答】解:抛掷一枚硬币,得1分的概率为12,得2分的概率为12, 恰好得到10分可分为6种情况:5个2分,共抛掷5次,概率为55511()232C ⨯=; 4个2分,2个1分,共抛掷6次,概率为466115()264C ⨯=; 3个2分,4个1分,共抛掷7次,概率为377135()2128C ⨯=; 2个2分,6个1分,共抛掷8次,概率为28817()264C ⨯=;1个2分,8个1分,共抛掷9次,概率为19919()2512C ⨯=; 10个1分,共抛掷10次,概率为1011()21024=;故恰好得到10分的概率是1153579168332641286451210241024+++++=,故答案为:6831024. 【点评】本题考查了独立重复试验的应用及分类讨论的思想方法应用,属于中档题.15.六位身高全不相同的同学拍照留念,摄影师要求前后两排各三人,则后排每人均比前排同学高的概率是120. 【分析】本题是一个等可能事件的概率,试验发生包含的事件是6个人进行全排列,共有66A 种结果,满足条件的事件是后排每人均比其前排的同学身材要高,则身高高的三个同学在后排排列,其余三个同学在前排排列,据概率公式得到结果.【解答】解:由题意知,本题是等可能事件的概率,试验发生包含的事件是6个人进行全排列,共有66720A =种结果, 满足条件的事件是后排每人均比其前排的同学身材要高, 则身高高的三个同学在后排排列,其余三个同学在前排排列,共有3333A A 种结果, ∴后排每人均比前排同学高的概率是36172020=, 故答案为:120【点评】本题考查等可能事件的概率,站队问题是排列组合中的典型问题,解题时要先排限制条件多的元素,把限制条件比较多的元素排列后,再排没有限制条件的元素.2. 排列组合1.五声音阶是中国古乐基本音阶,故有成语“五音不全“,中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上.排成一个五个音阶的音序.且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成 32 种不同的音序.【分析】根据角所在的位置,分两类,根据分类计数原理可得.【解答】解:若角排在一或五,有12A 种方法,再排商、徵,有22A 种方法,排宫、羽用插空法,有23A 种方法,利用乘法原理可得:12222324A A A =种, 若角排在二或四,同理可得:有222228A A =, 根据分类计数原理可得,共有24832+=种,故答案为:32.【点评】本题考查排列排列组合及简单计数问题,本题较抽象,计数时要考虑周详,本题以实际问题为背景,有着实际背景的题在现在的高考试卷上有逐步增多的趋势.2.从0,1,2,3,4,5中选出三个不同数字组成四位数(其中的一个数字用两次),如5224,则这样的四位数共有600个.【分析】根据题意,分当0被选用,且用两次;当0被选用,但用一次;当0没被选用三种情况讨论求解即可.【解答】解:当0被选用,且用两次,则先在个位,十位,百位这3个位置上选2个位置放0,再从剩下的5个数中选2个数字排在其他两个位置上,故有223560C A=个;当0被选用,但用一次,则先在个位,十位,百位这3个位置上选1个位置放0,再从剩下的5个数字中选2个数字,进而从选出的两个数字中选一个为出现两次的数字,最后在剩下的三个位置上选一个位置放置选出的2个数字中出现1次的数字,进而完成任务,故有12113523180C C C C=个;当0没被选用,则从1,2,3,4,5选3个数字,再从中选一个出现两次的数字,最后将其他两个数字选2个位置排序,故有312534360C C A=个所以,一共有60180360600++=个.故答案为:600.【点评】本题考查排列组合,考查学生推理能力,属于中档题.3.某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法数有36种(用数字作答).【分析】根据题意,分3步进行分析:①,先在4个社团中任选2个,有学生报名,②、将3名学生分为2组,③,进而将2组全排列,对应2个社团,分别求出每一步的情况数列,由分步计数原理计算可得答案.【解答】解:根据题意,分3步进行分析:①,根据题意,4个社团中恰有2个社团,即只有2个社团有人报名,则先在4个社团中任选2个,有学生报名,有246C=种选法,②、将3名学生分为2组,有233C=种分法,③,进而将2组全排列,对应2个社团,有222A=种情况,则恰有2个社团没有同学选报的报法数有63236⨯⨯=种; 故恰有2个社团没有同学选报的报法数有36种; 故答案为:36【点评】本题考查排列、组合的应用,涉及分步计数原理的应用,关键是正确进行分步分析.4.设集合1{(A x =,2x ,3x ,4x ,5)|{1i x x ∈-,0,1},1i =,2,3,4,5},则集合A 中满足条件“123451||||||||||3x x x x x ++++”元素个数为 130 .【分析】从条件“123451||||||||||3x x x x x ++++”入手,讨论i x 所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由{1i x ∈-,0,1},1i =,2,3,4,5},集合A 中满足条件“123451||||||||||3x x x x x ++++”, 由于||i x 只能取0或1,因此5个数值中有2个是0,3个是0和4个是0三种情况: ①i x 中有2个取值为0,另外3个从1-,1中取,共有方法数:2352⨯; ②i x 中有3个取值为0,另外2个从1-,1中取,共有方法数:3252⨯; ③i x 中有4个取值为0,另外1个从1-,1中取,共有方法数:452⨯.∴总共方法数是:23324555222130⨯+⨯+⨯=.故答案为:130.【点评】本题考查了组合数的计算公式及其思想、集合的性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.5.从1,2,3,4,5,6这6个数中随机取出5个数排成一排,依次记为a ,b ,c ,d ,e ,则使a b c d e +为奇数的不同排列方法有 180 种.【分析】按照分类讨论,先选后排的步骤,求出结果. 