2019暨南大学《概率论与数理统计教程》(茆诗松第二版)考研强化冲刺题库

合集下载

茆诗松《概率论与数理统计教程》(第2版)(课后习题 大数定律与中心极限定理)【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)(课后习题 大数定律与中心极限定理)【圣才出品】

是直线上的连续函数,试证:
证:若 g(x)是 m 次多项式函数,即 下证一般情况,对任意的 又选取 N1 充分大,使当
,则由上一题知有
,取 M 充分大,使有
时,有
,于是有
对取定的 M,因为 g(x)是连续函数,所以可以用多项式函数去逼近 g(x),并且在任意
有限区间上还可以是一致的,因而存在 m 次多项式
,于是有
,因为
,故存在充分
由 的任意性知,当
时,有
结论得证.
6.设 D(x)为退化分布: 试问下列分布函数列的极限函数是否仍是分布函数?(其中 n=1,2,…)
(1)
(2)
(3)
解:(1)因为此时的极限函数为
性质: lim F x=0 ,所以不是分布函数. x-
,不满足分布函数的基本
4 / 42
圣才电子书

故当
时,

成立,进一步由
可得
,所以又有
1 / 42
圣才电子书

成立.
十万种考研考证电子书、题库视频学习平 台
(2)先证明
对任意的
,取 M 足够大(譬如
),使有
成立,对取定的 M,存在 N,当 n>N 时,有
这时有
从而有
由 的任意性知
,同理可证
由上面(1)得

成立.
3.如果
3 / 42
圣才电子书

十万种考研考证电子书、题库视频学习
证:先证充分性,令
,则

故 f(x)是 x 的严格单调增函数,因而对任意的
,有
于是对任意的
,当
时,有参见 2.3 第 12 题.
充分性得证.

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第7~8章【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第7~8章【圣才出品】

7 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台

sup p(x1,K , xn; )
2.假设检验的基本步骤
(1)建立假设;
(2)选择检验统计量,给出拒绝域形式;
注意:一个拒绝域 W 唯一确定一个检验法则,一个检验法则也唯一确定一个拒绝域.
(3)选择显著性水平
第一类错误:命题本为真,却由于随机性落入了拒绝域,而否定了命题.(弃真)
第二类错误:命题本为假,由于随机性落入了接受域,而接受了命题.(取伪)
3 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台

注:
xy
u1

xy
sx2
s
2 y
mn
4 / 136
圣才电子书

十万种考研考证电子书、题库视频学习平台
t1
sw
x
1 m
y
1 n
t2
xy
sx2
s
2 y
为零,即考察如下检验问题:
H0:μ=0 vs H1:μ≠0
即把双样本的检验问题转化为单样本 t 检验问题,这时检验的 t 统计量为
t2 d (sd n)
其中
1 n
d n i1 di
sd
n
1 1
n i 1
(di
1/ 2
d
)2
在给定显著性水平 α 下,该检验问题的拒绝域是:W1={|t2|≥t1-α/2(n-1)},这就是
1 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台

在拒绝域 W 内的概率称为该检验的势函数,记为 g(θ )=pθ (X∈W),θ ∈Θ=Θ0∪Θ1 ②显著性检验:对检验问题 H0:θ∈Θ0 vs H1:θ∈Θ1,如果一个检验满足对任意的 θ

茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(参数估计)【圣才出品】

茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(参数估计)【圣才出品】

第6章 参数估计6.1 复习笔记一、点估计的概念与无偏性 1.点估计及无偏性(1)定义:设x 1,…,x n 是来自总体的一个样本,用于估计未知参数θ的统计量θ∧=θ∧(x 1,…,x n )称为θ的估计量,或称为θ的点估计,简称估计.(2)定义:设θ∧=θ∧(x 1,…,x n )是θ的一个估计,θ的参数空间为Θ,若对任意的θ∈Θ,有E θ(θ∧)=θ,则称θ∧是θ的无偏估计,否则称为有偏估计.注意:①当样本量趋于无穷时,有E (s n 2)→σ2,称s n 2为σ2的渐近无偏估计,这表明当样本量较大时,s n 2可近似看作σ2的无偏估计.②若对s n 2作如下修正:则s 2是总体方差的无偏估计.这个量常被采用.③无偏性不具有不变性.即若θ∧是θ的无偏估计,一般而言,其函数g (θ∧)不是g (θ)的无偏估计,除非g (θ)是θ的线性函数.④并不是所有的参数都存在无偏估计,当参数存在无偏估计时,我们称该参数是可估的,否则称它是不可估的.22211()11nn i i ns s x x n n ===---∑2.有效性定义:设θ∧1,θ∧2是θ的两个无偏估计,如果对任意的θ∈Θ有Var (θ∧1)≤Var (θ∧2),且至少有一个θ∈Θ使得上述不等号严格成立,则称θ∧1比θ∧2有效.二、矩估计及相合性 1.替换原理和矩法估计 替换原理指:(1)用样本矩去替换总体矩,这里的矩可以是原点矩也可以是中心矩. (2)用样本矩的函数去替换相应的总体矩的函数.2.概率函数已知时未知参数的矩估计设总体具有已知的概率函数p (x ;θ1,…,θk ),(θ1,…,θk )∈Θ是未知参数或参数向量,x 1,…,x n 是样本.假定总体的k 阶原点矩u k 存在,则对所有的j (0<j <k )u j 都存在,若假设θ1,…,θk 能够表示成u 1,…,u k 的函数θj =θj (u 1,…,u k ),则可给出θj 的矩估计:θ∧j =θj (a 1,…,a k ),j =1,…,k ,其中a 1,…,a k 是前k 阶样本原点矩进一步,如果我们要估计θ1,…,θk 的函数η=g (θ1,…,θ∧k ),则可直接得到η的矩估计η∧=g (θ∧1,…,θ∧k ).注:当k =1时,我们通常可以由样本均值出发对未知参数进行估计;如果k =2,我们可以由一阶、二阶原点矩(或二阶中心矩)出发估计未知参数.11n jj ii a x n ==∑3.相合性定义:设θ∈Θ为未知参数,θ∧n =θ∧n (x 1,…,x n )是θ的一个估计量,n 是样本容量,若对任何一个ε>0,有则称θ∧n 为参数θ的相合估计. 判断相合性的两个有用定理:(1)设θ∧n =θ∧n (x 1,…,x n )是θ的一个估计量,若则θ∧n 是θ的相合估计.(2)若θ∧n1,…,θ∧nk 分别是θ1,…,θk 的相合估计η=g (θ1,…,θk ),是θ1,…,θk 的连续函数,则η∧=g (θ∧n1,…,θ∧nk )是η的相合估计.三、最大似然估计与EM 算法 1.最大似然估计定义:设总体的概率函数为P (x ;θ),θ∈Θ,其中θ是一个未知参数或几个未知参数组成的参数向量,Θ是参数空间,x 1,…,x n 是来自该总体的样本,将样本的联合概率函数看成θ的函数,用L (θ;x 1,…,x n )表示,简记为L (θ),L (θ)=L (θ;x 1,…,x n )=p (x 1;θ)p (x 2;θ)…p (x n ;θ)ˆlim ()0n n P θθε→∞-≥=ˆlim ()nn E θθ→∞=ˆlim ()0nn Var θ→∞=L (θ)称为样本的似然函数.