人教版七年级数学上册教学课件-1.2.4绝对值 最新课件

合集下载

1.2.4绝对值 教学课件 (2课时、共30张PPT) 人教版数学七年级上册

1.2.4绝对值 教学课件   (2课时、共30张PPT) 人教版数学七年级上册
【例如】
|−5|= 5
−5
−4
|5|= 5
|0|= 0
−3
−2
5
−1
0
1
2
3
4
5
|a|的几何意义是数轴上表示数a的点到原点的距离.
5




课堂练习
练习1 求下列各数的绝对值:
(1)-125
(2)23
(3)-3.5
解: (1)|-125|= -(-125)= 125
(2)|��|23
的点P和表示−4的点M,所以绝对值等于4的数是+4和−4.
4个单位长度
−5
M
−4
−3
−2
−1
4个单位长度
P
0
1
2
3
4
5
课堂练习
±4 .
练习3 (1)求绝对值等于4的数是
(2)绝对值小于2的整数是 -1,0,1
−5 −4 −3 −2
−1
0
1
2
3
4
.
5
课堂练习
练习3 (1)求绝对值等于4的数是
±4 .










比较三个以
上有理数时
小−4 −3 −2 −1
0
1
正数和0:正数都大于0
负数和0:负数都小于0
法则比较法
正数和负数:正数都大于负数
比较两个有
理数时
两个正数:绝对值大的数大
两个负数:绝对值大的反而小
2
3
4

例如:1 > 0,0 > -1,1 > -1 ,-1 > -2

人教版七年级数学上册1.2.4 绝对值PPT课件(共16张PPT)

人教版七年级数学上册1.2.4  绝对值PPT课件(共16张PPT)

在数轴上你有何发现? 从左往右的数越来越大.
你觉得两个有理数可以比较大小吗?
..............
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
数学中规定:数轴上表示有理数,它们从左到右 的顺序,就是从小到大的顺序,即左边的数大于 右边的数.
-4 -3 -2 -1 0 1 2 3 4 5
两个负数比较大小时有两(1) -1和 – 5; (2)- 5 和- 2.7
6 解法一(利用绝对值比较两个负数的大小)
解: (1) 因为| -1| = 1,| -5 | = 5 ,1﹤5,
所以 - 1> - 5
(2)因为|
-
5 6
|
=
5 6
,|- 2.7| =2.7,
地 庄 严 地 向 和谐集 团党组 织提出 加入中 国共产 党! 我 们 的 党 是 伟大的 党正确 的党,自 1921年 7月1日 成立到 1949年 10月1日 伟大 领袖毛 泽 东 站 在 天 安门城 楼向全 世界宣 布中国 人民从 此站起 来了的 28年革 命实践 中,中国
共 产 党 被 证 明是唯 一能够 带领中 国人民 推翻沉 重压迫 在人民 身上的 帝国主 义封建 主 义 官 僚 资 本主义 三座大 山的正 确的先 进的国 家领导 力量!只 有 在 共 产党的英勇领 导 下 ,历 经 苦 难的中 国人民 才有幸 福可言 ,只有在 共产党 的英明 领导下 ,曾经 落后挨 打 的 中 国 才 有今天 的太平 盛世,只 有在共 产党的 正确领 导下,中 国才具备在改革开放
解:(1)
- 5 < - 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | = 3;
| -1 | = 1 ; | - 5 | = 5. 1 < 1.5 <3 <5 (3)由以上知:两个负数比较大 小,绝对值大的反而小

1.2.4 绝对值 课件 人教版七年级数学上册 (27)

1.2.4 绝对值 课件  人教版七年级数学上册 (27)