【解答】解:(分类讨论:先选后排)若a b c 为奇数,d e 为偶数时,有323336A A ⨯= 种; 若a b c 为偶数,d e 为奇数时,有2334144A A ⨯= 种; 故a b c d e +为奇数的不同排列方法有共36144180+=种, 故答案为:180.【点评】本题主要考查排列组合的应用,属于中档题.6.现有一排10个位置的空停车场,甲、乙、丙三辆不同的车去停放,要求每辆车左右两边都有空车位且甲车在乙、丙两车之间的停放方式共有 40 种.【分析】根据题意,先排好7个空车位,注意空车位是相同的,其中有6个空位符合条件,考虑顺序,将3车插入6个空位中,注意甲必须在乙、丙两车之间,由倍分法分析可得答案.【解答】解:先排7个空车位,由于空车位是相同的,则只有1种情况,其中有6个空位符合条件,考虑三车的顺序,将3辆车插入6个空位中,则共有361120A ⨯=种情况, 由于甲车在乙、丙两车之间,则有符合要求的坐法有1120403⨯=种;故答案为:40.【点评】本题考查排列、组合的应用,对于不相邻的问题采用插空法.7.某翻译处有8名翻译,其中有小张等3名英语翻译,小李等3名日语翻译,另外2名既能翻译英语又能翻译日语,现需选取5名翻译参加翻译工作,3名翻译英语,2名翻译日语,且小张与小李恰有1人选中,则有 29 种不同选取方法【分析】据题意,对选出的3名英语教师分5种情况讨论:①若从只会英语的3人中选3人翻译英语,②若从只会英语的3人中选2人翻译英语,(包含小张),③若从只会英语的3人选小张翻译英语,④、若从只会英语的3人中选2人翻译英语,(不包含小张),⑤、若从只会英语的3人中选1人翻译英语,(不包含小张),每种情况中先分析其余教师的选择方法,由分步计数原理计算每种情况的安排方法数目,进而由分类计数原理,将其相加计算可得答案. 【解答】解:根据题意,分5种情况讨论: ①、若从只会英语的3人中选3人翻译英语,则需要从剩余的4人(不含小李)中选出2人翻译日语即可,则不同的安排方案有246C =种, ②、若从只会英语的3人中选2人翻译英语,(包含小张)则先在既会英语又会日语的2人中选出1人翻译英语,再从剩余的3人(不含小李)中选出2人翻译日语即可,则不同的安排方案有11222312C C C ⨯⨯=种, ③、若从只会英语的3人选小张翻译英语,则先在既会英语又会日语的2人中选出2人翻译英语,再从剩余的2人(不含小李)中选出2人翻译日语即可,则不同的安排方案有22221C C⨯=种,④、若从只会英语的3人中选2人翻译英语,(不包含小张)则先在既会英语又会日语的2人中选出1人翻译英语,再从剩余的4人(小李必选)中选出2人翻译日语即可,则不同的安排方案有2112236C C C⨯⨯=种,⑤、若从只会英语的3人中选1人翻译英语,(不包含小张)则先在既会英语又会日语的2人中选出2人翻译英语,再从剩余的3人(小李必选)中选出2人翻译日语即可,则不同的安排方案有1212224C C C⨯⨯=种,则不同的安排方法有61216429++++=种.故答案为:29.【点评】本题考查排列、组合的运用,注意根据题意对“既会英语又会日语”的教师的分析以及小张与小李恰有1人选中,是本题的难点所在.8.有6张卡片分别写有数字1,1,1,2,3,4,从中任取3张,可排出不同的三位数的个数是34.(用数字作答)【分析】根据题意,按取出3张的卡片中写有1的卡片的张数分4种情况讨论,求出每种情况下排出不同的三位数的个数,由加法原理计算可得答案.【解答】解:根据题意,分4种情况讨论:①、取出3张的卡片全部是写有数字1的,有1种情况,②,取出3张的卡片有2张写有数字1的,有11339C C=种情况,③,取出3张的卡片有1张写有数字1的,有223318C A=种情况,④,取出3张的卡片没有写有数字1的,有336A=种情况,则一共有1918634+++=种情况,即可以排出34个不同的三位数;故答案为:34.【点评】本题考查排列、组合的应用,注意6张卡片中相同的情况.9.分配4名水暖工去3个不同的民居家里检查暖气管道,要求4名水暖工部分配出去,并每名水暖工只能去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有36种(用数字作答).【分析】根据题意,分2步分析:①,将4名水暖工分成3组,②,将分好的三组全排列,对应3个不同的居民家,由分步计数原理计算可得答案.【解答】解:根据题意,分2步分析:①,将4名水暖工分成3组,有246C=种分组方法,②,将分好的三组全排列,对应3个不同的居民家,有336A=种分配方法,则有6636⨯=种不同的分配方案;故答案为:36.【点评】本题考查排列、组合的应用,注意要先分组,再进行排列.10.3名男生和3名女生站成一排,要求男生互不相邻,女生也互不相邻且男生甲和女生乙必须相邻,则这样的不同站法有40种(用数字作答).【分析】根据题意,分2种情况讨论:①,六名学生按男女男女男女排列,②,六名学生按女男女男女男排列,分析每种情况的安排方法数,由加法原理计算可得答案.【解答】解:根据题意,要求3名男生和3名女站成一排,男生、女生各不相邻,则有2种情况;①,六名学生按男女男女男女排列,若男生甲在最左边的位置时,女生乙只能在其右侧,有1种情况,剩下的2名男生和女生都有222A=种情况,此时有1224⨯⨯=种安排方法,若男生甲不在最左边的位置时,女生乙可以在其左侧与右侧,有2种情况,剩下的2名男生和女生都有222A=种情况,此时有222216⨯⨯⨯=种安排方法;则此时有41620+=种安排方法;②,六名学生按女男女男女男排列,同理①,也有20种安排方法,则符合条件的安排方法有202040+=种;故答案为:40【点评】本题考查排列组合的应用,注意优先分析受到限制的元素.11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为.【分析】不考虑特殊情况,共有316C 种取法,其中每一种卡片各取三张,有344C 种取法,两种红色卡片,共有21412C C 种取法,由此可得结论. 【解答】解:由题意,不考虑特殊情况,共有316C 种取法,其中每一种卡片各取三张,有344C 种取法,两种红色卡片,共有21412C C 种取法, 故所求的取法共有332116441245601672472C C C C --=--= 故选:C .【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.12.