如果某统计量θ∧=θ∧(x 1,…,x n )满足则称θ∧是θ的最大似然估计,简记为MLE .注意:在做题时,习惯于由lnL (θ)出发寻找θ的最大似然估计,再求导,计算极值.但在有些场合用求导就没用,此时就需要从取值范围中的最大值和最小值来入手.2.EM 算法当分布中有多余参数或数据为截尾或缺失时,其MLE 的求取是比较困难的,这时候就可以采用EM 算法,其出发点是把求MLE 的算法分为两步:(1)求期望,以便把多余的部分去掉; (2)求极大值.3.渐近正态性最大似然估计有一个良好的性质:它通常具有渐近正态性.(1)定义:参数目的相合估计θ∧n 称为渐近正态,若存在趋于0的非负常数序列σn (θ),使得依分布收敛于标准正态分布.这时也称θ∧n 服从渐近正态分布N (θ,σn 2(θ)),记为θ∧n ~AN (θ,σn 2(θ)),σn 2(θ)称为θ∧n 的渐近方差.(2)定理:设总体x 有密度函数p (x ;θ),θ∈Θ,Θ为非退化区间,假定 ①对任意的x ,偏导数∂lnp/∂θ,对所有θ∈Θ都存在; ②∀θ∈Θ有|∂p/∂θ|<F 1(x ),|∂2p/∂θ2|<F 2(x ),|∂3lnp/∂θ3|<F 3(x )()()ˆmax L L θθθ∈Θ=()ˆn n θθσθ-其中函数F 1(x ),F 2(x ),F 3(x )满足③∀θ∈Θ,若x 1,x 2,…,x n 是来自该总体的样本,则存在未知参数θ的最大似然估计θ∧n =θ∧n (x 1,x 2,…,x n ),且θ∧n 具有相合性和渐近正态性,该定理表明最大似然估计通常是渐近正态的,且其渐近方差σn 2(θ)=(nI (θ))-1有一个统一的形式,其中,I (θ)称为费希尔信息量.四、最小方差无偏估计 1.均方误差(1)使用条件:小样本,有偏估计.(2)均方误差为:MSE (θ∧)=E (θ∧-θ)2,常用来评价点估计. 将均方误差进行如下分解:MSE (θ∧)=E[(θ∧-E θ∧)+(E θ∧-θ)]2=E (θ∧-E θ∧)2+(E θ∧-θ)2+2E[(θ∧-E θ∧)1()d F x x ∞-∞<∞⎰2()d F x x ∞-∞<∞⎰3sup ()(;)d F x p x x ∞-∞∈Θ<∞⎰θθ()()2ln 0;d p p x x ∞-∞∂⎛⎫<I =<∞ ⎪∂⎝⎭⎰θθθ1ˆ~(,)()nAN nI θθθ(E θ∧-θ)]=Var (θ∧)+(E θ∧-θ)2由分解式可以看出均方误差是由点估计的方差与偏差|E θ∧-θ|的平方两部分组成.如果θ∧是θ的无偏估计,则MSE (θ∧)=Var (θ∧).(3)一致最小均方误差设有样本x 1,…,x n ,对待估参数θ有一个估计类,如果对该估计类中另外任意一个θ的估计θ~,在参数空间Θ上都有MSE (θ∧)≤MSE (θ~),称θ∧(x 1,…,x n )是该估计类中θ的一致最小均方误差估计.2.一致最小方差无偏估计定义:设θ∧是θ的一个无偏估计,如果对另外任意一个θ的无偏估计θ~.在参数率间Θ上都有Var (θ∧)≤Var (θ~),则称θ∧是θ的一致最小方差无偏估计,简记为UMVUE .关于UMVUE ,有如下一个判断准则:设X =(x 1,…,x n )是来自某总体的一个样本,θ∧=θ∧(X )是θ的一个无偏估计,Var (θ∧)<∞,则θ∧是θ的UMVUE 的充要条件是:对任意一个满足E (φ(X ))=0和Var (φ(X ))<∞的φ(X )都有Cov θ(θ∧,φ)=0,∀θ∈Θ.这个定理表明UMVUE 的重要特征是:θ的最小方差无偏估计必与任一零的无偏估计不相关,反之亦然.3.充分性原则定理:总体概率函数是p (x ;θ),x 1,…,x n 是其样本,T =T (x 1,…,x n )是θ的充分统计量,则对θ的任一无偏估计θ∧=θ∧(x 1,…,x n );令ˆ()E T θθ=。

