厦门中考试卷

合集下载

福建省厦门市中考化学试卷及答案

福建省厦门市中考化学试卷及答案

福建省厦门市中考化学试卷及答案(试卷满分:100分 考题时间:60分钟) 准考证号 姓名 座位号注意事项:1.本学科有两张试卷,一是答题卡,另一是本试题(共5页18题)。

请将全部答案填.在答题卡的相应答题栏内...........,否则不能得分。

2.可能用到的相对原子质量:H-1 C-12 O-16 Na-23 S-32 Cl-35.5 K-39 Cu-63.5 Ba-137一、选择题(本题10小题,1~5小题各2分,6~10小题各3分,共25分。

每小题只有一个..选项符合题目要求,请在答题卡选择题栏内用2B 铅笔将该选项的序号涂黑)1.装修房屋用到的下列材料,属于有机合成材料的是A .大理石B .沙土C .铝合金D .塑料水管2.香烟烟气中含有一种极易与人体血红蛋白结合的有毒气体,该气体是A .O 2B .N 2C .COD .CO 23.保持氢气化学性质的最小粒子是 A .H 2 B .H 2O C .H D .H + 4.下列实验事故处理正确的是A .可燃性气体大量泄漏时,立即接通电源用排气扇排气B .酒精灯中的酒精洒在桌上燃烧起来,立即用湿抹布扑盖C .氢氧化钠溶液沾到皮肤上,直接涂上浓盐酸D .少量浓硫酸沾到皮肤上,用大量水冲洗,然后涂上浓氢氧化钠溶液5.实验室配制100 g 质量分数为4%的氢氧化钠溶液,下列描述正确的是A .计算需氢氧化钠4 g 、水100 gB .将氢氧化钠固体放于纸上称量C .把氢氧化钠固体放入量筒中溶解D .将配好的氢氧化钠溶液装瓶并密封保存6.某课外活动小组取刚降到地面的雨水水样,用pH 计(测pH 的仪器)每隔5 min 测一次 该水样的pH ,数据如下表。

已知酸雨的pH <5.6,下列说法错误..的是A. 测定的时间内该水样的酸性减弱B. 该雨水是酸雨C. 该取样地点的空气可能受污染D. 用pH 试纸不能测得表中数据7.近期,英国科学家造出“干水”。

“干水”的每个颗粒内部是一颗水滴,外层是二氧化硅。

2024年福建省厦门市中考联考英语试卷含答案

2024年福建省厦门市中考联考英语试卷含答案

2024年福建省厦门市中考联考英语试卷含答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

Ⅰ. 单项选择1、---Do you think ______ he has taken the bag?--- ______ I’m mistaken.A.that; Until B.whether; If C.that; Unless D.whether; Unless2、The dictionary may for two weeks.A.keep B.be kept C.be borrowed D.borrow3、It’s very nice you my parents your best wishes when you come to see them.A.of; giving B.for; giving C.for; to give D.of; to give4、—____ you ___ the book Harry Potter for two weeks?—No, I haven’t. I ____ it from the library the day before yesterday.A.Did; borrow; borrowed B.Have; borrowed ;keptC.Have; kept; borrowed D.Did ; keep; kept5、―To tell you the truth, we are planning to have a second baby recently.―Think twice, for most children are to deal with.A.tired B.tiring C.interested D.interesting6、________baby in red is________eight-month-old boy.A.The;an B.A;a C.The;a D.The;/7、—I can’t believe Jim got first in the competition.— As you know, God helps those who help ______.A.yourself B.himself C.yourselves D.themselves8、In an important game like this one, every minute ___________. So let’s go for it!A.lasts B.works C.counts D.helps9、Mrs. White walks a dog in the park nearby every morning it’s rainy or windy.A.since B.because C.unless D.until10、Only those _______ have the patience to do simple things perfectly ever get the skill to do difficult things easily.A.who B.whom C.which D.whatⅡ. 完形填空11、请阅读下面短文, 从短文后各题所给的A、B、C、D 四个选项中, 选出最佳选项, 并在答题卡上将该项涂黑。