因演出需要,身高互不相等的8名演员要排成一排成一个“波浪形”,即演员们的身高从最左边数起:第一个到第三个依次递增,第三个到第六个依次递减,第六、七、八个依次递增,则不同的排列方式有 .种【分析】依题意,重点要先排好3号位和6号位,余下的分类讨论分析即可. 【解答】解:上面的数字表示排列的位置,必须按照上图的方式排列,其中3号位必须比12456要高,1,6两处是排列里最低的,3,8两处是最高点,设8个演员按照从矮到高的顺序依次编号为1,2,3,4,5,6,7,8, 则 3号位最少是6,最大是8,下面分类讨论:①第3个位置选6号:先从1,2,3,4,5号中选两个放入前两个位置,余下的3个号中放入4,5,6号顺序是确定的只有一种情况,然后7,8号放入最后两个位置也是确定的,此时共2510C =种情况;②第3个位置选7号:先从1,2,3,4,5,6号中选两个放入前两个位置, 余下的4个号中最小的放入6号位置,剩下3个选2个放入4,5两个位置, 余下的号和8号放入最后两个位置,此时共226345C C =种情况;。
2018高考数学理二轮复习课件:1-6-2 排列、组合与二项式定理 精品

(2)[2015·郑州统考一]某人根据自己的爱好,希望从{W,X,Y,Z}中选 2 个不同的字母,从{0,2,6,8}中 选 3 个不同的数字编拟车牌号,要求前 3 位是数字,后 2 位是字母,且数字 2 不能排在首位,字母 Z 和数 字 2 不能相邻,则满足要求的车牌号的个数为( )
A.198 B.180 C.216 D.234
(2)[2015·湖北四校联考]有 5 名优秀毕业生到母校的 3 个班去做学习经验交流,则每个班至少去一名的
不同分派方法种数为( )
A.150
B.180
C.200
D.280
[解析] 分两类,一类 3 个班分派的毕业生人数分别为 2,2,1,则有CA52C22 23·A33=90 种分派方法;另一 类 3 个班分派的毕业生人数分别为 1,1,3,则有 C35·A33=60 种分派方法,所以不同分派方法种数为 90+ 60=150,故选 A.
(n,m∈N*,且 m≤n);
(2)Cmn+1= Cmn +Cmn -1
(n,m∈N*,且 m≤n);
(3)C0n=1.
2.二项式定理
(a+b)n= C0nan+C1nan-1b1+C2nan-2b2+…+Cknan-k·bk+…+Cnnbn ,其中通项 Tr+1= Crnan-rbr .
3.二项式系数的性质
建模规范答题
课题 21 分类讨论思想解答排列组合应用题
[2015·四川高考]用数字 0,1,2,3,4,5 组成没有重复数字的五位数,其中比 40000 大的偶数共有
()
A.144 个
B.120 个
C.96 个
D.72 个
[规范解答] 当五位数的万位为 4 时,个位可以是 0,2,此时满足条件的偶数共有 C12A34=48(个);当 五位数的万位为 5 时,个位可以是 0,2,4,此时满足条件的偶数共有 C13A34=72(个),所以比 40000 大的 偶数共有 48+72=120(个),选 B.
2018年高考数学基础强化训练题—排列、组合、二项式、概率与统计 精品

2018年高考数学基础强化训练题 —《排列、组合、二项式、概率与统计》一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.(理)下列随机变量中,不是离散型随机变量的是 ( ) A .从10只编号的球(0号到9号)中任取一只,被取出的球的号码ξ B .抛掷两个骰子,所得的最大点数ξC .[0,10]区间内任一实数与它四舍五人取整后的整数的差值ξD .一电信局在未来某日内接到的电话呼叫次数ξ(文)现有10张奖票,只有1张可中奖,第一人与第十人抽中奖的概率为 ( ) A .101,21B .21,101C .101,101 D .101,109 2.为了让人们感知丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢的塑料袋的数量,结果如下(单位:个):33、25、28、26、25、31.如果该班有45名学生,那么根据提供的数据估计本周全班同学各家共丢弃塑料袋 ( ) A .900个 B .1080个 C .1260个 D .1800个 3.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行, 从一间蜂房爬到与之相邻的右方蜂房中去,从最初位置爬到4号蜂房 中,则不同的爬法有 ( ) A .4种 B .6种 C .8种 D .10种4.A 21+n 与A 3n 的大小关系是 ( )A .A 21+n > A 3nB .A 21+n < A 3n C .A 21+n = A 3n D .大小关系不定5.(理)若f (m )=∑=ni in i C m 0,则)1(log )3(log 22f f 等于( )A .2B .21C .1D .3 (文)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有 种 A .1320 B .288 C .1530 D .670 6.(理)在二项式(3x -i )6的展开式中(其中2i =-1),各项系数的和为 ( )A .64iB .-64iC .64D .-64 (文)已知(2a 3+a1)n的展开式的常数项是第7项,则正整数n 的值为 (A .7B .8C .9D .107.右图中有一个信号源和五个接收器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式、排列组合、概率统计难题突破一.选择题(共18小题)1.把平面图形M上的所有点在一个平面上的射影构成的图形M′叫作图形M在这个平面上的射影.如图,在三棱锥A﹣BCD中,BD⊥CD,AB⊥DB,AC⊥DC,AB=DB=5,CD=4,将围成三棱锥的四个三角形的面积从小到大依次记为S1,S2,S3,S4,设面积为S2的三角形所在的平面为α,则面积为S4的三角形在平面α上的射影的面积是()A.2B.C.10 D.302.三棱锥A﹣BCD中,AB,AC,AD两两垂直,其外接球半径为2,设三棱锥A ﹣BCD的侧面积为S,则S的最大值为()A.4 B.6 C.8 D.163.