概率论与数理统计(茆诗松)第二版课后第二章习题参考答案

概率论与数理统计(茆诗松)第二版课后第二章习题参考答案

⎛13 ⎞⎛ 39 ⎞ ⎛13 ⎞⎛ 39 ⎞ ⎜ ⎜ ⎜0⎟ ⎟⎜ ⎜5⎟ ⎟ 575757 ⎜1⎟ ⎟⎜ ⎜4⎟ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ = 1069263 = 0.4114 , 则 P{ X = 0} = = = 0.2215 , P{ X = 1} = 2598960 2598960 ⎛ 52 ⎞ ⎛ 52 ⎞ ⎜ ⎜ ⎜5⎟ ⎟ ⎜5⎟ ⎟ ⎝ ⎠ ⎝ ⎠ ⎛13 ⎞⎛ 39 ⎞ ⎛13 ⎞⎛ 39 ⎞ ⎜ ⎜ ⎜2⎟ ⎟⎜ ⎜3⎟ ⎟ 712842 ⎜3⎟ ⎟⎜ ⎜2⎟ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ = 211926 = 0.0815 , P{ X = 2} = = = 0.2743 , P{ X = 3} = 2598960 2598960 ⎛ 52 ⎞ ⎛ 52 ⎞ ⎜ ⎜ ⎜5⎟ ⎟ ⎜5⎟ ⎟ ⎝ ⎠ ⎝ ⎠
第二章
随机变量及其分布
习题 2.1
1. 口袋中有 5 个球,编号为 1, 2, 3, 4, 5.从中任取 3 只,以 X 表示取出的 3 个球中的最大号码. (1)试求 X 的分布列; (2)写出 X 的分布函数,并作图. 解: (1)X 的{ X = 3} =
x
6 2 − 52 11 52 − 4 2 9 = , P{ X = 2} = = , 2 6 36 62 36 4 2 − 32 7 32 − 2 2 5 P{ X = 3} = = , P X = = = , { 4 } 62 36 62 36 1 1 22 − 1 3 P{ X = 5} = 2 = , P{ X = 6} = 2 = , 6 36 6 36 故 X 的分布列为
故 X 的概率分布列为
X P
0 1 2 3 4 5 . 0.2215 0.4114 0.2743 0.0815 0.0107 0.0005

概率论与数理统计(茆诗松)第二版第一章课后习题1.1-1.3参考答案

概率论与数理统计(茆诗松)第二版第一章课后习题1.1-1.3参考答案
i =1 i =1 n ∞
(3)由定义条件 2,知 A1 ,A2 , L , An ∈ F ,根据(2)小题结论,可得 U Ai ∈ F ,
i =1
n
再由定义条件 2,知 U Ai ∈ F ,即 I Ai ∈ F ;
i =1 i =1
n
n
(4)由定义条件 2,知 A1 , A2 , L , An , L ∈ F ,根据定义条件 3,可得 U Ai ∈ F ,
n n −1 n (3)由二项式展开定理 ( x + y ) n = ⎜ ⎜0⎟ ⎟x + ⎜ ⎜1⎟ ⎟x y + L + ⎜ ⎜n⎟ ⎟ y ,令 x = y = 1,得 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛n⎞ ⎛n⎞ ⎛n⎞ n ⎜ ⎜0⎟ ⎟+⎜ ⎜1⎟ ⎟ +L+ ⎜ ⎜n⎟ ⎟=2 ; ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ n − 1⎞ ⎛ n − 1⎞ ⎛n⎞ (n − 1)! (n − 1)! (n − 1)! n! ⎟ ⎟ ⎟ [ r + (n − r )] = +⎜ = + = =⎜ ⎟ ⎜ ⎟ ⎟; r!(n − r )! ⎜ ⎝ r − 1⎠ ⎝ r ⎠ (r − 1)!(n − r )! r!(n − 1 − r )! r!( n − r )! ⎝r⎠ ⎛n⎞ ⎛ n⎞ ⎛n⎞
2
Ω A
B C (A − B )∪C

证: (1) AB U AB = A( B U B ) = AΩ = A ; (2) A U A B = ( A U A )( A U B ) = Ω( A U B ) = A U B . 11.设 F 为一事件域,若 An ∈F ,n = 1, 2, …,试证: (1)∅ ∈F ; (2)有限并 U Ai ∈ F ,n ≥ 1;