厦门数学中考试题参考答案及评分标准

厦门数学中考试题参考答案及评分标准

考生须知: 厦门市2007年初中毕业及高中阶段各类学校招生考试数学试题(试卷满分: 150 分; 考试时间:120分钟) 1. 解答的内容一律写在答题卡上, 考生不得擅自带走• 2. 作图或画辅助线要用 0.5毫米的黑色签字笔画好. 一、选择题(本大题共 7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有 一个选项是正确的) 下列计算正确的是 A . — 3X 2 = — 6 B. — 1— 1 = 0 已知点 A (— 2, 3),则点A 在 A .第一象限 B .第二象限 下列语句正确的是 A.画直线AB = 10厘米 C.画射线OB = 3厘米 下列事件,是必然事件的是 A. 掷一枚均匀的普通正方体骰子,骰子停止后朝上的点数是B. 掷一枚均匀的普通正方体骰子,骰子停止后朝上的点数是偶数C. 打开电视,正在播广告 D •抛掷一枚硬币,掷得的结果不是正面就是反面 1.2. 3. 4.6. 7. 否则以0分计算.交卷时只交答题卡,本卷由考场处理, C. ( — 3)2= 6 C.第三象限D. 2 -1 = 2 D.第四象限B.画直线 D.延长线段AB 到点C,使得BC = AB I 的垂直平分线 方程组丿x + y = 5, 的解是,2x — y = 4.X= 3, x = 3, x =— 3, x =— 3, A .彳 B . C .丿D. \ly = 2. w=— 2.j= 2. 丁=— 2.5. 如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形下列两个命题:①有一个内角是60° ,那么这个等腰三角形一定是等边三角形 .则以下结论正确的是A.只有命题①正确B.只有命题②正确C.命题①、②都正确D.命题①、②都不正确小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为 69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地 .后来 小宝借来一副质量为 6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地 .小宝的体重可能是 A. 23.2 千克B. 23千克C. 21.1 千克D. 19.9 千克二、填空题(本大题共 10小题,每小题4分,共40分) 9.已知/ A = 50°,则/ A 的补角是 计算15 车序号1 2 3 4 5 6 车速(千米/时) 85 100 90 82 70 82 不等式2x — 4> 0的解集是 ________ . _______ 一名警察在高速公路上随机观察了 6辆车的车速,如下表所示: 则这6辆车车速的众数是 _______________ 千米/时. 已知图1所示的图形是由6个大小一样的正方形拼接而成的,此图形能否折成正方体 _________ (在横线上填“能”或“否”). 已知摄氏温度(C )与华氏温度「F )之间的转换关系是: 5摄氏温度=9 % (华氏温度—32).若华氏温度是68 F, 则摄氏温度是 C . 已知在 Rt △ ABC 中,/ C = 90°,直角边 AC 是直角边 BC 的2倍,贝U sin / A 的值 是 如图2,在平行四边形 ABCD 中,AF 交DC 于E ,交BC 的延长线于F ,若/ DAE = 20° , / AED = 90°,则/ B = __________ 度;若E C = 1,AD = 4厘米,则CF = _____________ 厘米. AB 3 在平面直角坐标系中, O 是坐标原点•点P (m , n )在反 图2 、 k 厂 比例函数y = X 的图象上.若m = k , n = k — 2,则k = ____________ ;若m + n = ,2k, OP = 2, k 且此反比例函数 y = -满足:当x > 0时,y 随x 的增大而减小,则 k =—— X 解答题(本大题共 9小题,共89分) 2 “ 2 ——1 V + X (本题满分8分)计算X 一 十J 厂+ 1. x x (本题满分8分)一次抽奖活动设置了如下的翻奖牌,如果你只能有一次机会在 字中选中一个翻牌,(1)求得到一架显微镜的概率;9个数(2)请你根据题意写出一个事件,使这个事件发生的概率是2 9.10. 11. 12. 13. 14.15. 16. 17. 三、 18. 19.1 2 3 4 5 6 789翻奖牌正面一架 两张 谢谢显微镜球票 参与 一张 一副 一张 唱片 球拍 唱片 两张 一张 一副 球票唱片球拍翻奖牌反面(本题满分8分)已知:如图3, AB 是O O 的弦,点(1) 若/ OAB = 35°,求/ AOB 的度数; (2) 过点C 作CD // AB ,若CD 是O O 的切线,求证:点C 是AB 的中点.21. (本题满分9分)某种爆竹点燃后,其上升的高度h (米)和时间t (秒)符合关系式1h = v o t — 2g t 2 ( O v t W 2),其中重力加速度 g 以10米/秒2计算.