已知a=(﹣ex)dx,若(1﹣ax)2017=b0+b1x+b2x2+…+b2017x2017(x∈R),则的值为()A.0 B.﹣1 C.1 D.e4.已知函数,其中m∈{2,4,6,8},n∈{1,3,5,7},从这些函数中任取不同的两个函数,在它们在(1,f(1))处的切线相互平行的概率是()A.B.C.D.以上都不对5.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种6.记,则a0+a1+a2+…a6的值为()A.1 B.2 C.129 D.21887.已知:,则a6=()A.﹣28 B.﹣448 C.112 D.4488.有5名学生站成一排照相,其中甲、乙两人必须站在一起的排法有()A.A种B.3A种C.2A种 D.A种9.某班级需要把6名同学安排到周一、周二、周三这三天值日,每天安排2名同学,已知甲不能安排到周一,乙和丙不能安排到同一天,则安排方案的种数为()A.24 B.36 C.48 D.7210.在区间[0,1]上随机取两个数x,y,记P1为事件“x+y≥”的概率,P2为事件“|x﹣y|≤”的概率,P3为事件“xy≤”的概率,则()A.P1<P2<P3B.P2<P3<P1C.P3<P1<P2D.P3<P2<P111.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩12.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多13.若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.14.设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M 是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为()A. B.C.D.115.过抛物线x2=2y上两点A、B分别作切线,若两条切线互相垂直,则线段AB 的中点到抛物线准线的距离的最小值为()A.B.1 C.D.216.过抛物线y2=2px(p>0)的焦点F,且倾斜角为的直线与抛物线交于A,B两点,若AB的垂直平分线经过点(0,2),M为抛物线上的一个动点,则M 到直线11:5x﹣4y+4=0和l2:x=﹣的距离之和的最小值为()A.B.C.D.17.如图,O是坐标原点,过E(p,0)的直线分别交抛物线y2=2px(p>0)于A、B两点,直线BO与过点A平行于x轴的直线相交于点M,过点M与此抛物线相切的直线与直线x=p相交于点N.则|ME|2﹣|NE|2=()A.2p2B.2p C.4p D.p18.等腰直角三角形AOB内接于抛物线y2=2px(p>0),O为抛物线的顶点,OA ⊥OB,△AOB的面积是16,抛物线的焦点为F,若M是抛物线上的动点,则的最大值为()A. B. C.D.二.填空题(共4小题)19.在数列{a n}中,a1=1,a n=a n﹣1(n≥2,n∈N*),则数列{}的前n项和T n=.20.如图,将一块半径为2的半圆形纸板切割成等腰梯形的形状,下底AB是半圆的直径,上底CD的端点在半圆上,则所得梯形的最大面积为.21.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天,若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为.(用数字作答)22.在△ABC中,∠A=θ,D、E分别为AB、AC的中点,且BE⊥CD,则cos2θ的最小值为.三.解答题(共18小题)23.为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).某市随机抽取10户同一个月的用电情况,得到统计表如下:(1)若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算A居民用电户用电410度时应交电费多少元?(2)现要在这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;(3)以表中抽到的10户作为样本估计全市的居民用电,现从全市中依次抽取10户,若抽到k户用电量为第一阶梯的可能性最大,求k的值.24.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:K2=,其中n=a+b+c+d.参考数据:25.某加油站工作人员根据以往该加油站的销售情况,绘制了该加油站日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求未来3天内,连续2天日销售量不低于40吨,另一天的日销售量低于40吨的概率;(2)用ξ表示未来3天日销售量不低于40吨的天数,求随机变量ξ的数学期望.26.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(Ⅰ)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(Ⅱ)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.27.某市举行“中学生诗词大赛”海选,规定:成绩大于或等于90分的具有参赛资格.某校有800名学生参加了海选,所有学生的成绩均在区间[30,150]内,其频率分布直方图如图:(Ⅰ)求获得参赛资格的人数;(Ⅱ)若大赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为,求甲在初赛中答题个数X的分布列及数学期望E(X)28.翡翠市场流行一种赌石“游戏规则”:翡翠在开采出来时有一层风化皮包裹着,无法知道其内的好坏,须切割后方能知道翡翠的价值,参加者先缴纳一定金额后可得到一块翡翠石并现场开石验证其具有的收藏价值.某举办商在赌石游戏中设置了甲、乙两种赌石规则,规则甲的赌中率为,赌中后可获得20万元;规则乙的赌中率为P0(0<P0<1),赌中后可得30万元;未赌中则没有收获.每人有且只有一次赌石机会,每次赌中与否互不影响,赌石结束后当场得到兑现金额.