【示范题1】-|-2|的值为 ( )
A.-2
B.2
C.- 1
D.1
2
2
【教你解题】
【想一想】 有没有绝对值最大的有理数?有没有绝对值最小的有理数? 提示:没有绝对值最大的有理数;有绝对值最小的有理数,是0.
【备选例题】求下列各数的绝对值.
(1)3.2.(2) 1. (3)1 4 . (4)0.
3
5
【解析】(1)|3.2|=3.2.(2) | 1 | 1 .
33
(3) |1 4 | 1(44.)|0|=0.
55
【微点拨】正确理解绝对值的三个方面 1.若一个数的绝对值是正数,则这样的数有两个,它们互为相反 数. 2.只有0的绝对值是0,0是绝对值最小的有理数. 3.任何有理数的绝对值都不能是负数.
【思维诊断】(打“√”或“×”) 1.一个有理数的绝对值必是正数. ( × ) 2.绝对值最小的有理数是0. ( √ ) 3.如果两个数不相等,那么这两个数的绝对值也不相等.( × ) 4.如果两个数的绝对值相等,那么这两个数也相等. ( × ) 5.负数没有绝对值. ( × )
知识点一 求有理数的绝对值
【方法一点通】 求有理数绝对值的步骤 1.先判断有理数是正数、负数、还是0. 2.再根据正数、负数、0的绝对值的意义,化去绝对值符号,确定 最后结果.
知识点二 绝对值的性质及应用
【示范题2】某工厂生产一批零件,根据零件质量要求:零件的
长度可以有0.2厘米的误差,现抽查5个零件,检查数据记录如表
ቤተ መጻሕፍቲ ባይዱ
(超过规定长度的厘米数记为正数,不足规定长度的厘米数记为
负数):
零件号数
1
2
3
4

人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)

人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)

课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.

课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7


- 8 >- 3
21
7

(3)化简,得:-(-0.3)=0.3,-
1 3

1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__

3 8

-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.

七年级数学上册 1.2.4 绝对值课件 (新版)新人教版PPT

七年级数学上册 1.2.4 绝对值课件 (新版)新人教版PPT

关闭
D
解析 答案
1
2
3
4
5
6
4.-2 的绝对值是
.
关闭
2
答答案案
1
2
3
4
5
6
5.实数 a,b 在数轴上对应点的位置如图所示,则 a
b(填
“>”“<”或“=”).
关闭
<
答答案案
1
2
3
4
5
6
6.将下列各数的相反数在数轴上表示出来,并把它们按由小到大的 顺序排列,并用“<”连接.
6,-23,0,-4.5,54.
关闭
题中各数的相反数分别是-6,2,0,4.5,-5,把它们表示在数轴上为
3
4
按由小到大的顺序排列为
-6<-5<0<2<4.5.
4
3
解解
记作 |a| .-3 的绝对值等于 3 ,记作 |-3| .
2.在数轴上,表示-2 的点与原点的距离等于( A )
A.2
B.-2
C.±2
D.4
3.一个正数的绝对值是 它本身 ;一个负数的绝对值是它
的 相反数 ;0 的绝对值是 0 .
学前温故 新课早知
4.计算:|2|= 2 ,|-5|= 5 ,|0|= 0 . 5.(1)正数 大于 0,0 大于 负数,正数 大于负数;两个负数,绝对值 大的 反而小 ; (2)在数轴上表示有理数,它们从左到右的顺序,就是从小到大的 顺序,即左边的数 小于 右边的数. 6.比较大小:3 > -2,0 > -2,-3 < -2.(填“>”“&l一 二 【例 2】 某车间生产一批圆形零件,从中抽取 6 件进行检验,比 规定直径长的部分记作正数,比规定直径短的部分记作负数.检查记 录如下:

1.2.4 绝对值 课件-人教版(2024)数学七年级上册

1.2.4 绝对值 课件-人教版(2024)数学七年级上册

应 记作 |a| . (这里的数a可以是正数、负数和0). 用
0到原点的距
-5到原点的距 离是5,所以-5的 绝对值是5,记 做|-5|=5
离是0,所以0 的绝对值是0, 记做|0|=0
4到原点的距离是4, 所以4的绝对值是4, 记做|4|=4
│-5│=5 │4│=4 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
第一章 有理数 1.2.4 绝对值
回顾
知 1、什么是数轴? 识
数轴的三 要素
关 数轴是规定了原点、正方向、单位长度的直线

