概率论习题集(有答案)
概率习题集详细答案

第一章 随机事件及其概率 习题1-1 随机事件及其运算1.写出下列随机试验的样本空间.(1)同时抛两枚硬币,观察正面朝上的次数; 解 {}10,1,2Ω=(2)同时掷两枚骰子,观察两枚骰子出现的点数之和; 解 {}22,3,,12Ω=(3)生产产品直到得到10件正品为止,记录生产产品的总件数; 解 {}310,11,Ω=(4)在某十字路口上,一小时内通过的机动车辆数. 解 {}40,1,2,Ω=2.设,,A B C 为3个随机事件,试用,,A B C 的运算表示下列事件. (1) ,A B 都发生而C 不发生;ABC(2),A B 至少有一个发生而C 不发生;()A B C (3),,A B C 都发生或都不发生; ()()ABC ABC (4) ,,A B C 恰有两个发生; ABC ABC ABC (5) ,,A B C 至少有两个发生. AB AC BC 3.请用语言描述下列事件的对立事件: (1)A 表示“抛两枚硬币,都出现正面”; 解 A 表示“抛两枚硬币,至少出现一个反面”; (2)B 表示“生产4个零件,至少有一个合格”; 解 B 表示“生产4个零件,全都不合格”.4.从一批灯泡中任取4个进行检验,设i A 表示“第i 个灯泡的使用寿命在800小时(含800小时)以上”.试用语言描述下列随机事件: (1) 1234A A A A ; (2) 1234A A A A ;解 (1)表示4个灯泡中至少有一个灯泡的使用寿命在800小时以上.(2)表示第1、第4两个灯泡的使用寿命在800小时以上,而第2、第4两个灯泡的使用寿命不足800小时.5设Ω为随机试验的样本空间,,A B 为随机事件,且{}05x x Ω=≤≤,{}12A x x =≤≤,{}02B x x =≤≤.试求:,,,A B AB B A A - .解 利用集合的运算性质可得{}02A B x x =≤≤ ; {}12AB x x =≤≤{}01B A x x -=≤<; {}0125A x x x =≤<<≤或习题1-2 随机事件的频率与概率古典概型与几何概型1.设()()()0.7,0.6,0.3P A P B P A B ==-=,求()()(),,P AB P A B P AB . 解 由于()()()0.3P A B P A P AB -=-=,而()0.7P A =,则()0.4P AB =所以 ()()10.6P AB P AB =-= ; ()()()()0.9P A B P A P B P AB =+-=()()()10.1P AB P A B P A B ==-=2.设事件,A B 及和事件A B 的概率分别为0.4,0.3和0.6,试求()P AB 解()()()()()()()P AB P A P AB P A P A P B P A B =-=-+-⎡⎤⎣⎦()()0.60.30.3P A B P B =-=-=3.已知()()()()()()11,,14,112,036P A P B P C P AC P BC P AB ======,求:(1),,A B C 至少有一个发生的概率;(2),,A B C 全不发生的概率.解 因为AB ABC ⊂,所以有()()0=≤AB P ABC P , 所以,,A B C 至少有一个发生的概率()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+12701211210416131=+---++=. ,,A B C 全不发生的概率()()()75111212P ABC P A B C P A B C ==-=-=4.将3个球随机地投入4个盒子中,求下列事件的概率:(1)A 表示“任取3个盒子中各有一个球”; (2)B 表示“任取1个盒子中有3个球”.解 (1)基本事件总数3464n ==,A 包含的基本事件数343!24A r C =⋅=,()243648A r P A n ===. (2) 基本事件总数3464n ==,B 包含的基本事件数144B r C ==,()416416B r P B n===5.从0,1,…,9中任意选出3个不同的数字,试求下列事件的概率:(1)3个数字中不含0与5的概率;(2)3个数字中不含0或5的概率.解 设A 表示“3个数字中不含0与5”; B 表示“3个数字中不含0或5”.基本事件总数310n C =,其中A 包含的基本事件数38A r C =,则()38310715C P A C ==;B 包含的基本事件数333998B r C C C =+-,()339831021415C C P A C -==6.袋中有7个球,其中红球5个,白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:(1)第一次取到白球、第二次取到红球的概率; (2)两次取得一红球一白球的概率.解 设A 表示“第一次取到白球,第二次取到红球”, 设B 表示“第一次取到白球,第二次取到红球”.(1)基本事件总数7642n =⨯=,A 包含的基本事件数2510A r =⨯=, 于是 ()1054221A r P A n ===. (2)基本事件总数7642n =⨯=,“两次取得一红球一白球”有两种情形:其一,第一次取得红球第二次取得白球,有52⨯种取法;其二,第一次取得白球,第二次 取得红球,有25⨯种取法,于是B 包含的基本事件数522520B r =⨯+⨯=, 故 ()20104221B r P B n === 7.10把钥匙中有3把能打开门,现任取2把,求能打开门的概率.解 设A 表示“任取2把能打开门”,基本事件总数210n C =,A 包含的基本的事件数为112373A r C C C =+,则()122373210815A C C C r P A n C +===习题1-3 条件概率1.设()0.5P A =,()0.3P AB =,求()P B A .解 由()()10.5P A P A =-=,()()()0.3P AB P A P AB =-=,得()0.2P AB =,则()()()0.20.40.5P AB P B A P A ===2.设()13P A =,()14P B A =,()13P A B =,求()()()()()()()()B A P B P AB P AB P 43,2,1. 解 ()()()1113412P AB P A P B A ==⨯=,()()121112111=-=-=AB P AB P由 ()()()13P AB P A B P B ==,得()14P B =,则()()()()()()()()[]()3241112141311111=-⎪⎭⎫⎝⎛-+-=--+-=-⋃==B P AB P B P A P B P B A P B P B A P B A P 3.100件同类型产品中有85件一等品,10件二等品和5件次品,求从中任取一件非次品的条件下,产品为一等品的概率.解 设A 表示“任取一件为非次品”,B 表示“任取一件为一等品” 由题意得:()()0.95,0.85,P A P B B A ==⊂, ()()()()()0.85170.9519P AB P B P B A P A P A ====4.用3台机床加工同一种零件,零件由各机床加工的概率分别为0.5,0.3,0.2,各机床加工的零件为合格品的概率分别等于0.94,0.9,0.95,求全部产品中的合格率.解 设i A 表示“从全部产品中任取一件为第台i 机床生产”(1,2,3i =),B 表示“从全部产品中任取一件是合格品”,则()()()1230.5,0.3,0.2P A P A P A ===,()10.94P B A =,()20.9P B A =,()30.95P B A =,由全概率公式得,()()()30.50.940.30.90.20.950.93i i i P B P A P B A ==⨯+⨯+⨯=∑5.某工厂中,三台机器分别生产某种产品总数的25%,35%,40%,它们生产的产品中分别有5%,4%,2%的次品,将这些产品混在一起,现随机地取一产品,问它是次品的概率是多少?又问这一次品是由三台机器中的哪台机器生产的概率最大?解设1A 表示“任取一件产品为第i 台机器生产”(1,2,3i =),B 表示“任取一件产品,它是次品”,则()()()12325%,35%,40%P A P A P A ===,()15%P B A =,()24%P B A =,()32%P B A =,由全概率公式得()()()325%5%35%4%40%2%0.0345i i i P B P A P B A ==⨯+⨯+⨯=∑再由贝叶斯公式得 ()()()()11125%5%0.36230.0345P A P B A P A B p B ⨯==≈()()()()22235%4%0.40580.0345P A P B A P A B p B ⨯==≈,()()()()33340%2%0.23190.0345P A P B A P A B p B ⨯==≈所以这一次品是由第二台机器生产的概率最大.习题1-4 事件的独立性 1.设()()0.4,0.7P A P A B == ,在下列条件下分别求()P B . (1)A 与B 互不相容;(2)A 与B 相互独立;(3)A B ⊂. 解 (1)由于A 与B 互不相容,所以()()()P A B P A P B =+ , 则()()()0.3P B P A B P A =-= .(2)设A 与B 相互独立,则()()()P AB P A P B =,()()()()P A B P A P B P AB =+-()()()()0.7P A P B P A P B =+-=,又()0.4P A =,即得()0.5P B =.(3)由于A B ⊂, A B B = ,即()()0.7P B P A B ==2.