这种爆竹点燃后以 V o = 20 米/秒的初速度上升, (1) 这种爆竹在地面上点燃后,经过多少时间离地15米?(2) 在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明 理由. 22. (本题满分10分)已知四边形ABCD ,对角线AC 、BD 交于点O.现给出四个条件:①AC 丄BD :②AC 平分对角线 BD :③ AD // BC :④ / OAD = Z ODA.请你以其中的三个 条件作为命题的题设,以“四边形 ABCD 是菱形”作为命题的结论,(1 )写出一个真命题,并证明;(2 )写出一个假命题,并举出一个反例说明.23. (本题满分10分)已知:如图4,在厶ABC 中,D 是AB 边上的一点,BD > AD ,/ A =Z ACD ,(1)若/ A =Z B = 30 °,BD =3,求 CB 的长;(2 )过D 作/ CDB 的平分线 DF 交CB 于F ,C若线段AC 沿着AB 方向平移,当点 A 移到点D 时,F判断线段AC 的中点E 能否移到线段 DF 上,并说明理由. ______________________________ADB20. 图3图424. (本题满分12分)已知抛物线的函数关系式:y= x2 3+ 2( a —1) x+ a2-2a (其中x是自变量),(1)若点P(2,3)在此抛物线上,①求a的值;②若a> 0,且一次函数y= kx+ b的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不必写出过程) ;(2)设此抛物线与x轴交于点A (x1, 0)、B (x2, 0).若xi^^3< x2,且抛物线的顶点3在直线x= 4的右侧,求a的取值范围.25. (本题满分12分)已知:如图5, PA、PB是O O的切线,A、B是切点,连结OA、OB、OP,(1)若/ AOP = 60°,求/ OPB 的度数;A(2 )过O作OC、OD分别交AP、BP于C、D两点,判断直线CD与O O的位置关系,并说明理由①若/ COP = Z DOP,求证:AC = BD;②连结CD,设△ PCD的周长为I,若I = 2AP,图526. (本题满分12分)已知点P (m, n) ( m>0)在直线y= x+ b (0< b< 3)上,点A、B4 2 2在x轴上(点A在点B的左边),线段AB的长度为3匕,设厶FAB的面积为S,且S=?b 2+ 3b,3(1 )若b = 2,求S的值;(2 )若S= 4,求n的值;(3)若直线y= x + b ( 0< b< 3)与y轴交于点C,A PAB是等腰三角形,当CA // PB时,求b的值.厦门市2007年初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准题号 1 2 3 4 5 6 7 选项A BDD AC C、选择题(本大题共 7小题,每小题3分,共21分)二、填空题(本大题共 8. 3. 9. 130 度. 10小题,每小题4分,共40 分)10.5.11. x >2.12.82千米/时.13. 台匕 冃匕.14. 20 C .15.5 16. 70 度2厘米.17.3; 2.三、解答题(本大题共 (本题满分8分) 2 , 2 解:匸1X + X x 9小题,共89分) 18. 2 2x — 1 x • ~~2~7~■x x + x 19. (本题满分 (1)解:8分) ]9.20. (x — 1)( x + 1) x — 1 + 1=x.x(x + 1) + 1解:••• 0A = OB ,” 1 分 •• / OAB = Z OBA . ” 2 分 • • / OAB = 35° , ” 3 分 •• / AOB = 110°. ”4 分(2)证明:连结0C ,交AB 于E .(1) 如得到“一副球拍”或得到“两张球票”或 “一架显微镜或谢谢参与” . (2)解:得到 (本题满分8分)CD 是O 0的切线, ••• 0C 丄 CD .CD // AB , • / OEB = Z OCD . • 0E 丄AB . •/ 0A = OB ,• △ AOB 是等腰三角形,OE 是等腰三角形 AOB 顶角的平分线.•••点C 是AB 的中点.21.(本题满分9分)(1)解:由已知得,15 = 20t — |x 10X t 2,整理得,t 2 — 4t + 3= 0.解得,h= 3, t 2= 1当t =3时,不合题意,舍去• •当爆竹点燃后1秒离地15米.2(2)解:由题意得, h =- 5t + 20t.20•顶点的横坐标t =-莎)=2.2或:h =— 5( t — 2) + 20•顶点的横坐标t = 2.