-2 -1 0 1 2
2、什么是相反数? 只有符号不同的两个数叫做互为相反数. 规定:0的相反数是0.探情究来自1 导绝入对值的概念探

甲、乙两辆出租车在一条东西走向的街道上行驶,
(2)原式=4.2-4.2=0
拓展
探 例4 下列关系一定成立的是
()
究 A.若|m|=|n|,则m=n
B.若|m|=n,则m=n
与 应 C.若|m|=-n,则m=n
D.若m=-n,则|m|=|n|
用 例5 如图 数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中四
个点表示的数的绝对值最大的是 ( )
;绝对值最小的数是 .
5.绝对值小于2的整数有 个,它们分别是
.
检测

堂 1.直接填写结果:︱+6︱= 6
,︱-1.5︱= 1.5
,|-
小 |= 结
32,︱0︱=32 0
, -︱-12︱= -12 .
与 2.如果一个数的绝对值等于10,那么这个数等于 10或-10.
检 3.如果一个数的绝对值是它本身,那么这个数一定是 非负数 测

1.2.4 绝对值 课件 人教版七年级数学上册 (60)

1.2.4 绝对值 课件  人教版七年级数学上册 (60)

例2 下列绝对值符号中应填入什么数
(1)
(2)
(3)
(4)
(1)_______, (2)________,(3)________, (4)_____.
问题:怎样的不同的数绝对值相等?绝对值相等的数是怎样的数?
互为相反数的两个数绝对值相等; 绝对值相等的两个数互为相反数;
例3 正式排球比赛对所用的排球重量是有严格规定的,现
检查5个排球的重量,超过规定重量的克数记作正数,不足 规定重量的克数记作负数,检查结果如下:
指出哪个排球的质量好一些,并用绝对值的知识加以说明.
课堂练习
1.下列哪些数是正数?
2.在括号里填上适当的数:
课堂练习
3.计算下列各题 :
课堂练习
4.__0__的相反数是它本身,_非__负__数__的绝对值是它本 身,__非__正___数的绝对值是它的相反数.
距离5 5的绝对值
一、绝对值的定义:
数轴上表示数a的点与原点的距离叫做数a的绝对值.
二、绝对值的符号表示: 数a的绝对值记作:
+5 的绝对值记作
- 4 的绝对值记作
0 的绝对值记作
三、绝对值的性质:
正数的绝对值是它本身; 负数的绝对值是它的相反数; 零的绝对值是零
绝对值是非负数
课堂练习
例1 (P14 T5) 求下列各数的绝对值.
1.2.4 绝对值
问题1:下列各数中:
哪些是正数?哪些是负数?哪些是非负数?
正数和零统称为非负数
问题2: 什么叫数轴?画一条数轴,并在数轴上标出下列各数
问题3: 依次说出上题中各数的相反数. 怎样表示一个数的相反数? 在一个数前面加"-"就得到它的相大道向东行5km公里到火车站.周日,

2024年秋季新人教版七年级上册数学教学课件 1.2.4 绝对值

2024年秋季新人教版七年级上册数学教学课件 1.2.4 绝对值
(1) 根据调查结果,指出哪些产品是合乎要求的 (即在误 差范围内的); (2) 指出合乎要求的产品中哪一个质量好一些,并用绝对 值的知识说明.
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
1. 判断对错:
(1) 一个数的绝对值等于本身,则该数一定是正数; ( )
(2) 一个数的绝对值等于它的相反数,这个数一定是
负数;
()
(3) 如果两个数的绝对值相等,那么这两个数一定
相等;
()
(4) 如果两个数不相等,那么这两个数的绝对值
一定不等;
()
(5) 有理数的绝对值一定是非负数.
()
2. 化简:
B -10
分析:行驶路线 行驶路程
O
A
0
10
方向 + 距离 方向不同 距离 距离相同
绝对值的定义: 一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作|a|.
B
O
A
-10
0
10
例:因为点 A 表示10,与原点的距离是 10 个单位长度,
所以|10| = 10.
1.利用数轴,口答下列问题:
|5|=5
–5 –4 –3 –2 –1 0 1 2 3 4 5
| 3.5 | = 3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
| -3 | = 3
–5 –4 –3 –2 –1 0 1 2 3 4 5
| -3.5 | =3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
|0|= 0
有理数
新知一览
正数和负数
有理数
数轴
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3尺
O
3尺
-3
0
3
数形结合的数学思想
任务一:探究绝对值的概念及表示
问题:两辆汽车从同一处O出发,分别向东、西方向行 驶10 km,到达A,B两处,它们的行驶的路线相同吗? 行驶的路程相同吗?A、B两点表示的实际意义是什么?
B
10 km O
- 10
0
10 km A 10 东
任务一:探究绝对值得概念及表示
还有0
Ⅱ.绝对值等于它本身的数一定是正数. (× )
Ⅲ.绝对值最小的数是1. ( (× )
0的绝对值是0,但0不是正数
拓展延伸
(1)若|x| = 64 ,则x =___±±__46__;
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
【方法一】
【方法二】
因为|+4|=4,|-4|=4, 所以,绝对值等于
4的数是+4和-4
因为数轴上到原点的距离 等于4个单位长度的点有 两个,如图,即表示+4 的点和表示-4的点,所以
绝对值等于4的数是4和-4
课堂小结
概念:一般地,数轴上表示数 a 的点与原 点的距离叫做数 a 的绝对值,记作|a|.
几何意义:“绝对值”是几何量“距离”的代 数表示 绝对值:
数轴上,表示-5和5 的点到原点的距离分
别是(5和5)
数轴上,表示-3.5 和3.5的点到原点的 距离分别是(3.5和
3.5)
你还能找到两个数所表 示的点到原点的距离相
等吗?