甲、乙两人独立地各向同一目标射击一次,其命中率分别为0.6和0.7,求目标被击中的概率.若已知目标被击中,求它是甲射中的概率.解 设1A 表示“甲命中目标”,2A 表示“乙命中目标”,B 表示“目标被命中”,所求概率为()P B 和()1P A B .已知()()120.6,0.7P A P A ==,1A 与2A 相互独立,12B A A = ,则()()()()()()2212120.60.70.420.88P B P A A P A P A P A P A ==+-=+-= .()()()()()111150.681822P A B P A P A B P B P B ===≈ 3.设事件A 与B 相互独立,且事件A 发生B 不发生与事件B 发生A 不发生的概率都为41, 求()A P解 由题意,()()B A P B A P = 因为A 与B 相互独立,则A 与B ,A 与B 也相互独立()()()()()()()()()()()()()()()()()()()()B P A P B P A P B P B P A P A P B P A P B P A P B P A P B P A P B A P B A P =⇒-=--=-==11()()()()()()()()()21412=⇒=-=-==A P A P A P B P A P A P B P A P B A P 4.有一题,甲、乙、丙三人独立解出的概率分别为111,,534,问解出此题的概率是多少?解 设1A 表示“甲独立解出此题”,2A 表示“乙独立解出此题”,3A 表示“丙独立解出此题”,B 表示“此题被解出”. ()()()()12312312311P B P A A A P A A A P A A A ==-=-()()()1234233115345P A P A P A =-=-⋅⋅=.5.进行一系列独立试验,每次试验成功的概率为p ,求:(1)第k 次才成功的概率;(2)n次试验中恰有k 次成功的概率.(1){}()()()()()()11211211k k k k k P k P A A A A P A P A P A P A p p ---===- 第次才成功. (2) {}()()1n kk k n n P n k P k C p p -==-次试验恰有次成功习题1-5 第一章习题课1. 设41)(=A P ,52)(=B P ,在下列情况下,求概率)(B A P . (1)A 、B 互不相容 (2)B A ⊂ (3)A 与B 独立 (4)81)(=AB P 解:由分析知(1)52)()(==B P B A P (2) 2034152)()()(=-=-=A P B P B A P(3)1035243)()()(=⨯==B P A P B A P (4) 40118152)()()(=-=-=AB P B P B A P2.设()()P AB P AB =,且()P A p =,求()P B .解 ()()()()()()11P AB P A B P A B P A P B P AB ==-=-+-⎡⎤⎣⎦ 又因为()()P AB P AB =,所以有()()11P B P A p =-=- 3.从4双不同的手套中任取4只,求下列事件的概率,(1)4只没有成对; (2)4只恰好为2双.解 从4双(8只)中任取4只,共有4870n C ==种,设A 表示“取到的4只没有成对”,则B 表示“取到的4只恰好为2双”,则A 的基本事件数为1111222216C C C C ⋅⋅⋅=,B 的基本事件数为624=C()11112222481687035C C C C P A C ===. ()3534824==C C B P4.有10件产品,其中8件正品,2件次品,现从中无放回地任取两次,求在第二次取得是正品条件下,第一次取得也是正品的概率.解:用A 表示“第一次取得是正品”,A 表示“第一次取到是次品”,用B 表示“第二次取得正品”所求问题为()B A P由题意知 ()()()98,97,541918191711018======C C A B P C C A B P C C A P由全概率公式()()()()()()()5498519754=⨯+⨯=+=+=B A P A P B A P A P B A P AB P B P由贝叶斯公式()()()()()()97549754=⨯===B P A B P A P B P AB P B A P5.有两批相同的产品,第一批产品共14件,其中2件次品,装在第一个箱中,第二批产品共有10件,其中1件次品,装在第二个箱子,从第一个箱中任取一件放入第二箱中,求再 从第二箱中任取一件为次品的概率.解 设1A 表示“从第一箱放入第二箱是次品”,2A 表示“从第一箱放入第二箱是正品”B 表示“从第二箱任取一件为次品”,由题意知:()()76,711141122114121====C C A P C C A P()(),111,112111112111121====C C A B P C C A B P由全概率公式()()()()()77811176112712211=⨯+⨯=+=A B P A P A B P A P B P6.从学校乘汽车到火车站的途中有5个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,且概率都是0.4,求从学校乘汽车到火车站遇到两次红灯的概率. 解:在各交通岗遇到红灯是独立的,故可以看成5重贝努里试验,4.0=p 用A 表示“从学校乘汽车到火车站遇到两次红灯”()()()3456.04.014.03225=-=C A P第二章 随机变量及其分布 习题2-1 随机变量及其分布函数 离散型随机变量的概率分布1. 已知随机变量X 只能取-1, 0, 1, 2这四个值,相应的概率依次为1357,,,24816c c c c ,确定常数c ,解由归1167854321=+++c c c c ,1637=c . 2.已知离散型随机变量X 的分布函数为()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤≤≤<≤--<=3,131,8.010,6.001,3.01,0x x x x x x F ,求X 的概率分布.解 ()x F 的跳跃点分别为3,1,0,1-,对应的跳跃高度分别为2.0,2.0,3.0,3.0 故X 的概率分布为10130.30.30.20.2X p -3.已知随机变量X 的概率分布为且()432=≥X P ,求未知参数θ及X 的分布函数. 解:由归一性知,()(),111222=-+-+θθθθ且()012≥-θθ{}{}{}()()431123222=-+-==+==≥θθθX P X P X P , 解得 21,21-==θθ(舍去) X 的分布函为()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=3,132,4321,411,0x x x x x F 4. 5件同类型的产品中有2件次品,3件正品,有放回的每次取一个,共取2次,求2次中取到次品的次数X 的概率分布. 解:X 的所有可能取值为2,1,0339{0}5525P X ==⨯=,233212{1}555525P X ==⨯+⨯=,224{2}5525P X ==⨯=,列表如下,0129124252525PX()()22123211X P --θθθθ5. 某电话交换台的呼唤次数服从参数为4的泊松分布,求: (1)每分钟恰有8次呼唤的概率;(2)每分钟的呼唤次数超过10次的概率.解 设X 表示每分钟收到的呼唤次数,则~(4)X P ,(1)448944{8}{8}{9}0.298!!∞∞--====≥-≥=-=∑∑k k k k P X P X P X e e k k (2)4114{10}0.0028!k k P X e k ∞-=>==∑ 习题2-2 连续型随机变量及其概率分布1.设随机变量X 的概率密度为cos ,,()20,k x x f x π⎧≤⎪=⎨⎪⎩其它.求(1)系数k ;(2){0}P x π<<;(3)X 的分布函数()F x .解(1)由()cos 1ππ+∞2-∞-2==⎰⎰f x dx k x dx ,得12k =; (2)2011{0}cos 22P x x dx ππ<<==⎰; (3)0,,21()=(sin 1),,2221,.2x F x x x x ππππ⎧<⎪⎪⎪+-≤<⎨⎪⎪≥⎪⎩2. 设随机变量X 的分布函数为0,0,(),01,1, 1.x F x k x x x <⎧⎪=≤<⎨⎪≥⎩求(1)系数k ;(2){00.25}P X ≤≤;(3)X 的概率密度()f x .解 (1)连续型随机变量的分布函数是处处连续的,(),lim lim 11k x k x F x x ==++→→(),1lim 1=-→x F x 即()()1lim lim 11===-+→→k x F x F x x ;(2)()()1{00.25}0.2500.2502P X F F ≤≤=-=-=;(3)()()1,01,()20,x f x F x x⎧<<⎪'==⎨⎪⎩其它.3. 设随机变量~[2,5]X U ,求(1){23}P X <≤;(2){4}P X ≥;(3){13}P X <≤.解 (1)321{23}523P X -<≤==-;(2)541{4}523P X -≥==-;(3)321{13}523P X -<≤==-. 4. 设~(1,16)X N -,求(1){ 2.44}P X <;(2){ 1.5}P X >-;(3){4}P X <; (4){52}P X -<<.