又••• 一 5V 0,二抛物线开口向下.•在爆竹点燃后的1.5秒至1.8秒这段时间内,爆竹在上升•22.(本题满分10 分)(1)真命题:如图,已知四边形ABCD ,对角线AC 、BD 交于点O.若平分对角线BD , AD // BC ,则四边形ABCD 是菱形.证明:•/ AD // BC ,• / CBO =Z ADO .•/ AC 垂直平分 BD , • Rt △ AOD 也 Rt △ COB . • AD = BC .•四边形ABCD 是平行四边形.(2)假命题1:已知四边形ABCD ,对角线AC 、BD 交于点O.若AC 丄BD , AC 平分对 角线BD ,/ OAD = Z ODA ,则四边形 ABCD 是菱形. 反作等腰直角三角形 ABD ,/ A = 90°,以BD 为一边,作等边三角形 BCD ,连结AC 、BD 交于点O. 贝U AC 丄BD , AC 平分对角线 BD ,/ OAD = Z ODA”9分•/ AC 丄 BD , 四边形ABCD 是菱形.AC 丄 BD , ACD3分但四边形ABCD不是菱形. ,,10分假命题2 :已知四边形ABCD,对角线AC、BD交于点O.若AC丄BD, AD // BC, / OAD = Z ODA,则四边形ABCD是菱形. ”6分反例:作等腰直角三角形AOD,/ AOD = 90° .延长DO至B, AO至C,取OB = OC (OB M OD ).连结AB、BC、CD ,贝U AC 丄BD , AD // BC,/ OAD = Z ODA. ,, 9 分则四边形ABCD是等腰梯形,不是菱形•,,10分假命题3:已知四边形ABCD,对角线AC、BD交于点O.若AC平分对角线BD , AD // BC,/ OAD = / ODA,则四边形ABCD是菱形. ”6分反例:作等腰三角形AOD ( OA = OD,/ AOD丰90°).延长DO至B,AO至C,取OB= OC= OA = OD.连结AB、BC、CD,贝U AD 丰 AB,AC 平分对角线BD,AD // BC,/ OAD = / ODA. ,,9分则四边形ABCD是矩形,不是菱形.5510分23.(本题满分10分)(1)解:•/ /A =/ ACD = 30°,CF ••• / CDB = 60° . ,, 1 分E又T/ B = 30°,A D B• / DCB = 90° . ,, 2 分亠亠BC在Rt△ BDC 中,cosB = BD,553分厂血3BC —BD •cosB — 3 •—.v2 2554分(2)解: •/ / CDB — / A +/ ACD,且DF 是/ CDB 的平分线,• 2 / FDB —2/ A,• / FDB —/ A. •AC // DF.5分方法 1 T / FDB =/ A,/ B =/ B,△ BDF s\ BAC.DF = BDAC = BA.BD > AD, DF 1> —AC 2BD、1 -- 〉_BA 2•/ E是AC的中点,•AE >1.即DF > AE.点E可以移到线段DF上.10分方法2:记点M为线段AB的中点,T BD >AD,点M在线段BD上.过M作MN // AC交BC于N./ BMN = / A,Z B =Z B,△ BMN BAC.BN = BM = 1BC = BA = 2N是BC的中点.MN // AC, AC// DF MN // DF.点N在线段BF上.点M在线段BD上,••• MN v DF.••• M为AB的中点,N是BC的中点,AE v DF.•••点E可以移到线段DF上.方法3:记点M为线段AB的中点,T BD > AD,”8分MN = AE.”9分”10分点M在线段BD上.过M作MN // AC交BC于N. / BMN = / A,Z B =Z B,△BMN BAC.MN = BM = 1AC = BA = 2.1E 为 AC 的中点,••• MN = 2AC = AE.MN // AC , AC // DF , 点M 在线段BD 上, MN BM 彳DF BD MN v DF. AE v DF.点E 可以移到线段DF 上.方法4:如图,延长 DF 至G ,使得DG = AC.•四边形ADGC 是平行四边形. • CG // AB.•••/ CGF =Z FDB ,/ GCF = Z FBD .△ CFG BFD. GF = CG FD = DB . CG = AD , AD v DB.即 計• GF + FD v 2F D. • DG > 2.1 FD > 2AC.又••• E 是AC 的中点,24.(本题满分12分)(1 [① 解:由题意得,3=4 + 2( a — 1) X 2 + a — 2a,”1 分 整理得,a 2+ 2a — 3= 0. ”2 分 解得,a 1=— 3, a 2= 1.”4 分9 / 12MN // DF.9分 10分CG DB v 1.• FD > AE.