(1)收藏者张先生选择规则甲赌石,收藏者李先生选择规则乙赌石,记他们的累计获得金额数为X(单位:万元),若X≤30的概率为,求P0的大小;(2)若收藏者张先生、李先生都选择赌石规则甲或选择赌石规则乙进行赌石,问:他们选择何种规则赌石,累计得到金额的数学期望最大?29.德阳中学数学竞赛培训共开设有初等代数、初等几何、初等数论和微积分初步共四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格,现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同,(见下表),且每一门课程是否合格相互独立,合格的概率(1)求甲同学取得参加数学竞赛复赛的资格的概率;(2)记ξ表示三位同学中取得参加数学竞赛复赛的资格的人数,求ξ的分布列及期望Eξ.30.某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数.东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,(频率为概率)(Ⅰ)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;(Ⅱ)设ξ表示一天中早高峰时间段发生拥堵的主干道入口个数,求ξ的分布列及数学期望.31.甲、乙、丙均两次参加英语高考,取两次成绩中较高的为最终成绩,三人第一次成绩不低于130分的概率依次为、.甲若第一次成绩不低于130分,则第二次成绩不低于130分的概率为,若第一次成绩在130分以下,则第二次成绩不低于130分的概率为;乙若第一次成绩不低于130分,则第二次成绩不低于130分的概率为,若第一次成绩在130分以下,则第二次成绩不低于130分的概率为;丙第二次成绩不受第一次成绩的影响,不低于130分的概率为.(Ⅰ)设A为事件“甲的英语高考最终成绩不低于130分”,B为事件“乙的英语高考最终成绩不低于130分”,C为事件“丙的英语高考最终成绩不低于130分”,分别求出事件A、事件B、事件C发生的概率;(Ⅱ)设甲、乙、丙中英语高考最终成绩不低于130分的人数为X,求X的分布列与数学期望.32.甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.33.已知函数f(x)=e ax(a≠0).(1)当时,令(x>0),求函数g(x)在[m,m+1](m>0)上的最小值;(2)若对于一切x∈R,f(x)﹣x﹣1≥0恒成立,求a的取值集合;(3)求证:.34.设f(x)=xe x(e为自然对数的底数),g(x)=(x+1)2.(Ⅰ)记,讨论函数F(x)的单调性;(Ⅱ)令G(x)=af(x)+g(x)(a∈R),若函数G(x)有两个零点,求实数a 的取值范围.35.已知函数f(x)=+lnx﹣1(m∈R)的两个零点为x1,x2(x1<x2).(1)求实数m的取值范围;(2)求证:+>.36.已知函数f(x)=alnx﹣x+,其中a>0(Ⅰ)若f(x)在(2,+∞)上存在极值点,求a的取值范围;(Ⅱ)设x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,记为M(a).则a≤e+时,M(a)是否存在最大值?若存在,求出最大值;若不存在,请说明理由.37.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF上一点,且DM ⊥平面ACE.(1)求BM的长;(2)求二面角A﹣DM﹣B的余弦值的大小.38.几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题,然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如表:(1)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;(2)若对年龄在[15,20)[20,25)的被调查人中随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为X ,求随机变量X 的分布列及数学期望. 参考数据: 参考公式:K 2=,其中n=a +b +c +d .39.为宣传3月5日学雷锋纪念日,成都七中在高一,高二年级中举行学雷锋知识竞赛,每年级出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用X表示甲队总得分.(1)求随机变量X的分布列及其数学期望E(X);(2)求甲队和乙队得分之和为4的概率.40.已知等边△AB′C′边长为,△BCD中,(如图1所示),现将B与B′,C与C′重合,将△AB′C′向上折起,使得(如图2所示).(1)若BC的中点O,求证:平面BCD⊥平面AOD;(2)在线段AC上是否存在一点E,使ED与面BCD成30°角,若存在,求出CE 的长度,若不存在,请说明理由;(3)求三棱锥A﹣BCD的外接球的表面积.参考答案与试题解析一.选择题(共18小题)1.【解答】解:如图所示,面积为S4的三角形在平面α上的射影为△OAC,面积为=2,故选:A.2.【解答】解:设AB,AC,AD分别为a,b,c,则三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,∴a2+b2+c2=16,S=(ab+bc+ac)≤(a2+b2+c2)=8,故选:C.3.【解答】解:=﹣=﹣=2.∵(1﹣2x)2017=,令x=0,则1=b0.x=,则0=b0+,∴=﹣1,故选:B.4.【解答】解:函数,导数为f′(x)=mx2+nx+1,可得在(1,f(1))处的切线斜率为m+n+1.则切线相互平行即有斜率相等,即有(m,n)为(2,7),(8,1),(4,5),(6,3),(2,5),(4,3),(6,1),(2,3),(4,1),(4,7),(6,5),(8,3),(8,5),(6,7)共++1++1=6+3+1+3+1=14组,总共有=120组,则它们在(1,f(1))处的切线相互平行的概率是=.故选:B.5.【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.6.【解答】解:在中,取x=0,得a0+a1+a2+…a6+a7=27=128.又(2﹣x)7=[3﹣(1+x)]7,∴=,则a7=﹣1.∴a0+a1+a2+…a6=128﹣a7=129.