(1) 2.441{ 2.44}()(0.86)0.80514P X +<=Φ=Φ=; (2)()1.51{ 1.5}1( 1.5)1()10.125(0.125)0.54784P X P X -+>-=-≤-=-Φ=-Φ-=Φ=;(3){4}{44}(1.25)(0.75)(1.25)(0.75)10.6678P X P X <=-<<=Φ-Φ-=Φ+Φ-=; (4)2151{52}(0.75)(1)0.614744P X +-+⎛⎫⎛⎫-<<=Φ-Φ=Φ-Φ-=⎪ ⎪⎝⎭⎝⎭.5.设顾客在某银行窗口等待服务的时间X (单位:min )具有概率密度51,0,()50,0.xe xf x x -⎧>⎪=⎨⎪≤⎩某顾客在窗口等待服务,若超过10 min ,他就离开.(1)求该顾客未等到服务而离开窗口的概率;(2)若该顾客一个月内要去银行5次,用Y 表示他未等到服务而离开窗口的次数,求{1}P Y ≥.解(1)251{10}510x p P X e dx e -+∞-=>==⎰; (2)2~(5,)Y B e -,20255{1}1{0}1()(1)0.5167P Y Y C e e --≥=-==--≈.习题2-3 随机变量函数的分布1.设随机变量X 的分布律为210111116434X P--求 2YX =+及21Z X =-的分布律.012311116434Y P;301111623Z P-2. 设随机变量X 的分布律为02111244X Pππ求 cos Y X =的分布律.101111244Y P-3. 设随机变量X 服从参数为2的指数分布,求3Y X =的概率密度.解:X 的密度函数为()⎩⎨⎧≤≥=-0,00,22x x e x f x ,3Y X =在[)+∞,0内单调函数,反函数为()3y y h =在[)+∞,0内单调函数,导数()3231-='y y h ,值域为[)+∞,0()()132232,0,0,()30,00,0.y X Y f h y h y y y e y f y y y --⎧⎧'⋅≥⎡⎤≥⎪⎪⎣⎦==⎨⎨<⎪⎪⎩<⎩4. 设随机变量~[0,1]X U ,求XY e =及ln Z X =-的概率密度.解:X 的密度函数为()⎩⎨⎧≤≤=others x x f ,010,1x e y =在[]1,0是单调函数,反函数为()y y h ln =在[]e ,1是单调函数,导数为()yy h 1=',值域为[]e ,1,则Y 的密度函数为()()1,1,,1()0,0,.X Y y e f h y h y y e y f y ⎧⎧'≤≤⋅≤≤⎡⎤⎪⎪⎣⎦==⎨⎨⎪⎪⎩⎩其他其它xz ln -=在()1,0是单调函数,反函数为()z e z h -=在[)+∞,0是单调函数,导数为()z e z h --=',()(),0,0,,0,()0,0.0,00,0.z z X Z f h z h z z e z e z f z z --⎧⎧'≥-≥⎡⎤⎧≥⎪⎪⎣⎦==⎨⎨⎨<<<⎪⎩⎪⎩⎩z z =5. 设随机变量()~0,1X N ,求Y X =的概率密度. 解:X 的概率密度函数为()()+∞<<∞-=-x e x f x X 2221π,0≥=X Y先求Y 的分布函数()y F Y ,当0≤y 时,(){}0=≤=y Y P y F Y ;当0>y 时,(){}{}{}()()y F y F y X y P y X P y Y P y F X X Y --=≤≤-=≤=≤=, 于是Y X =的概率密度为()()()()222222111,0,0()220,00,02,0,0,0.y y X X Y Y y f y f y y e e y f y F y y y e y y ---⎧--⋅->⎧+>⎪⎪'===⎨⎨≤⎪⎩⎪≤⎩⎧>⎪=⎨⎪≤⎩πππ习题2-4 第二章习题课1.选择题(1)设()x f 1为()1,0N 的概率密度,()x f 2为[]3,1-U 的概率密度,若()()()⎩⎨⎧>≤=0,0,21x x bf x x af x f 为概率密度()0,0>>b a ,则b a ,满足___. (A ) (A) 432=+b a (B) 324a b += (C) 1=+b a (D) 2=+b a(2)设随机变量()~2,X B p ,随机变量()p B Y ,3~,若()951=≥X P ,则()=≥1Y P .(A ) (A)1927 (B) 89 (C) 1627(D)19(3)设随机变量~[2,4]X U ,则{34}___P X <<=.(A )(A) {2.25 3.25}P X << (B) {1.5 2.5}P X << (C) {3.5 4.5}P X << (D) {4.5 5.5}P X <<(4)设随机变量X 的概率密度为2(1)81()22x f x e π+-=,则~___X .(B )(A) (1,2)N - (B) (1,4)N - (C) (1,8)N - (D)(1,16)N -2.填空题 2λ=(1)设X 服从参数为(0)λλ>的泊松分布,且1{0}{2}2P X P X ===,则__λ=. 解:{} ,2,1,0,!===-k e k k X P k λλ1{0}{2}2P X P X ===2281!221!0220=⇒=⇒⨯=⇒--λλλλλλe e(2)设随机变量X 的概率密度为2,10,()0,10.ax f x x x ⎧>⎪=⎨⎪≤⎩ 则常数__.a =10a =解:由归一性,()11010lim 10102==⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡-==+∞→+∞∞+∞+∞-⎰⎰a a x a x a dx x a dx x f x 10=a(3)设随机变量~(2,4)X N ,则{2}___.P X ≤=0.5 解:{}()5.00222222=Φ=⎭⎬⎫⎩⎨⎧-≤-=≤X P X P(4)设随机变量X 的分布函数为()x F ,则随机变量13+=X Y 的分布函数()=y G . 解:(){}{}⎪⎭⎫⎝⎛-=⎭⎬⎫⎩⎨⎧-≤=≤+=≤=313113y F y X P y X P y Y P y G 3.袋中有2个白球3个黑球,现从袋中随机地抽取2个球,以X 表示取到的白球个数,求X 的分布律.解:X的所有取值为2,1,0{}{}{}1013,1061,103025222513122523=========C C X P C C C X P C C X P012361101010XP4. 设连续型随机变量X 的分布函数为(1),0,(),01,1, 1.x x Ae x F x B x Ae x --⎧<⎪=≤<⎨⎪-≥⎩(习题B 第十题)求:(1),A B 的值;(2)X 的概率密度;(3)1{}3P X >.解 (1)由于连续型随机变量的分布函数()F x 为连续函数,因此考查()F x 在0,1x x ==两点的连续性,有0lim ()lim xx x F x Ae A --→→==,00lim ()lim x x F x B B ++→→==,得A B =; 又11lim ()lim x x F x B B --→→==,(1)11lim ()lim(1)1x x x F x Ae A ++--→→=-=-,得1B A =-;则12A B ==于是(1)1,0,21(),01,211, 1.2xx e x F x x ex --⎧<⎪⎪⎪=≤<⎨⎪⎪-≥⎪⎩(2)(1)1,0,2()()0,01,1, 1.2xx e x f x F x x e x --⎧<⎪⎪'==≤<⎨⎪⎪≥⎩ (3)11111{}1{}1()133322P X P X F >=-≤=-=-= 或(1)113111{}()322x P X f x dx e dx +∞+∞-->===⎰⎰. 5. 设随机变量[]6,0~U X ,求方程04522=-++X Xt t 有实根的概率.解:X 的概率密度为()⎪⎩⎪⎨⎧≤≤=othersx x f ,060,61使方程04522=-++X Xt t 有实根,0≥∆()()()()(),0414454454222≥--=+-=--=∆X X X X X X即4≥X 或1≤X方程有实根的概率为{}{}216161141064=+=≤+≥⎰⎰dx dx X P X P第三章 多维随机变量及其分布 习题3-1 二维随机变量及其分布函数二维离散型随机变量1. 袋中有1个红球,2个黑球与3个白球,现有放回地从袋中去两次,每次取一球以Y X ,分别表示从袋中两次取球所得的红、黑球个数,(1)求二维随机变量()Y X ,的联合概率分布律;(2)求{}1,2≤≤Y X P .解:X 的可能取值为0,1,2,Y 的可能取值为0,1,2{}{}{}9162622,0,31263621,0,4163630,0=⨯====⨯⨯====⨯===Y X P Y X P Y x P{}{}{}02,1,91262611,1,61263610,1====⨯⨯====⨯⨯===Y X P Y X P Y X P .{}{}{}02,2,01,2,36161610,2=======⨯===Y X P Y X P Y X P联合分布律为{}{}{}{}{}{}{}984161361319100,00,10,21,01,11,21,2=+++++===+==+==+==+==+===≤≤Y X P Y X P Y X P Y X P Y X P Y X P Y X PXX012111046361110391292. 2. 盒中有2个红球,1个白球和2个黑球,从中取2个,设,X Y 分别为取出的红球数和白球数,求二维随机变量(,)X Y 的联合分布律及边缘分布律. 解:X 的可能取值为0,1,2,Y 的可能取值为0,1{}{}{},520,1,511,0,1011,02512122512112522============C C C Y X P C C C Y X P C C Y X P{}{}{}01,2,1010,2,511,12512251112===========Y X P C C Y X P C C C Y X P0131101051032115551120101032155i jp p ⋅⋅3. 