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第1章 随机事件与概率【圣

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第1章 随机事件与概率【圣

③对立事件一定是互不相容的事件,即 A∩B=∅.但互不相容的事件不一定是对立事件.
_
④A-B 可以记为 AB.
7.事件的运算性质
5 / 85
圣才电子书

(1)交换律
十万种考研考证电子书、题库视频学习平台
A∪B=B∪A,AB=BA
(2)结合律
(A∪B)∪C=A∪(B∪C)
n r 1
次所得的组合,此种重复组合总数为
r
,这里的 r 也允许大于 n.
上述四种排列组合及其总数计算公式在使用中要注意识别有序与无序、重复与不重复.
3.确定概率的频率方法 (1)确定概率的频率方法 在大量重复试验中,用频率的稳定值去获得概率的一种方法,其基本思想是: ①与考察事件 A 有关的随机现象可大量重复进行.
4.随机变量 定义:表示随机现象结果的变量,常用大写字母 X,Y,Z 表示. 注意:很多事件都用随机变量表示时,应写明随机变量的含义.在同一个随机现象中, 不同的设置可获得不同的随机变量,如何设置可按需要进行.
5.事件间的关系 假设在同一个样本空间 Ω(即同一个随机现象)中进行.事件间的关系与集合间关系
2.排列与组合公式 排列与组合都是计算“从 n 个元素中任取 r 个元素”的取法总数公式. 区别:组合公式是不讲究取出元素间的次序,否则用排列公式.而所谓讲究元素间的次 序,可以从实际问题中得以辨别,例如两个人相互握手是不讲次序的;而两个人排队是讲次 序的,因为“甲右乙左”与“乙右甲左”是两件事.
7 / 85
_
1-1-5),或用概率论的语言说“A 不发生”,即A=Ω-A.
_
图 1-1-5 A 的对立事件A
注意:
_
_
①对立事件是相互的,即 A 的对立事件是A,而A的对立事件是 A.必然事件 Ω 与不可

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】

(1)|φ (t)|≤φ (0)=1.
——————
——————
(2)φ (-t)=φ (t),其中φ (t)表示 φ (t)的共轭.
(3)若 y=aX+b,其中 a,b 是常数,则 φ Y(t)=eibtφ X(at).
(4)独立随机变量和的特征函数为每个随机变量的特征函数的积.即设 X 与 Y 相互独
5 / 167
圣才电子书 十万种考研考证电子书、题库视频学习平台
P
Xn a
P
Yn b
则有 ①
P
X n Yn a b

1 / 167
圣才电子书

十万种考研考证电子书、题库视频学习平台
P
X n Yn a b

P
Xn Yn a b(b 0)
2.按分布收敛、弱收敛
(1)按分布收敛
设随机变量 X,X1,X2,…的分布函数分别为 F(X),F1(X),F2(X),….若对 F(x)
p(x) x e n/21 x/2 ,x 0 Γ (n / 2)2n/2
exp
it
2t 2
2
(1 it )1
(1 it )
(1 2it )n / 2
贝塔分布
Be(a,b)
p(x) Γ (a b) xa1 (1 x)b1,0 x 1 Γ (a)Γ (b)
Γ (a b)
(it)k Γ (a k)
P
Xn x
或者说,绝对偏差|Xn-x|小于任一给定量的可能性将随着 n 增大而愈来愈接近于 1, 即等价于 P(|Xn-x|<ε)→1(n→∞).
特别当 x 为退化分布时,即 P(X-c)=1,则称序列{Xn}依概率收敛于 C. (2)依概率收敛于常数的四则运算性质如下: 设{Xn},{Yn}是两个随机变量序列,a,b 是两个常数.如果

茆诗松《概率论与数理统计教程》课后习题

茆诗松《概率论与数理统计教程》课后习题

茆诗松《概率论与数理统计教程》课后习题本书是详解研究生入学考试指定考研参考书目为茆诗松《概率论与数理统计教程》的配套题库,每章包括以下四部分:第一部分为考研真题及详解。