点E 可以移到线段DF 上. 9分 10分②解:y = x — 2.、.22(2)由题意得,x + 2( a — 1) x + a — 2a = 0解得,X 1 = — a , X 2 = — a + 2.解得一-,/3 v a v 2 — /3.3 1• 3 — a >4,解得 a v 4.3 I I1 8• S^- • AB • n , • -x- • n = 4.X 1< 3 v X 2,—a v” :3 v — a + 2.可以解得顶点坐标为(1 — a , — 1).11分10分△ OCP ^A ODP.CP = DP.•/ FA 、PB 是O O 的切线, • FA = PB. .AC = BD.② 证明 1:连结 CD.•/ l = 2AP , PA = PB ,CD = AC + BD.•/ OA = OB ,且/ OAC = Z OBD = 90° .•/ OC 1 = OC , DC 1= DC , OD = OD , ••• △ OCDOCD.10 / 1225. 12分(本题满分12分)(2)① 证明:•••/ COP =Z DOP ,/ CPO = Z DPO , PO = PO ,(1).将厶OAC 绕点O 逆时针旋转,使点 A 与B 重合. 记点C 的对称点为 C 1,. AC = BC 1,OC = OC 1.vZ OAC =Z OBD = 90°,•••点 C 1在PB 的延长线上.过O 作OE 丄CD , E 是垂足.即0E 是点0到直线CD 的距离, 112 X CD® 2 X CD &0B = OE.直线CD 与O O 相切.证明 2:过 O 作 OE 丄CD.设 OE = d , CE = x, DE = y.2 A —2 , A —22_122 , . -.22d = AC + AO — x , d = BD + AO — y ,••• AC 1 4— BD 2+ y 2— x 2= 0”8 分••• ( AC + x)( AC — x) = (BD + y)( BD — y)l = 2AP , FA = PB , • x + y = AC + BD.”9 分AC — x = y — BD.• ( AC + x)( y — BD) = (BD + y)( BD — y). (y — BD) (AC + x + BD + y )= 0.• ( AC + x + BD + y )M 0, - -y — BD = 0.BD = y.• d = AO. •直线CD 与O O 相切.26.(本题满分12分)32 9 23 (1)解:• b = -,• S = x + x-23 4 3 2=5 =2.” 2 2 2 (2)解:• S = 4,• 4 = 3b + 3b.• b 2 + b — 6 = 0. 解得 b =— 3 (舍去),b = 2.• AB 的长度为3.4 1 1 ,2 3n = 3.2 2 1⑶解:• S = 3b 2 + 3b , S = 2 •丨 AB| • n ,11分 12分10分11分 12分1分2分 3分4分5分 6分31 42 2 2 2 • §b • n = 3b + 3b. ■/ b z 0,n = b + 1. /• m + b = b + 1./• m = 1.P (1, b +1)过P 作PD 垂直x 轴于点D ,则点D (1 , 0). 4 1PD — AB = b + 1 — 3b = 1 — 3b. ” 8 分 1■/ 0 v b v 3,二 1 — §b > 0.”9 分••• PD > AB. •/ PA > PD , PD >AB ,「. PA > PD > AB ,即 PA >AB. •••PA 工 AB.同理 PB z AB”10 分2 2••• △ PAB 是等腰三角形,• PA = PB. • A (1— 3b , 0), B (1+ -b , 0)方法 1:v CA // PB ,••• / OAC =Z DPB ,• Rt △ AOC s Rt △ BDP.23• 4b — b — 3 = 0. •- b = 1 或 b = — 4 (不合题意,舍去)b = 1.方法2:延长PA 交y 轴于点C 1,v PA = PB ,/ CAO = Z PBA =Z PAB =Z OAC 1• OC 1= OC ,• C 1 (0, — b ).设直线 PA 的解析式为:y = kx +1. "k + t = b + 1, "k = 2b + 1, 则有* 解得,’L. t =— b. L_t =— b.•直线PA 的解析式为:y = (2 b + 1)x — b.” 11分/ 2 2--0 = (2 b +1) (1 — 3b )— b.•- 4 b — b — 3 = 0.3CO = OA PD = DB1 — 3b11分3b12分Rt △ AOC 也 Rt △ AOC .•- b= 1或b=—4 (不合题意,舍去).•b= 1. ”12分。