已知{}{}2121====X P X P ,当事件{}k X =发生时()2,1=k ,⎪⎭⎫ ⎝⎛=31,~k B k X Y ,求二维随机变量()Y X ,的联合概率分布律.解 当1=k 时,{}{}31323111,3232311001112001=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛====⎪⎭⎫ ⎝⎛===C X Y P C X Y P则有{}{}{}3132211010,1=⨯=======X Y P X P Y X P {}{}{}6131211111,1=⨯=======X Y P X P Y X P当2=k 时{}{}94323121,9432312011122002=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛====⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛===C X Y P C X Y P{}913122222=⎪⎭⎫ ⎝⎛===C X Y P 则有{}{}{}9294212020,2=⨯=======X Y P X P Y X P {}{}{}9294212121,2=⨯=======X Y P X P Y X P{}{}{}18191212222,2=⨯=======X Y P X P Y X PYX()Y X ,的联合分布律为18192922061311210习题3-2 二维连续型随机变量的分布1. 设随机变量(,)X Y 的概率密度为()()⎩⎨⎧≤≤≤≤--=其它,042,20,6,y x y x k y x f (1)确定常数k ;(2)求{}3,1<<Y X P ;(3)求{4}P X Y +≤;(4)求{}5.1≤X P . 解:(1)由归一性()()dx y xy y k dxdy y x k dx dxdy y x f ⎰⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=--==∞+∞-∞+∞-242242202166,1 ()[]81862620220=⇒=-=-=⎰k k x x k dx x k (2){}()()836816813.1103213=--=--=<<⎰⎰⎰⎰∞-∞-dxdy y x dxdy y x Y X P (3){}()()⎰⎰⎰⎰=--=--=≤∞-+∞∞-5.10425.132276816815.1dy y x dx dxdy y x X P2. 设二维随机变量(,)X Y 服从区域G 上的均匀分布,其中G 是由2,1y x x ==及0y =所围成的区域,求:(1)(,)X Y 的联合概率密度;(2)1{0,01}2P X Y <<<<. 解 (1)1,01,02(,)0,.x y x f x y ≤≤≤≤⎧=⎨⎩其它;(2)1114{0,01}214P X Y <<<<==.3. 设二维随机变量(,)X Y 的联合概率密度为21,01,02,(,)30,x xy x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它.求:(1)关于X 和Y 的边缘概率密度;(2){1}P X Y +≥.XY解 当01x ≤≤时,222012()(,)()233X f x f x y dy x xy dy x x +∞-∞==+=+⎰⎰;当0x <或1x >时,()(,)00X f x f x y dy dy +∞+∞-∞-∞===⎰⎰,则 222,01,()30X x x x f x ⎧+≤≤⎪=⎨⎪⎩,其它., 同理,11,02,()360+Y y y f y ⎧≤≤⎪=⎨⎪⎩,其它.(2)12201165{1}()372xP X Y dx x xy dy -+≥=+=⎰⎰. 习题3-3 随机变量的独立性1. 设随机变量(,)X Y 的联合分布律为23111191821139αβ问:当,αβ取何值时,X 和Y 相互独立.解 若X 和Y 相互独立,则 {1,3}{1}{3}P X Y P X P Y ====⋅=,即 11111=()()18918189α+++,16=α.由概率的规范性,得 1111191839+++++=αβ,则29=β.2. 已知二维随机变量(,)X Y 的联合分布律为已知随机事件{}0=X 与{}1=+Y X 相互独立,求常数b a ,. 解:由归一性得 5.011.04.0=+⇒=+++b a b a (1){}{}{}a Y X P Y X P X P +===+====4.01,00,00, {}{}{},0,11,01b a Y X P Y X P Y X P +===+====+ {}{}{}{},1,010a y X P Y X X P =====+⋂=X Y XY0100.410.1a b根据题意得{}{}{}{}{}1010=+⨯===+⋂=Y X P X P Y X X P 即 ()()b a a a +⨯+=4.0 (2) 由(1),(2)两式解得 1.0,4.0==b a 3. 二维随机变量(,)X Y 的联合概率密度为8,01,(,)0,xy x y f x y <<<⎧=⎨⎩其它.判断X 和Y 是否相互独立. 解 当01x <<时,13()(,)844X xf x f x y dy xydy x x +∞-∞===-⎰⎰,则 344,01,()0.X x x x f x ⎧-<<=⎨⎩,其它,当01y <<时,20()(,)84yY f y f x y dx xydx y +∞-∞===⎰⎰,则 24,01,()0,.Y y y f y ⎧<<=⎨⎩其它,(,)()()X Y f x y f x f y ≠⋅ ,∴X 和Y 不相互独立4. 设随机变量X 和Y 相互独立且服从相同的分布,其概率密度为2,01,()0,x x f x ≤≤⎧=⎨⎩其它.求{1}P X Y +≤.解 由题意得()Y X ,的联合密度函为()()()⎩⎨⎧≤≤==其他,010,4,x xy y f x f y x f Y X11011{1}(,)46xx y P XY f x y dxdy dx xydy -+≤+≤===⎰⎰⎰⎰.习题3-4 两个随机变量的函数的分布1. 设随机变量X 和Y 相互独立,分布律分别为010.60.4X P1010.20.30.5Y P-求1Z X Y =+,2Z XY =和3min(,)Z X Y =的分布律.Y解 (,)X Y 的边缘分布和联合分布表为10100.120.180.30.610.080.120.20.40.20.30.51-,从而 110120.120.260.420.2Z P-21010.080.720.2Z P - 31010.20.60.2Z P-2. 二维随机变量(,)X Y 的联合分布律为0100.10.310.30.3求 X Y +和XY 的分布律.解0120.10.60.3X YP+ 010.70.3XY P3. 设随机变量X 和Y 相互独立,且都服从区间[0,1]上的均匀分布,求1{}2P X Y +≤.解 因为X 和Y 相互独立,则()Y X ,的联合密度函数为()()()⎩⎨⎧≤≤≤≤==其他,000,10,1,y x y f x f y x f Y X 111222000111{}1228x P X Y dx dy x dx -⎛⎫+≤==-= ⎪⎝⎭⎰⎰⎰4. 设随机变量X 和Y 相互独立且服从相同的分布,其概率密度为2,01,()0,x x f x ≤≤⎧=⎨⎩其它.求{1}P X Y +≤.解:X 和Y 相互独立,则Y X +也服从正态分布,则()34,1~N Y X Z +={}()2101341134111=Φ-=⎭⎬⎫⎩⎨⎧-<-+-=≥+Y X P Y X P XYX习题3-5 第三章习题课1.填空题(1)设~(1,2),~(1,3)X N Y N -,且X 与Y 相互独立,则2~___X Y +.(2)已知二维随机变量(,)X Y 服从区域:01,02G x y ≤≤≤≤上的均匀分布,则{1,P X ≤1}___Y ≤=.122. 设(,)X Y 的概率密度为1124,0,0,(,)230,.xy x y f x y ⎧≤≤≥≤⎪=⎨⎪⎩其它 判断X 与Y 是否相互独立?解 当102x ≤≤时,1123300()24124X f x xy dy xy x ===⎰当0x <或12x >时,()0X f x = 则X 的概率密度为 14,0,()20,.X x x f x ⎧≤≤⎪=⎨⎪⎩其它;当103y ≤≤时,1122200()24126Y f y xy dx yxy ===⎰当0y <或13y >时,()0Y f y =, 则Y 的概率密度为 16,0,()30,.Y y y f y ⎧≤≤⎪=⎨⎪⎩其它显然,(,)()()X Y f x y f x f y =,X 与Y 相互独立.3. 盒中有2个红球3个白球,从中每次取一球,连续取两次,有放回,记,X Y 分别表示第一次与第二次取出的红球个数,求(,)X Y 的联合分布律与边缘分布律. 解 339{0,0}5525P X Y ===⋅=,326{0,1}5525P X Y ===⋅=,236{1,0}5525P X Y ===⋅=,224{1,1}5525P X Y ===⋅=, 则(,)X Y 的联合分布律与边缘分布律为196302525564212525532155i jp p ⋅⋅4. 设(,)X Y 的分布律为35111155131510q p-1- 问,p q 为何值时X 与Y 相互独立?解:要使X 与Y 相互独立,则需{}{}{}515,1=-===-=Y P X P Y X P⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛++=⇒103515115151q 152=⇒q ,{}{}{}515,1=====Y P X P Y X P 1011035110351103=⇒⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++=⇒p p 容易验证当152.101==q p 时,对Y X ,的所有取值都有..j i ij p p p ⋅=成立。
