01导数与导函数的概念

合集下载

导数性质知识点总结

导数性质知识点总结

导数性质知识点总结导数性质知识点总结「篇一」导数的定义:当自变量的增量Δx=x-x0,Δx→0时函数增量Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[x0,f(x0)] 点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

一般地,我们得出用函数的导数来判断函数的增减性(单调性)的.法则:设y=f(x )在(a,b)内可导。

如果在(a,b)内,f'(x)>0,则f(x)在这个区间是单调增加的(该点切线斜率增大,函数曲线变得“陡峭”,呈上升状)。

如果在(a,b)内,f'(x)<0,则f(x)在这个区间是单调减小的。

所以,当f'(x)=0时,y=f(x )有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值求导数的步骤:求函数y=f(x)在x0处导数的步骤:① 求函数的增量Δy=f(x0+Δx)—f(x0)② 求平均变化率③ 取极限,得导数。

导数公式:① C'=0(C为常数函数);② (x^n)'= nx^(n—1) (n∈Q*);熟记1/X的导数③ (sinx)' = cosx; (cosx)' = — sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 —(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanxsecx (cscx)'=—cotxcscx (arcsinx)'=1/(1—x^2)^1/2 (arccosx)'=—1/(1—x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=—1/(1+x^2) (arcsecx)'=1/(|x|(x^2—1)^1/2) (arccscx)'=—1/(|x|(x^2—1)^1/2)④ (sinhx)'=hcoshx (coshx)'=—hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=—1/(sinhx)^2=—(cschx)^2 (sechx)'=—tanhxsechx (cschx)'=—cothxcschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2—1)^1/2 (artanhx)'=1/(x^2—1) (|x|<1) (arcothx)'=1/(x^2—1) (|x|>1)(arsechx)'=1/(x(1—x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)⑤ (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(—1),(a>0且a不等于1)(x^1/2)'=[2(x^1/2)]^(—1) (1/x)'=—x^(—2)导数的应用:1.函数的单调性(1)利用导数的符号判断函数的增减性利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想。

导数

导数
那么汽车在由时刻t0变到t1这段时间内的平均速度是:
当t1无限趋近于t0时,汽车行驶的快慢变化就不会很大,平均速度就近似等于t0时刻的瞬时速度,因而就把 此时的极限作为汽车在时刻t0的瞬时速度,即,这就是通常所说的速度。这实际上是由平均速度类比到瞬时速度 的过程(如我们驾驶时的限“速”指瞬时速度)。
历史沿革
起源
大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求 最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f’ (A)。
发展
17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨 等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化 率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方 程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量 的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。
需要指出的是:
两者在数学上是等价的。
导函数
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内 的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的 导函数,记作y’、f’(x)、dy/dx或df(x)/dx,简称导数。
性质
单调性
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。 需代入驻点左右两边的数值求导数正负判断单调性。

第01讲 导数的概念及其意义、导数的运算(十二大题型)2025年高考数学一轮复习讲练测

第01讲 导数的概念及其意义、导数的运算(十二大题型)2025年高考数学一轮复习讲练测

(0 +ℎ)−(0 −ℎ)
(, ),则 lim

ℎ→0

A.′ 0
B.2′ 0
C.−2 ′ 0
D.0
【答案】B
0 +ℎ − 0 −ℎ
【解析】由题意知, lim

ℎ→0
0 +ℎ − 0 −ℎ
ℎ→0 0 +ℎ − 0 −ℎ
= 2lim
故选:B
= 2′ 0 .
变化率为( )
3
A.
300
cm/s

3
B.
3
300
cm/s

C.
150
cm/s

3
D.
150
cm/s

【答案】C
2
1
1
【解析】设注入溶液的时间为(单位:s)时,溶液的高为ℎcm,则 π ⋅ ℎ
3
5
因为ℎ′ =
1 3 150
,所以当
3 π 2
= π时,ℎ′ =
1 3 150
3
π3
即圆锥容器内的液体高度的瞬时变化率为
1
【解析】() = ′(1) −1 − (0) + 2 2 ⇒ ′() = ′(1) −1 − (0) +
令 = 1得: (0) = 1
() =
′(1) −1
−+
1 2

2
⇒ (0) = ′(1) −1 = 1 ⇔ ′(1) =
1
得:() = − + 2 2
则 ′ (0) = 1且(0) = 0,即切线的斜率为 = 1,切点坐标为(0,0),
所以切线方程为 = .