5
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-3.5
3.5
思考:互为相反数的点到原点的距离具有什么特点?
相等
任务一:探究绝对值得概念及表示
问题:数轴的点到原点距离叫什么?
自主学习:教材第11页,解决以上问题
|-3|=3
|+5|=5
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
我们把一个数在数轴上对应的点-5a3 到原点的距 离叫做这个数-5a3的绝对值,用“| -a53 |”表示.
任务一:探究绝对值得概念及表示
|5|=5 |3.5|=3.5 |-3|=3
0
5
0 3.5 -3 0
|-4.5|=4.5
-4.5
0
思考:一个数的绝对值大小与什么有关?
(与数轴上这点与原点的距离有关)
巩固应用
写出下列各数的绝对值:
(相等)
5
-8,-0.9,
2
解:
|-8|=8;

2
(负数和0) , 8,0.9, 0
11
|8|=8;
|-0.9|=0.9;
A
O
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
魏尔斯特拉斯
(1815.10.31—1897.2.19)
德国数学家,被誉为
“现代分析之父”
1841年开始使用,在数轴上表示一个数的点A与原点O
将数轴分成三部分,其中OA这部分的线段长度用符号
“| |”表示
小试牛刀
说一说 利用数轴上点到原点的距离口答
(2)当a是负数时,|a|=__-a;
负数的绝 对值是它
的相反数
(3)当a=0时,|a|=__0_.
0的绝对值是0
a (a ﹥ 0)
|a|= 0 (a=0)
-a (a ﹤ 0)
任务二:理解绝对值得意义
|a|≥0
任何一个有理数的绝对值都是非负数!
判断正误
a=0
Ⅰ.若a = -a,则a<0. ( × )
|a|=
a 一(a ﹥ 0)
0 (a=0) -a (a ﹤ 0)
懒惰象生锈一样,比操劳更能消耗身体; 经常用的钥匙,总是亮闪闪的.
——富兰克林
再见
人教版·数学·七年级上册第一章
1.2.4 绝对值
情境导入---六尺巷故事
经典故事 :清康熙年间,宰相张英的老家人与邻居吴家在宅
地的问题上发生了争执,谁也不肯相让。后来张家人千里传书到京 城求救。张英收书后批诗一首云:一纸书来只为墙,让他三尺又何 妨。长城万里今犹在,不见当年秦始皇。张家人豁然开朗,退让了 三尺。吴家见状深受感动,也让出三尺,形成了一个六尺宽的巷子。
|0.9|=0.9;
2 =2; 11 11
5 =5 ; 22
|0|=0;
问思题考:观一察个思数考的正绝数对、值负等数于、他0本的身绝,对这值个有数什是么?特(点正?数和0)
任务二:理解绝对值得意义
若字母(a表1)示当一a是个有正理数数时,,你知|道a|a的=绝_对__值a_;正等数于的正对绝什数值本对身的是身么值绝它是吗它?本
相关文档
最新文档