概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为 A 321A A A ++ B 323121A A A A A A ++ C 321321321A A A A A A A A A ++ D 321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为 A365 B 364 C 363 D 362 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则A )(1)(B P A P -= B )()()(B P A P AB P =C 1)(=+B A PD 1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-000)(2x x ce x f x ,则=EXA 21B1 C2 D 415.下列各函数中可以作为某随机变量的分布函数的是A +∞<<∞-+=x x x F ,11)(21 B ⎪⎩⎪⎨⎧≤>+=001)(2x x x x x FC +∞<<∞-=-x e x F x ,)(3D +∞<<∞-+=x x x F ,arctan 2143)(4π6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为A )2(2y f X -B )2(y f X -C )2(21y f X -- D )2(21y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=h A 81 B 83 C 41 D 318.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY EA3 B6 C10 D129.设X 与Y 为任意二个随机变量,方差均存在且为正,若EY EX EXY ⋅=,则下列结论不正确的是A X 与Y 相互独立B X 与Y 不相关C 0),cov(=Y XD DY DX Y X D +=+)(答案:1. B2. A 6. D 7. D 8. C 9. A1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为 C A 321A A A ++ B 323121A A A A A A ++C 321321321A A A A A A A A A ++D 321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为 AA 2242B 2412C C C 24!2AD !4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则 D A )()|(A P B A P = B )()()(B P A P AB P = C )()()|(B P A P B A P = D 0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX AA 32B1 C 38 D316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A B A0 B1 C2 D36.已知随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为 DA )3(3y f X -B )3(y f X -C )3(31y f X --D )3(31y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=e B A 81 B 41 C 83 D 318.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D CA-14 B13 C40 D419.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是 D A X 与Y 相互独立 B EY EX Y X E +=+)( C DY DX DXY ⋅= D EY EX EXY ⋅= 一、填空题1.设A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(若A 与B 互不相容,则)(B P = ;)2(若A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球不放回.已知第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .3.设离散型随机变量X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a .4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧>≤≤<=2,120,0,0)(2x x ax x x F则常数=a ,}31{<<X P = . 5.设随机变量X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .7.设随机变量X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .8.设X ,Y 是两个随机变量,2)(=X E ,20)(2=X E ,3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.02. 313. 414.41,435.5.46. 1,57. 0.52 8. 211.设A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为,,,则密码能译出的概率为 .3.设随机变量X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .6.设随机变量21,X X 相互独立,其概率分布分别为则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从0,1上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72.3.314. 0.55. 3ln 216. 957. )5,1(2N8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.1求取到的是白球的概率;2若已知取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.2411853163314131)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P114)()|()()()()|(241163312222=⨯===B P A B P A P B P B A P B A P三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,若三部机器均无故障,则该厂可获取利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元;若有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可获取的平均利润.设随机变量X 表示该厂一天所获的利润万元,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 万元四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解: 1 5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;2,,010,24),()(,,010,24),()(1010⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y y xydx dx y x f y f x x xydy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤≤-≤-=-=-=其它即,0311210,)1(83)21(23)21(21)(22y y y y y f y f X Y解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤≤-=≤-=⨯-==其它即,031121)(0,)21(2321)21(3|)(|))(()(22y y y h y y dy y dh y h f y f X Y注:21)(-==y y h x 为12+=x y 的反函数;二、设甲、乙、丙三人生产同种型号的零件,他们生产的零件数之比为5:3:2. 已知甲、乙、丙三人生产的零件的次品率分别为%2%,4%,3. 现从三人生产的零件中任取一个. )1(求该零件是次品的概率;)2(若已知该零件为次品,求它是由甲生产的概率.