导数的概念-课件-导数的概念

导数的概念-课件-导数的概念

导数在现代数学中的地位和作用
基本概念
导数是现代数学的基本概念之一,是研究函数性质和解决实际问题的 重要工具。
数学分析
导数是数学分析的重要分支,是研究函数的可微性、可导性和连续性 的基础。
应用领域
导数的应用领域非常广泛,不仅限于数学和物理领域,还涉及到工程 学、经济学和计算机科学等多个领域。
数学建模
导数的应用发展
物理学
工程学
导数在物理学的各个分支中都有广泛的应 用,如力学、电磁学、热学等。
在机械工程、航空航天工程、土木工程等 领域,导数被用于优化设计、控制工程和 流体力学等方面。
经济学
计算机科学
导数在经济学中被用于研究经济系统的变 化率和最优决策问题。
在计算机图形学、数值分析和机器学习等 领域,导数被用于计算图像处理、数据拟 合和模型训练等方面。
高阶导数在研究函数的极值、拐 点、曲线的形状等方面有重要应 用。
微分学基本定理
微分学基本定理的内容
微分学基本定理是导数与微分之间的关系,即函数在某点的导数 等于该函数在该点的切线的斜率。
微分学基本定理的推导
通过极限的概念和性质,利用切线斜率的定义推导出微分学基本定 理。
微分学基本定理的应用
微分学基本定理是微分学的基础,在研究函数的增减性、极值、曲 线的形状等方面有重要应用。
复合函数求导法则
若$y = f(u)$和$u = g(x)$都可导, 则复合函数$y = f[g(x)]$的导数为 $(y)' = u' cdot (u)' = u' cdot v'$。
隐函数的导数
由显函数表示的隐函数求 导
若由显函数$F(x, y) = 0$表示的隐函数为$y = f(x)$,则通过求偏导数$frac{partial F}{partial x}$和$frac{partial F}{partial y}$ ,可以得到隐函数$y = f(x)$的导数。

导数的概念及运算讲课文档

导数的概念及运算讲课文档
现在三十二页,总共三十六页。
【思维升华】 导数的几何意义是切点处切线的斜率,应 用时主要体现在以下几个方面:
(1)已知切点A(x0,f(x0))求斜率k,即求该点处的导数值: k=f′(x0).
(2)已知斜率k,求切点A(x1,f(x1)),即解方程f′(x1)=k.
现在三十三页,总共三十六页。
(3)若求过点 P(x0,y0)的切线方程,可设切点为(x1,y1),由
现在十六页,总共三十六页。
5 . 曲 线 y = - 5ex + 3 在 点 (0 , - 2) 处 的 切 线 方 程 是 ________.
【解析】 因为y′|x=0=-5e0=-5, 所以曲线在点(0,-2)处的切线方程为 y-(-2)=-5(x-0),即5x+y+2=0. 【答案】 5x+y+2=0
现在七页,总共三十六页。
5.复合函数的导数 复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导 数间的关系为yx′=_y_u_′__·__u_x_′_,即y对x的导数等于_y_对__u_ 的导数与_u__对__x的导数的乘积.
现在八页,总共三十六页。
【知识拓展】 1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函 数的导数还是周期函数. 2.f(1x)′=-f[′f((x)x)]2(f(x)≠0). 3.[af(x)+bg(x)]′=af′(x)+bg′(x). 4.函数 y=f(x)的导数 f′(x)反映了函数 f(x)的瞬时变化趋势, 其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢, |f′(x)|越大,曲线在这点处的切线越“陡”.
2.导数的几何意义 函数y=f(x)在点x0处的导数的几何意义,就是曲线y= f(x)在点P(x0,f(x0))处的切线的斜率k,即k=__f_′_(x_0_)_.