本部分按教材章节从历年考研真题中挑选具有代表性的部分,并对其进行了详细的解答。

所选考研真题既注重对基础知识的掌握,让学员具有扎实的专业基础;又对一些重难点部分(包括教材中未涉及到的知识点)进行详细阐释,以使学员不遗漏任何一个重要知识点。

第二部分为课后习题及详解。

本部分对茆诗松编写的《概率论与数理统计教程》(第2版)教材每一章的课后习题进行了详细的分析和解答,并对个别知识点进行了扩展。

课后习题答案经过多次修改,质量上乘,特别适合应试作答和临考冲刺。

第三部分为章节题库及详解。

本部分严格按照茆诗松编写的《概率论与数理统计教程》(第2版)教材内容进行编写,每一章都精心挑选经典常见考题,并予以详细解答。

熟练掌握本书考题的解答,有助于学员理解和掌握有关概念、原理,并提高解题能力。

第四部分为模拟试题及详解。

参照茆诗松编写的《概率论与数理统计教程》(第2版)教材,根据历年考研真题的命题规律及热门考点精心编写了两套考前模拟试题,并提供详尽的解答。

通过模拟试题的练习,学员既可以用来检测学习该考试科目的效果,又可以用来评估对自己的应试能力。

本书提供电子书及打印版,方便对照复习。

目录第一部分考研真题第1章随机事件与概率第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第二部分课后习题第1章随机事件与概率第2章随机变量及其分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第三部分章节题库第1章随机事件与概率第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第四部分模拟试题茆诗松《概率论与数理统计教程》(第2版)配套模拟试题及详解(一)茆诗松《概率论与数理统计教程》(第2版)配套模拟试题及详解(二)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019暨南大学《概率论与数理统计教程》(茆诗松第
二版)考研强化冲刺题库
《《概率论与数理统计教程》(茆诗松第二版)强化冲刺题库》由鸿知暨大考研网依托多年丰富的教学与辅导经验,与该专业课优秀研究生合作汇编而成。

全书内容紧凑权威细致,编排结构科学合理,为参加2019暨南大学考研的考生量身定做的必备专业课资料。

《概率论与数理统计教程》(茆诗松第二版)强化冲刺题库全书编排根据:《概率论与数理统计教程》(茆诗松第二版)
2018暨南大学432统计学考试大纲规定的参考书目为:
1.《统计学原理》(第七版)韩兆洲主编,暨南大学出版社2010年12月。

(注:如果没有找到第七版,2006年9月第六版也可以。


2. 《统计学原理学习指导及Excel数据统计分析》(第二版),韩兆洲、王斌会主编,暨南大学出版社,2011年4月
3. 概率论与数理统计教程(第2版) ,出版社: 高等教育出版社; 第2版(2011年2月1日):普通高等教育“十一五”规划教材
4. 《概率论与数理统计》(平装),周纪芗(作者), 茆诗松(作者);中国统计出版社; 第1版(2007年12月1日)
本资料旨在帮助报考暨南大学硕士研究生的同学通过配套的相关985、211名校真题、经典教材各章节的习题详细解答,冲刺模拟练习与解答,帮助考生深入理解核心的考点内容、考试要求、考题命题特征。

通过研读演练本书,达到扎
实掌握学科基本知识点、把握教材重难点、提高答题技巧和考研临场应对能力的目的。

适用院系:
经济学院:应用统计(专业学位)
信息科学技术学院:应用统计(专业学位)
适用科目:
432统计学
内容详情
本书包括以下几个部分内容:
Part 1 - 教材课后习题与解答:
针对《概率论与数理统计教程》(茆诗松第二版)强化冲刺题库材课后习题配备详细解读,以供考生加深对教材基本知识点的理解掌握,做到对暨大考研核心考点及参考书目内在重难点内容的深度领会与运用。

Part 2 - 名校考研真题详解汇编:
根据《概率论与数理统计教程》(茆诗松第二版)强化冲刺题库教材内容和考试重难点,精选本专业课考试科目相关的名校考研真题,通过研读参考配套详
细答案检测自身水平,加深知识点的理解深度,并更好地掌握考试基本规律,全面了解考试题型及难度。

Part 3 - 教材章节配套题库:
根据《概率论与数理统计教程》(茆诗松第二版)强化冲刺题库教材的各章节分布情况,搭配对应的题型演练,并提供相近的解题思路与答案分析,帮助考生适应对应章节知识点的相关多样化题型,极大提升考生的答题应变能力,拓宽考试视野与应答能力。

Part 4 - 专业课考研模拟卷与解答:
根据《概率论与数理统计教程》的学科特点及本专业课的考研考察方式,设置了多套相关的模拟卷,有助于考生提前演练,适应现场的答题氛围与解题心理压力,帮助考生提高临场答题的能力,合理安排解题时间,提升专业课答题的得分率。

此冲刺题库由鸿知暨大考研网发布。

相关文档
最新文档