故选:C.7.【解答】解:令t=x﹣1,则,故,故选:A.8.【解答】解:根据题意,分2步分析:①,由于甲、乙两人必须站在一起,将甲乙2人看成一个整体,考虑其顺序,有A22种情况,②,将这个整体与其余3人全排列,有A44种情况,则甲、乙两人必须站在一起的排法A22A44种排法;故选:D.9.【解答】解:根据题意,分2种情况讨论:①、甲、乙、丙三人分在不同的三天值班,甲可以分在周二、周三,有2种安排方法,将乙、丙全排列,分在其他2天,有A22=2种安排方法,剩余的3人,全排列,安排在周一、周二、周三这三天,有A33=6种安排方法,则此时有2×2×6=24种安排方法;②,甲和乙、丙中的1人,安排在同一天值班,在乙、丙中选出1人,和甲一起分在周二、周三值班,有2×2=4种情况,剩余4人,平均分成2组,有C42=3种分组方法,再将2组全排列,对应剩下的2天值班,有A22=2种安排方法,则此时有4×3×2=24种安排方法;则有24+24=48种不同的安排方案,故选:C.【解答】解:分别作出事件对应的图象如图(阴影部分):P1:D(0,),F(,0),A(0,1),B(1,1),C(1,0),则阴影部分的面积S1=1×1﹣=1﹣=,S2=1×1﹣2×=1﹣=,S3=1×+dx=+lnx|=﹣ln=+ln2,∴S2<S3<S1,即P2<P3<P1,故选:B.11.【解答】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩,给甲看乙丙成绩,甲不知道自已的成绩,说明乙丙一优一良,假定乙丙都是优,则甲是良,假定乙丙都是良,则甲是优,那么甲就知道自已的成绩了.给乙看丙成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了故选:D.12.【解答】解:取两个球共有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,黑球y个,x+y=a.则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球.故选:B.13.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.14.【解答】解:由题意可得F(,0),设P(,y0),显然当y0<0,k OM<0;当y0>0,k OM>0.要求k OM的最大值,设y0>0,则=+=+=+(﹣)=+=(+,),可得k OM==≤=,当且仅当y02=2p2,取得等号.故选:C.15.【解答】解:设A(x1,),B(),过A、B分别作抛物线的切线相交于点P(x0,y0),由x2=2y,得:y′=x,∴k PA=x1,k PB=x2,∴PA⊥PB,∴x1x2=﹣1.直线PA的方程是:y﹣=(x﹣x1)…①同理,直线PB的方程是:y﹣=…②由①②得:∴y0=﹣(x∈R).设直线AB为y=kx+b,联立,得x2﹣2kx﹣2b=0,∴x1x2=﹣2b=﹣1,∴b=,∴直线AB恒过焦点(0,).∴线段AB的中点到抛物线准线的距离d=═=1,故选:B.16.【解答】解:抛物线y2=2px(p>0)的焦点F(,0),过焦点F且倾斜角为的直线方程为:y=x﹣,设A(x1,y1),B(x2,y2);由得,y2﹣2py﹣p2=0;∴y1+y2=2p,x1+x2=3p;∴弦AB的中点坐标为(,p)弦AB的垂直平分线方程为y﹣2=﹣x,弦AB的中点在该直线上;∴p﹣2=﹣,解得p=.(2)过点M分别作MB⊥l1,MA⊥l2,垂足分别为B,A.l2:x=﹣是抛物线y2=x的准线方程.抛物线y2=x的焦点为F(,0),由抛物线的定义可得|MA|=|MF|,∴|MA|+|MB|=|MB|+|MF|,当三点M,B,F共线时,|MA|+|MB|取得最小值.其最小值为点F到直线l1的距离=.故选:A.17.【解答】解:过E(p,0)的直线分别交抛物线y2=2px(p>0)于A、B两点为任意的,不妨设直线AB为x=p,由,解得y=±2p,则A(﹣p,﹣p),B(p,p),∵直线BM的方程为y=x,直线AM的方程为y=﹣p,解得M(﹣p,﹣p),∴|ME|2=(2p)2+2p2=6p2,设过点M与此抛物线相切的直线为y+p=k(x+p),由,消x整理可得ky2﹣2py﹣2p+2p2k=0,∴△=4p2﹣4k(﹣2p+2p2k)=0,解得k=,∴过点M与此抛物线相切的直线为y+p=(x+p),由,解得N(p,2p),∴|NE|2=4p2,∴|ME|2﹣|NE|2=6p2﹣4p2=2p2,故选:A.18.【解答】解:设等腰直角三角形OAB的顶点A(x1,y1),B(x2,y2),则y12=2px1,y22=2px2.由OA=OB得:x12+y12=x22+y22,∴x12﹣x22+2px1﹣2px2=0,即(x1﹣x2)(x1+x2+2p)=0,∵x1>0,x2>0,2p>0,∴x1=x2,即A,B关于x轴对称.∴直线OA的方程为:y=xtan45°=x,与抛物线联立,解得或,故AB=4p,=×2p×4p=4p2.∴S△OAB∵△AOB的面积为16,∴p=2;焦点F(1,0),设M(m,n),则n2=4m,m>0,设M 到准线x=﹣1的距离等于d,则==.令m+1=t,t>1,则=≤(当且仅当t=3时,等号成立).故的最大值为,故选:C.二.填空题(共4小题)19.【解答】解:在数列{a n}中,a1=1,a n=a n﹣1(n≥2,n∈N*),可得=•,令b n=,可得b n=•b n﹣1,由b n=b1••…•=1••…•=,可得a n=,即有==2(﹣),则前n项和T n=2(1﹣+﹣+…+﹣)=2(1﹣)=.故答案为:.20.【解答】解:连接OD,过C,D分别作DE⊥AB于E,CF⊥AB,垂足分别为E,F.设∠AOD=θ.OE=2cosθ,DE=2sinθ.可得CD=2OE=4cosθ,∴梯形ABCD的面积S==4sinθ(1+cosθ),S′=4(cosθ+cos2θ﹣sin2θ)=4(2cos2θ+cosθ﹣1)=4(2cosθ﹣1)(cosθ+1).∵θ∈,∴cosθ∈(0,1).∴当cosθ=即θ=时,S取得最大值,S=3.故最大值为:3.21.【解答】解:根据题意,分2种情况讨论,若只有甲乙其中一人参加,有C21•C64•A55=3600种情况;若甲乙两人都参加,有C22•A63•A42=1440种情况,则不同的安排种数为3600+1440=5040种,故答案为:5040.22.