解:设事件321,,A A A 分别表示取到的零件由甲、乙、丙生产,事件B 表示取到的零件是次品.1 028.0%2105%4103%3102)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P ;2 143028.0%32.0)()|()()()()|(1111=⨯===B P A B P A P B P B A P B A P .三、设一袋中有6个球,分别编号1,2,3,4,5,6. 现从中任取2个球,用X 表示取到的两个球的最大编号. )1(求随机变量X 的概率分布;)2(求EX .解:X 可能取6,5,4,3,2,且6,5,4,3,2,1511}{26=-=-==k k C k k X P所以X 的概率分布表为3/115/45/115/215/165432P X且31415162=-⨯=∑=k k k EX .四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,020,10,),(y x x y x f .)1(求}1{≤+Y X P ;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解:1 31),(}1{1020101====≤+⎰⎰⎰⎰⎰≤+dx x xdy dx dxdy y x f Y X P x y x ; 2,,020,21),()(,,010,2),()(1020⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y xdx dx y x f y f x x xdy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 服从区间]3,0[上的均匀分布,求随机变量13-=X Y 的密度函数.解法一:由题意知⎩⎨⎧≤≤=其它,030,3/1)(x x f X . Y 的分布函数为)31(}31{}13{}{)(+=+≤=≤-=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤-≤+≤=+=其它即,0813310,91)31(31)(y y y f y f X Y 解法二:因为13-=x y 是30≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤-≤+=≤=⨯==其它即,081,331)(0,913131|)(|))(()(y y y h dy y dh y h f y f X Y 注:31)(+==y y h x 为13-=x y 的反函数; 三、已知一批产品中有90%是合格品,检查产品质量时,一个合格品被误判为次品的概率为,一个次品被误判为合格品的概率是.求:1任意抽查一个产品,它被判为合格品的概率; 2一个经检查被判为合格的产品确实是合格品的概率. 解:设=1A “确实为合格品”,=2A “确实为次品”, =B “判为合格品”1)|()()|()()(2211A B P A P A B P A P B P += 859.004.01.095.09.0=⨯+⨯=29953.0)()|()()|(111==B P A B P A P B A P四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<=-其他0),(yx e y x f y,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}1{<+Y X P . 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞-∞+∞-⎰⎰000000),()(x x ex x dy e dy y x f x f x x y X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰00000),()(0y y yey y dx e dx y x f y f y y y Y 2)()(),(y f x f y x f Y X ≠ ∴ X 与Y 不独立 315.0210121}1{----+-==<+⎰⎰e e dxdy e Y X P xxy四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<>=-其他10,02),(y x ye y x f x,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}{Y X P <. 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰0000002),()(10x x ex x dy ye dy y x f x f x x X⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰+∞-∞+∞-其他其他01020102),()(0y y y dx ye dx y x f y f x Y2)()(),(y f x f y x f Y X = ∴ X 与Y 独立 3142}{1101-==<--⎰⎰e dxdy ye Y X P x x一、单项选择题1. 对任何二事件A 和B,有=-)(B A P C .A. )()(B P A P -B. )()()(AB P B P A P +-C. )()(AB P A P -D. )()()(AB P B P A P -+ 2. 设A 、B 是两个随机事件,若当B 发生时A 必发生,则一定有 B . A. )()(A P AB P = B. )()(A P B A P =⋃ C. 1)/(=A B P D. )()/(A P B A P = 3. 甲、乙两人向同一目标独立地各射击一次,命中率分别为0.5,0.8,则目标被击中的概率为 C 甲乙至少有一个击中A. 0.7B. 0.8C. 0.9D.0.854. 设随机变量X 的概率分布为则a,b 可以是 D 归一性. A. 4161==,b a B. 125121==,b a C. 152121==,b a D.3141==,b a 5. 设函数0.5,()0,a x bf x ≤≤⎧=⎨⎩其它 是某连续型随机变量X 的概率密度,则区间],[b a 可以是 B 归一性.A. ]1,0[B. ]2,0[C. ]2,0[D. ]2,1[6. 设二维随机变量),(Y X 的分布律为则==}0{XY P D .A. 0.1B. 0.3C.D.7. 设随机变量X 服从二项分布),(p n B ,则有 D 期望和方差的性质.A. 12(-X E np 2)=B. 14)12(-=-np X EC. 1)1(4)12(--=-p np X DD. )1(4)12(p np X D -=- 8.已知随机变量(,)X B n p ,且 4.8, 1.92EX DX ==,则,n p 的值为 AA.8,0.6n p == B.6,0.8n p == C.16,0.3n p ==D.12,0.4n p == 9.设随机变量(1,4)XN ,则下式中不成立的是 BA. 1EX =B. 2DX =C. {1}0P X ==D.{1}0.5P X ≤=10. 设X 为随机变量,1,2=-=DX EX ,则)(2X E 的值为 A 方差的计算公式.A .5 B. 1- C. 1 D. 311. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且EX=0,则A 归一性和数学期望的定义.A. 6,4a b =-=B. 1,1a b =-=C. 6,1a b ==D.1,5a b ==12. 设随机变量X 服从参数为的指数分布,则下列各项中正确的是 A A. ()0.2,()0.04E X D X == B. ()5,()25E X D X == C. ()0.2,()4E X D X == D. ()2,()0.25E X D X == 13. 设(,)X Y 为二维连续型随机变量,则X 与Y 不相关的充分必要条件是 D .A. X 与Y 相互独立B.()()()E X Y E X E Y +=+C. ()()()E XY E X E Y =D. 221212(,)(,,,0)X Y N μμσσ 二、填空题1. 已知PA=,PA-B=,且A 与B 独立,则PB= .2. 设B A ,是两个事件,8.0)(,5.0)(=⋃=B A P A P ,当A, B 互不相容时,PB=;当A, B 相互独立时,PB=53 .3. 设在试验中事件A 发生的概率为p,现进行n 次重复独立试验,那么事件A 至少发生一次的概率为1(1)n p --.4. 一批产品共有8个正品和2个次品,不放回地抽取2次,则第2次才抽得次品的概率P =845. 5. 随机变量X 的分布函数Fx 是事件 PX )x ≤ 的概率.6. 若随机变量X ~ )0)(,(2>σσμN ,则X 的密度函数为 .7.设随机变量X 服从参数2=θ的指数分布,则X 的密度函数()f x = ; 分布函数Fx= .8. 已知随机变量X 只能取-1,0,1,三个值,其相应的概率依次为125236,,c c c,则c = 2 归一性 . 9. 设随机变量X 的概率密度函数为2,01()0,x x f x λ⎧<<=⎨⎩其它,则λ= 3归一性 .10. 设随机变量X ~2(2,)N σ,且{23}0.3P X <<=,则{1}P X <=.22232{23}{}11()(0)0.3,(0)0.5()=0.821211{1}{}=()=1()=0.2X P X P X P X P σσσσσσσσσ---<<=<<=Φ-Φ=Φ=∴Φ--<=<Φ--Φ又,,11. 设随机变量X ~N1,4,φ=,φ=,则P{|X |﹥2}= .