求导数的定义和性质

求导数的定义和性质

定义法:根据导数的定义, 通过求极限来确定函数的导 数。
链式法则:对于复合函数, 使用链式法则计算导数。
乘积法则:对于两个函数的 乘积,使用乘积法则计算导
数。
公式法
定义:根据导数的定义和性质,通过公式计算导数的值
适用范围:适用于已知函数表达式的情况
计算步骤:求导公式,确定自变量和因变量的关系,代入公式进行计算
乘积法则
定义:两个函数的乘积的导数等于第一个函数的导数乘以第二个函数加上第一个函数 乘以第二个函数的导数。
公式:(uv)' = u'v + uv'
应用:用于计算复合函数的导数,简化计算过程。
注意事项:在使用乘积法则时,需要注意每个函数的导数和乘积的符号。
04 导数的应用
导数在几何中的应用
导数可以用来研究函数的单调性, 从而解决一些几何问题。
导数在经济中的应用
边际分析:导数可以用来分析经济函数的边际变化,帮助企业做出更好的决策。
最优问题:导数可以帮助解决最优问题,例如在生产、运输和分配等方面找到最优解。
弹性分析:导数可以用来分析经济函数的弹性,帮助企业了解市场需求和价格变化对销 售的影响。
经济增长和预测:导数可以用来分析经济增长的规律和趋势,帮助预测未来的经济走势。
导数在工程中的应用
优化设计:导数可 以用于优化工程设 计,例如最小化材 料使用或最大化结 构稳定性。
控制理论:导数在 控制系统理论中用 于描述系统的动态 行为,例如航空航 天器的姿态控制。
流体动力学:导数 在计算流体动力学 中用于模拟流体流 动,例如计算流体 阻力或升力。
结构分析:导数可 以用于分析结构的 应力分布和位移, 例如桥梁或建筑物 的稳定性评估。

高数课件-导数的概念

高数课件-导数的概念

导数的四则运算规则
加法规则:导数相加等于导数之和
乘法规则:导数相乘等于导数之积
添加标题
添加标题
添加标题
添加标题
减法规则:导数相减等于导数之差
除法规则:导数相除等于导数之商
复合函数的导数计算
复合函数的定 义:由两个或 多个函数组成
的函数
复合函数的导 数计算方法:
链式法则
链式法则:将 复合函数分解 为多个简单函 数,分别计算 导数,然后将
导数的性质定理
导数的定义:导数是函数在某一点的切线斜率 导数的性质:导数是连续的,可导函数在定义域内处处可导 导数的公式:导数的基本公式包括导数的四则运算、复合函数求导公式、隐函数求导公式等 导数的应用:导数在微积分、函数极限、函数极值、函数凹凸性等方面有广泛应用
感谢观看
汇报人:
导数的定理与公式
导数的定义:导数是函数在某一点 的切线斜率
导数的基本定理
导数的公式:导数公式包括基本导 数公式、复合函数导数公式、隐函 数导数公式等
添加标题
添加标题
添加标题
添加标题
导数的性质:导数是函数在某一点 的极限值
导数的应用:导数在微积分、函数 分析、=lim(h>0)(f(x+h)-f(x))/h
导数的推导公式
导数的定义:函数在某一点的导数是该函数在该
01
点附近曲线的切线斜率 导数的基本公式:f'(x)=lim(h->0) [f(x+h)-
02
f(x)]/h 导数的四则运算法则:f'(x)=f(x)+g'(x),
03
f'(x)=f(x)-g'(x),f'(x)=f(x)*g'(x),f'(x)=f(x)/g'(x) 04 导数的复合函数公式:f'(g(x))=f'(g(x))*g'(x)

第01讲 导数的概念及运算 (精讲+精练)(学生版)

第01讲 导数的概念及运算 (精讲+精练)(学生版)

第01讲导数的概念及运算 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:导数的概念高频考点二:导数的运算高频考点三:导数的几何意义①求切线方程(在型)②求切线方程(过型)③已知切线方程(或斜率)求参数④导数与函数图象⑤共切点的公切线问题⑥不同切点的公切线问题⑦与切线有关的转化问题第四部分:高考真题感悟第五部分:第01讲导数的概念及运算(精练)1、平均变化率(1)变化率事物的变化率是相关的两个量的“增量的比值”。