【解答】解:△ABC中,∠A=θ,D、E分别为AB、AC的中点,且BE⊥CD,如图所示,不妨设C(2,0),B(x,y),A(0,0),∵AD=AB,AE=AC,∴E(1,0),D(,).∵BE⊥CD,∴•=(1﹣x,﹣y)•(﹣2,)=(1﹣x)(﹣2)﹣y•=﹣[+y2﹣]=0,∴+y2=,表示以M(,0)为圆心,半径等于的圆,故点B在此圆上.过点A作圆的切线,故当点B为切点时,∠A最大,即θ最大,故sinθ===最小,则cos2θ的最小值为1﹣2sin2θ=1﹣2×=,故答案为:.三.解答题(共18小题)23.【解答】解:(1)210×0.5+(400﹣210)×0.6+(410﹣400)×0.8=227元…(2分)(2)设取到第二阶梯电量的用户数为ξ,可知第二阶梯电量的用户有3户,则ξ可取0,1,2,3故ξ的分布列是所以…(7分)(3)可知从全市中抽取10户的用电量为第一阶梯,满足X∽B(10,),可知(k=0,1,2,3 (10),解得,k∈N*所以当k=6时,概率最大,所以k=6…(12分)24.【解答】解:(Ⅰ)由列联表得K2=≈0.6494<0.708,所以没有60%的把握认为“古文迷”与性别有关.…(3分)(Ⅱ)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为=3人,“非古文迷”有=2人.即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人…(6分)(Ⅲ)因为ξ为所抽取的3人中“古文迷”的人数,所以ξ的所有取值为1,2,3.P(ξ=1)==,P(ξ=2)==,P(ξ=3)==.…(9分)所以随机变量ξ的分布列为于是Eξ=1×+2×+3×=.…(12分)25.【解答】解:(1)由频率分布直方图知:日销售量不低于40吨的频率为:10×(0.025+0.015)=0.4,记未来3天内,第i天日销售量不低于40吨的事件为A i(i=1,2,3),则P(A i)=0.4,未来3天内,连续2天日销售量不低于40吨,另一天的日销售量低于40吨包含两个互斥事件:和,∴未来3天内,连续2天日销售量不低于40吨,另一天的日销售量低于40吨的概率为:P(∪)=P()+P()=0.4×0.4×(1﹣0.4)+(1﹣0.4)×0.4×0.4=0.192.(2)ξ的可能取值为0,1,2,3,P(ξ=0)=(1﹣0.4)2=0.216,P(ξ=1)==0.432,P(ξ=2)==0.288,P(ξ=3)=0.43=0.064,∴ξ的分布列为:Eξ=0×0.216+1×0.432+2×0.228+3×0.064=1.2.26.【解答】解:(Ⅰ)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=,P(B)=,由于投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(Ⅱ)设C表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100,而赔付金额为4000元的车辆中车主为新司机的有0.2×120=24,所以样本中车辆中新司机车主获赔金额为4000元的频率为,由频率估计概率得P(C)=0.24.27.【解答】解:(Ⅰ)由题意知,成绩在[90,110)之间的频率为1﹣20×(0.0025+0.005+0.0075×2+0.0125)=0.3,0.3+(0.0125+0.0050)×20=0.65,故所求获得参赛资格的人数为800×0.65=520;(Ⅱ)设甲答对每一个问题的概率为p,则(1﹣p)2=,∴p=,甲在初赛中答题个数X的所有取值为3,4,5;则P(X=3)=+=;P(X=4)=•••+•••=;P(X=5)=•=;故X的分布列为:数学期望为E(X)=3×+4×+5×=.28.【解答】解:(1)由已知得收藏者张先生赌中的概率为,收藏者李先生赌中的概率为P0,且两人赌中与否互不影响.记“这2人的累计获得金额数为X(单位:万元)”的事件为A,则事件A的对立事件为“X=50”.因为,所以,求得.(4分)(2)设收藏者张先生、李先生都选择规则甲赌中的次数为X1,都选择规则乙赌中的次数为X2,则这两人选择规则甲累计获奖得金额的数学期望为E(20X1),选择规则乙累计获奖得金额的数学期望为E(30X1).由已知可得,,X2~B(20,P0),所以,E(X2)=2P0,从而,E(30X2)=30E(X2)=60P0.(8分)若E(20X1)>E(30X1),则,解得;若E(20X1)<E(30X1),则,解得;若E(20X1)=E(30X1),则,解得.(11分)综上所述,当时,他们都选择规则甲进行赌石时,累计得到金额的数学期望最大;当时,他们都选择规则乙进行赌石时,累计得到金额的数学期望最大;当时,他们都选择规则甲或规则乙进行赌石时,累计得到金额的数学期望相等.(12分)29.【解答】解:(1)分别记甲对这四门课程考试合格为事件A,B,C,D,且事件A,B,C,D相互独立,“甲能能取得参加数学竞赛复赛的资格”的概率为:P(ABCD)+P(ABC)+P(AB D)=++=.(2)由题设知ξ的所有可能取值为0,1,2,3,ξ~B(3,),P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:∵ξ~B(3,),∴Eξ=.30.【解答】解:(Ⅰ)设东西南北四个主干道入口发生拥堵分别为事件A,B,C,D.则P(A)==,P(B)==,P(C)==,P(D)==.设一天恰有三个入口发生拥堵为事件M,则M=BCD+A CD+AB D+ABC.则P(M)=+×××+×××+×××=.…(5分)(Ⅱ)ξ的可能取值为0,1,2,3,4.P(ξ=0)==,P(ξ=1)==,P(ξ=2)=,P(ξ=3)==,P(ξ=4)=.ξ的分布列为:pE(ξ)=0×+3×+4×=.…(12分)31.【解答】解:(Ⅰ)甲、乙、丙均两次参加英语高考,取两次成绩中较高的为最终成绩,三人第一次成绩不低于130分的概率依次为、.