{||>2}1{||2}1{22}2112111{}1{1.50.5}22221((0.5)( 1.5)0.9332),( 1.5)0.06680.69150.06680.31(1.5)=1-{||>2}=1((0.5)( 1.5))=751)3(P X P X P X X X P P P X ==-≤=--≤≤-----=-≤≤=--≤≤=-Φ-Φ-Φ-=-Φ∴-Φ-Φ--=-又 12. 设随机变量X ~ ),(211σμN ,Y ~ ),(222σμN ,且X 与Y 相互独立,则X+Y ~221212(,)N μμσσ++ 分布.13. 设随机变量X 的数学期望EX 和方差0DX >都存在,令DXEX X Y -=,则____0__=EY ;___1___=DY .14. 若X 服从区间0,2上的均匀分布,则2()E X =4/3 . 15. 若X ~(4,0.5)B ,则(23)D X -= 9 . 17. 设随机变量X 的概率密度23,01()0,x x f x ⎧<<=⎨⎩其它,()_____E X =,()_____D X =.18. 设随机变量X 与Y 相互独立,1,3DX DY ==,则(321)D X Y -+=(3)(2)9()4()D X D Y D X D Y +=+=21 .三、计算题1. 设随机变量X 与Y 独立,X ~(1,1)N ,Y ~)2,2(2N ,且0.2XY ρ=,求随机变量函数23Z X Y =-的数学期望与方差. 四、证明题1. 设随机变量X 服从标准正态分布,即X ~)1,0(N ,2X Y =,证明:Y 的密度函数为⎪⎩⎪⎨⎧≤>=-0,00,21)(2y y e yy f y Y π .五、综合题1.设二维随机变量X,Y 的联合密度为⎩⎨⎧<<<<=其它,010,10,6),(2y x xy y x f ,求:1关于X,Y 的边缘密度函数;2判断X,Y 是否独立;3求{}P X Y >.。
概率论·课后答案(绝对详解)

i习题一3 设,,B A 为二事件,化简下列事件:B B B A B BA B A B A B A =⋃=⋃⋃=⋃⋃)()())()(1(B B A B B A A A B A B A =⋃⋃⋃=⋃⋃)())()(2(4 电话号码由5个数字组成,每个数字可能是从0到9这10个数字中的任一个,求电话号码由5个不同数字组成的概率。
3024.010302410427210678910445==⋅=⋅⋅⋅⋅=p5 n 张奖券中有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
答案:.1k n k mn C C --6 从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”的概率是多少?解;将这五双靴子分别编号分组},,,,{};,,,,{5432154321b b b b b B a a a a a A ==,则C 表示:“至少有两只配成一双”;从5双不同的鞋子中任取4只,其可能选法有.45C不能配对只能是:一组中选i 只,另一组中选4-i 只,且编号不同,其可能选法为)0,1,2,3,4(;455=--i C C i i i41045341523251235451)(1)(C C C C C C C C C C P C P ++++-=-= 2113218177224161247720104060401011234789105453245224551=-=⋅⋅-=⋅++++-=⋅⋅⋅⋅⋅⋅⋅+⋅+⋅⋅+⋅⋅+-= 7在[—1,1]上任取一点,求该点到原点的距离不超过51的概率。
答案:518在长度为a 的线段内任取两点,将其分成三段,求它们可以构成三角形的概率。
,0,0a y a x <<<<且a y x <+<0,又41222,,=⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>+⇒⎪⎩⎪⎨⎧--<---<--->+P ay a x a y x y x a x y y x a y x y x a y x 9在区间)1,0(内任取两个数,求这两个数的积小于41的概率。
概率论_习题集(含答案)

《概率论》课程习题集一、计算题1. 10只产品中有2只次品, 在其中取两次, 每次任取一只,作不放回抽样,求下列事件的概率:(1)两只都是正品;(2)一只是正品,一只是次品;(3)第二次取出的是次品。
2. 一个学生接连参加同一课程的两次考试。
第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格的概率为.2/p 求 (1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率; (2)若已知他第二次已经及格,求他第一次及格的概率3. 用某种方法普查肝癌,设:A ={ 检验反映呈阳性 },C ={ 被检查者确实患有肝癌 },已知()()5.C A P ,.C A P 90950==()5.C P 000=且现有一人用此法检验呈阳性,求此人真正患有肝癌的概率.4. 两台机床加工同样的零件,第一台出现次品的概率是0.03, 第二台出现次品的概率是0.02,加工出来的零件放在一起,并且已知第一台加工的零件比第二台的多一倍。
(1)求随意取出的零件是合格品的概率(2)如果随意取出的零件经检验是次品,求它是由第二台机床加工的概率5. 某人有5把钥匙,但忘了开房门的是哪一把,现逐把试开,求∶(1) 恰好第三次打开房门锁的概率(2) 三次内打开房门锁的概率(3) 如5把钥匙内有2把是开房门的,三次内打开房门锁的概率6. 设X 是连续型随机变量,其密度函数为()()⎩⎨⎧<<-=其它020242x x x c x f求:(1);常数c (2){}.1>X P7. 设X ~⎩⎨⎧≤≤=其他,02,)(x o cx x f 求(1)常数c ;(2)分布函数)(x F ;8. 一工厂生产的某种元件的寿命X (以小时计)服从参数为σμ,160= 的正态分布。
若要求,80.0)200120(≥≤<X P 允许σ最大为多少?9. 证明:指数分布有无记忆性(或称无后效性),即证:如果)(~λE X ,则有)()|(t X P s X t s X P >=>+>,0,0≥≥t s10. 对球的直径作测量,设测量值均匀地分布在],[b a 内,求球的体积的概率密度.11. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其他,021),11(2)(2x xx f ,求X 的分布函数。
概率论试题及答案

概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。
2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。
三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。
求在一小时内至少有一台机器发生故障的概率。
2. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,这名学生是男生的概率是0.6。
求这个班级中男生和女生的人数。
四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。
2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。
如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。
求第二次取出的球是蓝球的概率。
答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。
至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。
2. 设男生人数为x,女生人数为y。
根据题意,x/(x+y) = 0.6,且x+y=50。
解得x=30,y=20。
四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。
计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。
概率论习题集答案

概率论习题集答案概率论是数学的一个分支,它研究随机事件的规律性。
在概率论习题集中,我们通常会解决一些与随机变量、概率分布、期望值、方差等概念相关的问题。
以下是一些概率论习题的答案示例:1. 随机变量的期望值:如果X是一个离散随机变量,其概率质量函数为P(X=x_i)=p_i,那么X的期望值E(X)可以通过以下公式计算:\[ E(X) = \sum_{i} x_i p_i \]2. 二项分布的概率:设随机变量X服从参数为n和p的二项分布,即X~B(n, p),那么X等于k的概率可以通过以下公式计算:\[ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \]其中,\(\binom{n}{k}\) 是组合数,表示从n个不同元素中选取k 个元素的组合方式数。
3. 正态分布的性质:如果随机变量X服从标准正态分布,即X~N(0,1),那么X的取值在-1到1之间的概率可以通过标准正态分布表来查找。
4. 联合分布函数:如果有两个随机变量X和Y,它们的联合分布函数P(X≤x, Y≤y)可以通过它们的边缘分布和条件分布来计算。
5. 大数定律:根据大数定律,随着试验次数的增加,样本均值会趋近于总体均值。
6. 中心极限定理:中心极限定理指出,即使原始随机变量的分布不是正态分布,它们的和或平均值的分布随着样本量的增加会趋近于正态分布。