福建省厦门市道德与法治中考试卷与参考答案(2025年)

福建省厦门市道德与法治中考试卷与参考答案(2025年)

2025年福建省厦门市道德与法治中考复习试卷(答案在后面)一、单项选择题(本大题有12小题,每小题4分,共48分)1、以下哪项不属于道德的基本范畴?A、诚信B、权利C、公正D、勇气2、根据我国《宪法》规定,以下哪个机构负责解释宪法?A、最高人民法院B、全国人民代表大会常务委员会C、国务院D、全国人民代表大会3、题干:根据《中华人民共和国宪法》规定,国家尊重和保障公民的什么权利?A、财产权B、言论自由C、宗教信仰自由D、人格尊严4、题干:以下哪项行为违反了《中华人民共和国消费者权益保护法》?A、消费者在购物时主动索要购物小票B、消费者在购物时要求商家提供商品的三包服务C、消费者在购物时发现商品有质量问题,要求商家赔偿D、消费者在购物时要求商家提供虚假宣传的商品5、根据我国《宪法》规定,公民的基本权利和义务不包括以下哪项?A、言论自由B、出版自由C、宗教信仰自由D、担任国家机关职务6、以下哪项不属于我国法律的基本原则?A、法律面前人人平等B、权利与义务相统一C、民主集中制原则D、依法治国原则7、题干:根据我国《民法典》的规定,下列哪项行为不属于民事法律行为?A. 签订劳动合同B. 出卖房屋C. 依法纳税D. 签订婚约8、题干:下列哪项不属于我国宪法规定的基本权利?A. 人身自由权B. 言论自由权C. 被选举权D. 财产权9、根据我国宪法规定,以下哪项不属于公民的基本权利?A. 选举权和被选举权B. 言论、出版、集会、结社、游行、示威的自由C. 人身自由、人格尊严不受侵犯D. 隐私权 10、在道德与法治教育中,以下哪项不属于道德教育的内容?A. 培养良好的道德品质B. 树立正确的法治观念C. 增强社会责任感D. 提高法律意识11、题干:根据《中华人民共和国宪法》规定,下列哪个机关是最高国家权力机关?A. 全国人民代表大会B. 国家主席C. 国务院总理D. 全国人民代表大会常务委员会12、题干:在法治国家中,以下哪种行为是不允许的?A. 公民依法参与政治生活B. 政府依法行政C. 公民私自拘禁他人D. 法院公正审判二、非选择题(本大题有5小题,第5小题12分,其他每题10分,共52分)第一题【阅读材料】近年来,随着互联网技术的发展,网络已经成为人们生活中不可或缺的一部分。