如气球的平均膨胀率是半径的增量与体积增量的比值. (2)平均变化率一般地,函数()f x 在区间[]21,x x 上的平均变化率为:2121()()f x f x x x --.(3)如何求函数的平均变化率求函数的平均变化率通常用“两步”法:①作差:求出21()()y f x f x ∆=-和21x x x ∆=-②作商:对所求得的差作商,即2121()()f x f x y x x x -∆=∆-. 2、导数的概念(1)定义:函数()f x 在0x x =处瞬时变化率是()()xx f x x f x yx x ∆-∆+=∆∆→∆→∆0000limlim,我们称它为函数()x f y =在0x x =处的导数,记作() 或0x f '即 0x x y ='()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000limlim =. (2)定义法求导数步骤:① 求函数的增量:00()()y f x x f x ∆=+∆-; ② 求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③ 求极限,得导数:00000()()'()limlim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.3、导数的几何意义函数()y f x =在点0x x =处的导数的几何意义,就是曲线()y f x =在点00(,)P x y 处的切线的斜率k ,即0()k f x '=.4、基本初等函数的导数公式5若()f x ',()g x '存在,则有 (1)[()()]()()f x g x f x g x '''±=±(2)[()()]()()()()f x g x f x g x f x g x '''⋅=⋅+⋅ (3)2()()()()()[]()()f x f xg x f x g x g x g x ''⋅-⋅'= 6、复合函数求导复合函数(())y f g x =的导数和函数()y f u =,()u g x =的导数间的关系为x u x y y u '''=,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.7、曲线的切线问题(1)在型求切线方程已知:函数)(x f 的解析式.计算:函数)(x f 在0x x =或者))(,(00x f x 处的切线方程.步骤:第一步:计算切点的纵坐标)(0x f (方法:把0x x =代入原函数)(x f 中),切点))(,(00x f x . 第二步:计算切线斜率'()k f x =.第三步:计算切线方程.切线过切点))(,(00x f x ,切线斜率)('0x f k =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数与导函数的概念
教学目标:
1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法; 理解导数的几何意义;
理解导函数的概念和意义;
2、过程与方法:先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,
培养转化问题的能力;最后求切线方程,培养转化问题的能力
3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美。

教学重点:
1、导数的求解方法和过程;
2、导数符号的灵活运用
教学难点:
1、导数概念的理解;
2、导函数的理解、认识和运用
教学过程:
一、情境引入
在前面我们解决的问题:
1、求函数2
)(x x f =在点(2,4)处的切线斜率。

x x
x f x f x y ∆+=∆-∆+=∆∆4)()2(,故斜率为4 2、直线运动的汽车速度V 与时间t 的关系是12-=t V ,求o t t =时的瞬时速度。

t t t
t v t t v t V o o o ∆+=∆-∆+=∆∆2)()(,故斜率为4 二、知识点讲解
上述两个函数)(x f 和)(t V 中,当x ∆(t ∆)无限趋近于0时,
t V ∆∆(x V ∆∆)都无限趋近于一个常数。

归纳:一般的,定义在区间(a ,b )上的函数)(x f ,)(b a x o ,∈,当x ∆无限趋近于0时,x
x f x x f x y o o ∆-∆+=∆∆)()(无限趋近于一个固定的常数A ,则称)(x f 在o x x =处可导,并称A 为)(x f 在o x x =处的导数,记作)('o x f 或o x x x f =|)(', 上述两个问题中:(1)4)2('=f ,(2)o o t t V 2)('=
三、几何意义:
我们上述过程可以看出
)(x f 在0x x =处的导数就是)(x f 在0x x =处的切线斜率。

四、例题选讲
例1、求下列函数在相应位置的导数
(1)1)(2
+=x x f ,2=x (2)12)(-=x x f ,2=x
(3)3)(=x f ,2=x
例2、函数)(x f 满足2)1('=f ,则当x 无限趋近于0时, (1)
=-+x
f x f 2)1()1( (2)=-+x f x f )1()21( 变式:设f(x)在x=x 0处可导,
(3)x
x f x x f ∆-∆+)()4(00无限趋近于1,则)(0x f '=___________ (4)x
x f x x f ∆-∆-)()4(00无限趋近于1,则)(0x f '=________________ (5)当△x 无限趋近于0,
x x x f x x f ∆∆--∆+)2()2(00所对应的常数与)(0x f '的关系。

总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。

例3、若2)1()(-=x x f ,求)2('f 和((2))'f
注意分析两者之间的区别。

例4:已知函数x x f =)(,求)(x f 在2=x 处的切线。

导函数的概念涉及:)(x f 的对于区间(a ,b )上任意点处都可导,则)(x f 在各点的导数也随x 的变化而变化,因而也是自变量x 的函数,该函数被称为)(x f 的导函数,记作)('x f 。

五、小结与作业。

相关文档
最新文档