7. 协方差与相关系数:两个随机变量X和Y的协方差度量了它们之间线性关系的强度和方向,计算公式为:\[ \text{Cov}(X, Y) = E[(X - E(X))(Y - E(Y))] \] 相关系数是协方差的标准化形式,计算公式为:\[ \rho_{X, Y} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X) \cdot \text{Var}(Y)}} \]8. 泊松分布的应用:泊松分布常用于描述在固定时间或空间内随机发生的事件数量,其概率质量函数为:\[ P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \] 其中,λ是单位时间或单位空间内事件发生的平均次数。
(完整word版)概率论与数理统计习题集及答案(word文档良心出品)

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论试题(附含答案)详细

事件表达式A B 的意思是事件A 与事件B 至少有一件发生假设事件A 与事件B 互为对立,则事件A B 是不可能事件. 这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从自由度为2的χ2分布. 因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。
已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则X +Y ~N (0,5). 因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有1233X X X ++是μ的无偏估计. 因为样本均值是总体期望的无偏估计.随机变量X 服从在区间(2,5)上的均匀分布,则X 的数学期望E (X )的值为3.5. 选C ,因为在(a ,b )区间上的均匀分布的数学期望为(a +b )/2。
已知P (A )=0.6, P (B |A )=0.3, 则P (A B )= 0.18. 由乘法公式P (A B )=P (A )P (B |A )=0.6⨯0.3=0.18。
三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为0.784. 是因为三人都不中的概率为0.63=0.216, 则至少一人中的概率就是1-0.216=0.784。
一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为0.25. 由古典概型计算得所求概率为31053210.254C ⨯⨯==。
已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=0.875,因P {X ≤1.5} 1.5()d 0.875f x x ==⎰假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (X +Y )= 填 4.5,因E (X )=5⨯0.5=2.5, E (Y )=2, E (X +Y )=E (X )+E (Y )=2.5+2=4.5一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=0.4,因为总体X 的方差为4,10个样本的样本均值的方差是总体方差的1/10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西财经大学统计学院
57
2020/5/12
江西财经大学统计学院
58
2020/5/12
江西财经大学统计学院
59
2020/5/12
江西财经大学统计学院
60
2020/5/12
江西财经大学统计学院
61
2020/5/12
江西财经大学统计学院
62
2020/5/12
江西财经大学统计学院
63
2020/5/12
江西财经大学统计学院
8
2020/5/12
江西财经大学统计学院
9
2020/5/12
江西财经大学统计学院
10
2020/5/12
江西财经大学统计学院
11
2020/5/12
江西财经大学统计学院
12
2020/5/12
江西财经大学统计学院
13
2020/5/12
江西财经大学统计学院
14
2020/5/12
江西财经大学统计学院
71
2020/5/12
江西财经大学统计学院
72
2020/5/12
江西财经大学统计学院
73
2020/5/12
江西财经大学统计学院
74
2020/5/12
江西财经大学统计学院
75
2020/5/12
江西财经大学统计学院
76
2020/5/12
江西财经大学统计学院
77
2020/5/12
江西财经大学统计学院
78
2020/5/12
江西财经大学统计学院
79
2020/5/12
江西财经大学统计学院
80
2020/5/12
江西财经大学统计学院
81
2020/5/12
江西财经大学统计学院
82
2020/5/12
江西财经大学统计学院
83
2020/5/12
江西财经大学统计学院
84
2020/5/12
112
2020/5/12
江西财经大学统计学院
113
2020/5/12
江西财经大学统计学院
江西财经大学统计学院
43
2020/5/12
江西财经大学统计学院
44
2020/5/12
江西财经大学统计学院
45
2020/5/12
江西财经大学统计学院
46
2020/5/12
江西财经大学统计学院
47
2020/5/12
江西财经大学统计学院
48
2020/5/12
江西财经大学统计学院
49
2020/5/12
江西财经大学统计学院
64
2020/5/12
江西财经大学统计学院
65
2020/5/12
江西财经大学统计学院
66
2020/5/12
江西财经大学统计学院
67
2020/5/12
江西财经大学统计学院
68
2020/5/12
ห้องสมุดไป่ตู้
江西财经大学统计学院
69
2020/5/12
江西财经大学统计学院
70
2020/5/12
江西财经大学统计学院
92
2020/5/12
江西财经大学统计学院
93
2020/5/12
江西财经大学统计学院
94
2020/5/12
江西财经大学统计学院
95
2020/5/12
江西财经大学统计学院
96
2020/5/12
江西财经大学统计学院
97
2020/5/12
江西财经大学统计学院
98
2020/5/12
2020/5/12
江西财经大学统计学院
106
2020/5/12
江西财经大学统计学院
107
2020/5/12
江西财经大学统计学院
108
2020/5/12
江西财经大学统计学院
109
2020/5/12
江西财经大学统计学院
110
2020/5/12
江西财经大学统计学院
111
2020/5/12
江西财经大学统计学院
江西财经大学统计学院
29
2020/5/12
江西财经大学统计学院
30
2020/5/12
江西财经大学统计学院
31
2020/5/12
江西财经大学统计学院
32
2020/5/12
江西财经大学统计学院
33
2020/5/12
江西财经大学统计学院
34
2020/5/12
江西财经大学统计学院
35
2020/5/12
江西财经大学统计学院
22
2020/5/12
江西财经大学统计学院
23
2020/5/12
江西财经大学统计学院
24
2020/5/12
江西财经大学统计学院
25
2020/5/12
江西财经大学统计学院
26
2020/5/12
江西财经大学统计学院
27
2020/5/12
江西财经大学统计学院
28
2020/5/12
江西财经大学统计学院
85
2020/5/12
江西财经大学统计学院
86
2020/5/12
江西财经大学统计学院
87
2020/5/12
江西财经大学统计学院
88
2020/5/12
江西财经大学统计学院
89
2020/5/12
江西财经大学统计学院
90
2020/5/12
江西财经大学统计学院
91
2020/5/12
江西财经大学统计学院
36
2020/5/12
江西财经大学统计学院
37
2020/5/12
江西财经大学统计学院
38
2020/5/12
江西财经大学统计学院
39
2020/5/12
江西财经大学统计学院
40
2020/5/12
江西财经大学统计学院
41
2020/5/12
江西财经大学统计学院
42
2020/5/12
江西财经大学统计学院
50
2020/5/12
江西财经大学统计学院
51
2020/5/12
江西财经大学统计学院
52
2020/5/12
江西财经大学统计学院
53
2020/5/12
江西财经大学统计学院
54
2020/5/12
江西财经大学统计学院
55
2020/5/12
江西财经大学统计学院
56
2020/5/12
江西财经大学统计学院
99
2020/5/12
江西财经大学统计学院
100
2020/5/12
江西财经大学统计学院
101
2020/5/12
江西财经大学统计学院
102
2020/5/12
江西财经大学统计学院
103
2020/5/12
江西财经大学统计学院
104
2020/5/12
江西财经大学统计学院
105
2020/5/12
江西财经大学统计学院
1
2020/5/12
江西财经大学统计学院
2
2020/5/12
江西财经大学统计学院
3
2020/5/12
江西财经大学统计学院
4
2020/5/12
江西财经大学统计学院
5
2020/5/12
江西财经大学统计学院
6
2020/5/12
江西财经大学统计学院
7
2020/5/12
江西财经大学统计学院
15
2020/5/12
江西财经大学统计学院
16
2020/5/12
江西财经大学统计学院
17
2020/5/12
江西财经大学统计学院
18
2020/5/12
江西财经大学统计学院
19
2020/5/12
江西财经大学统计学院
20
2020/5/12
江西财经大学统计学院
21
2020/5/12