厦门市中考地理试卷

厦门市中考地理试卷

厦门市中考地理试卷4.我国是一个A.没有海域的内陆国家B.独占一块大陆的国家C.岛屿众多的群岛国家D.海陆兼备的沿海大国据报道,2019年4月某日,我国渔民在南海某海域(东经117、北纬16)附近进行海上捕捞作业时,受到某邻国军舰的干扰。

为保护我国渔民的合法权益,我国渔政船从甲地出发立即前往事发海域维权。

结合图2,回答5~8题。

5.事发地点位于图中A.a海域B.b海域C.c海域D.d海域6.为了尽快抵达事发地点,渔政船选择的前进方向大致是A.东北方向B.西北方向C.东南方向D.正南方向7.在地球仪表面,从赤道向两极,纬线逐渐缩短;所有经线等长。

据此推断,图中①~④各点之间的实地距离最短的是A.①②B.②③C.③④D.②④8.不考虑天气因素,②地每天的日出时间总是比①地早1小时,造成这一现象的原因是A.地球自转B.地球公转C.纬度差异D.地壳运动读图3某地等高线地形图,完成9~11题。

9.图中①~④的地形部位名称依次是A.山脊、山顶、陡崖、山谷B.山顶、山脊、山谷、陡崖C.山谷、陡崖、山顶、山脊D.陡崖、山谷、山脊、山顶10.乙河干流流向大致是A.从西向东流B.从东南向西北流C.从北向南流D.从西南向东北流11.甲村所在虚线区域内的地形类型是A.平地B.丘陵C.高原D.山地读图4聚落景观图片,完成12~13题。

12.四幅景观图片中,属于城市聚落的是A.甲B.乙C.丙D.丁13.与丁聚落比较,乙聚落的A.居民全部从事海洋渔业B.房屋更集中密集C.交通经常堵塞D.大气污染非常严重读图5内蒙古自治区植被景观分布图,完成14~16题14.内蒙古自治区从东往西,植被变化的规律大致是A.森林草原荒漠B.荒漠森林草原C.森林荒漠草原D.草原森林荒漠15.植物生长与水分关系密切,据图推断内蒙古自治区年降水量的分布规律大致是A.南多北少B.北多南少C.东多西少D.西多东少16.内蒙古自治区最主要的农业生产部门是A.林业B.牧业C.种植业D.渔业读图6非洲气候类型分布图,完成17~19题。

2023年厦门中考数学试卷

2023年厦门中考数学试卷

2023年厦门中考数学试卷一、选择题(每题3分,共15分)下列计算正确的是:( )A. 5a - a = 4B. a2⋅a4=a6C. a6÷a2=a3D. 2a−2=4a21计算:−12023=( )A.1B.−1C.0D.2023下列各式中,是一元一次方程的是( )A.3x+5=0B.x+y=5C.x2−2=0D.xy−6=0下列各式中,不是整式的是( )A.5xB.2xC.3x2−2x+1D.x+2y下列投影中,是平行投影的是( )A.路灯下行人的影子B.太阳光下楼房的影子C.台灯下书本的影子D.在手电筒照射下纸片的影子二、填空题(每题3分,共18分)计算:−5×(−51)=____。