甲若第一次成绩不低于130分,则第二次成绩不低于130分的概率为,若第一次成绩在130分以下,则第二次成绩不低于130分的概率为;乙若第一次成绩不低于130分,则第二次成绩不低于130分的概率为,若第一次成绩在130分以下,则第二次成绩不低于130分的概率为;丙第二次成绩不受第一次成绩的影响,不低于130分的概率为.设A为事件“甲的英语高考最终成绩不低于130分”,事件A发生的概率P(A)=+(1﹣)×=,B为事件“乙的英语高考最终成绩不低于130分”,事件B发生的概率P(B)==,C为事件“丙的英语高考最终成绩不低于130分”,事件C发生的概率P(C)==.(Ⅱ)设甲、乙、丙中英语高考最终成绩不低于130分的人数为X,则X的可能取值为0,1,2,3,P(X=0)=P()==,P(X=1)=P(++)==,P(X=2)=P()==,P(X=3)=P(ABC)==,∴X的分布列为:数学期望E(X)==2.32.【解答】解:(1)设A k,B k分别表示甲、乙在第k次投篮投中,则P(A k)=,P(B k)=,k∈(1,2,3).记“甲获胜”为事件C,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知:P(C)=P(A 1)+P()+P()=+==.﹣﹣﹣﹣(5分)(2)ξ的所有可能为:1,2,3,由独立性知:P(ξ=1)=P(A 1)+P()==,P(ξ=2)=P()+P()=+()2()2=,P(ξ=3)=P()=()2()2=,综上知,ξ的分布列为:﹣﹣﹣﹣﹣﹣(9分)∴Eξ==(次)﹣﹣﹣﹣﹣﹣(11分)∴甲获胜的概率为;甲的投篮次数的期望为次.﹣﹣﹣﹣﹣﹣(12分)33.【解答】解:(1)当a=时,g(x)=,则g'(x)=.当﹣1>0,即x>2时,g'(x)>0;当﹣1<0且x≠0,即x<2或0<x<2时,g'(x)<0.则g(x)的增区间为(2,+∞),减区间为(﹣∞,0),(0,2).因为m>0,所以m+1>1,①当m+1≤2,即0<m≤1时,g(x)在[m,m+1]上单调递减,所以g(x)min=g(m+1)=②当m<2<m+1,即1<m<2时,g(x)在[m,2]上单调递减,在[2,m+1]上单调递增,所以g(x)min=g(2)=③当m≥2时,g(x)在[m,m+1]上单调递增,所以g(x)min=g(m)=.综上,g(x)min=;(2)设h(x)=f(x)﹣x﹣1=e ax﹣x﹣1若a<0,则对一切x>0,h(x)<0这与题设矛盾.又a≠0,故a>0.而h'(x)=ae ax﹣1,令h'(x)=0,得x=,当x<时,h'(x)<0,h(x)单调递减;当x>时,h'(x)>0,h(x)单调递增.故当x=时,h(x)取最小值﹣﹣1.于是对一切x∈R,h(x)≥0恒成立,当且仅当﹣1≥0①令φ(x)=t﹣tlnt﹣1,则φ'(x)=﹣lnt当0<t<1时,φ'(t)>0,φ(t)单调递增;当t>1时,φ'(t)<0,φ(t)单调递减,故当t=1时,φ(t)取最大值φ(1)=0,因此,当且仅当=1,即a=1时,①式成立.综上所述,a的取值集合为{1}.(3)证明:由(2)可知,当x>0时,g(x)=,所以(x>0),可得≤于是+≤<=<.34.【解答】解:(Ⅰ)设F(x)==,(x≠﹣1),F′(x)==,∴当x∈(﹣∞,﹣1)时,F′(x)<0,当x∈(﹣1,+∞)时,F′(x)>0,∴F(x)在(﹣∞,﹣1)是减函数,在(﹣1,+∞)是增函数;(Ⅱ)G(x)=af(x)+g(x)=axe x+(x+1)2,G′(x)=a(x+1)e x+2(x+1)=(x+1)(ae x+2),当a=0时,G(x)=(x+1)2,有唯一零点:﹣1,当a>0时,ae x+2>0,则x∈(﹣∞,﹣1)时,G′(x)<0,G(x)单调递减,当x∈(﹣1,+∞),G′(x)>0,G(x)单调递增,G(x)极小值=G(﹣1)=﹣<0,由G(0)=1>0,∴当x∈(﹣1,+∞),G(x)有唯一的零点,当x<﹣1时,ax<0,则e x<,axe x>,∴G(x)>+(x+1)2=x2+(2+)x+1,由△=(2+)2﹣4×1×1=+()2>0,∴∃t1,t2,且t1<t2,当x∈(﹣∞,t1)(t2,+∞)使得x2+(2+)x+1>0,取x0∈(﹣∞,﹣1)∩(﹣∞,t1),则G(x0)>0,从而x∈(﹣∞,﹣1)时,G(x)有唯一零点,即a>0时,函数G(x)有2个零点;③a<0时,G′(x)=a(x+1)(e x+),由G′(x)=0,解得:x=﹣1或ln(﹣),若﹣1=ln(﹣),即a=﹣2e时,G′(x)=﹣2e(x+1)(e x﹣)≤0,故G(x)递减,至多有1个零点;若﹣1>ln(﹣),即a<﹣2e时,G′(x)=a(x+1)(e x+),注意到y=x+1,y=e x+都是增函数,故x∈(﹣∞,ln(﹣))时,G′(x)<0,G(x)递减,x∈(ln(﹣),﹣1)时,G′(x)>0,G(x)递增,x∈(﹣1,+∞)时,G′(x)<0,G(x)递减,=G(ln(﹣))=ln2(﹣)+1>0,又∵G(x)极小值故G(x)至多1个零点;若﹣1<ln(﹣),即﹣2e<a<0时,同理得x∈(﹣∞,﹣1)时,G′(x)<0,G(x)递减,x∈(﹣1,ln(﹣))时,G′(x)>0,G(x)递增,x∈(ln(﹣),+∞)时,G′(x)<0,G(x)递减,=G(﹣1)=﹣>0,又∵G(x)极小值∴G(x)至多1个零点,综上,若函数G(x)有2个零点,则参数a的范围是(0,+∞).35.【解答】(1)解:f′(x)=.①m≤0,f′(x)>0,f(x)在(0,+∞)上单调递增,不可能有两个零点;②m>0,f′(x)>0可解得x>2m,f′(x)<0可解得0<x<2m,∴f(x)在(0,2m)上单调递减,在(2m,+∞)上单调递增,∴f(x)min=f(2m)=ln2m﹣,由题意,ln2m﹣<0,∴0<m<;(2)证明:令t=,f()=mt﹣lnt﹣1=0,由题意方程m=有两个根为t1,t2,不妨设t1=,t2=.令h(t)=,则h′(t)=﹣,令h′(t)>0,可得0<t<,函数单调递增;h′(t)<0,可得t>,函数单调递减.由题意,t1>>t2>0,要证明+>,即证明t1+t2>,即证明h(t1)<h(﹣t2).令φ(x)=h(x)﹣h(﹣x),下面证明φ(x)<0对任意x∈(0,)恒成立,φ′(x)=+,∵x∈(0,),∴﹣lnx﹣1>0,x2<,∴φ′(x)>>0,∴φ(x)在(0,)上是增函数,∴φ(x)<φ()=0,。