若点A(m+1,y1),B(m+2,y2)是反比例函数y=xk(k>0)图象上的两点,且y1<y2,则m的取值范围是____。

下列各式中,是一元一次不等式的是( )A.3−5<0B.x+y>5C.3x−1>0D.x2<4若方程x1+3=x−1k有增根,则k=____。

若扇形的圆心角为45∘,半径为3,则该扇形的弧长为____。

若关于x的分式方程x−3x−2=x−3k有增根,则k=____。

三、解答题(每题8分,共40分)解方程:x2+x+11=1。

解不等式组:{x−3(x−2)≥432x+1>x−1。

解方程组:{y=x+33x−4y=−7。

解不等式:−x2+x+7>0。

2024届福建省厦门五中学中考试题猜想数学试卷含解析

2024届福建省厦门五中学中考试题猜想数学试卷含解析

2024学年福建省厦门五中学中考试题猜想数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,⊙O 与直线l 1相离,圆心O 到直线l 1的距离OB =23,OA =4,将直线l 1绕点A 逆时针旋转30°后得到的直线l 2刚好与⊙O 相切于点C ,则OC =( )A .1B .2C .3D .42.若分式方程1x aa x -=+无解,则a 的值为( ) A .0B .-1C .0或-1D .1或-13.已知x 1,x 2是关于x 的方程x 2+ax -2b =0的两个实数根,且x 1+x 2=-2,x 1·x 2=1,则b a 的值是( ) A .B .-C .4D .-14.下图是某几何体的三视图,则这个几何体是( )A .棱柱B .圆柱C .棱锥D .圆锥5.如图,△ABC 中,DE ∥BC ,13AD AB =,AE =2cm ,则AC 的长是( )A.2cm B.4cm C.6cm D.8cm6.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,则可列方程组为()A.100131003x yx y+=⎧⎪⎨+=⎪⎩B.100131003x yx y+=⎧⎪⎨+=⎪⎩C.1003100x yx y+=⎧⎨+=⎩D.1003100x yx y+=⎧⎨+=⎩7.已知反比例函数1yx=下列结论正确的是()A.图像经过点(-1,1)B.图像在第一、三象限C.y 随着x 的增大而减小D.当x > 1时,y < 18.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°9.为了配合“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A.140元B.150元C.160元D.200元10.如图是一个几何体的三视图,则这个几何体是()A .B .C .D .二、填空题(共7小题,每小题3分,满分21分)11.已知抛物线y=ax 2+bx+c=0(a≠0) 与 x 轴交于 A ,B 两点,若点 A 的坐标为 ()2,0-,线段 AB 的长为8,则抛物线的对称轴为直线 ________________.12.如图,在Rt ABC 中,CM 平分ACB ∠交AB 于点M ,过点M 作MN //BC 交AC 于点N ,且MN 平分AMC ∠,若AN 1=,则BC 的长为______.13.如图,在△ABC 中,AB =AC ,AH ⊥BC ,垂足为点H ,如果AH =BC ,那么sin ∠BAC 的值是____.14.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.15.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= . 16.分式方程241512(1)x x x +---=1的解为_____ 17.如图,菱形ABCD 的边8AB =,60B ∠=︒,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APDQ 沿直线PQ 折叠,A 的对应点为A ',当CA '的长度最小时,CQ 的长为__________.三、解答题(共7小题,满分69分)18.(10分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.19.(5分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题: 分 组频数 频率 第一组(0≤x <15) 3 0.15 第二组(15≤x <30) 6 a 第三组(30≤x <45) 7 0.35 第四组(45≤x <60)b0.20(1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?20.(8分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃)从加热开始计算的时间为x (min ).据了解,当该材料加热时,温度y 与时间x 成一次函数关系:停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?21.(10分)如图1,直角梯形OABC 中,BC ∥OA ,OA=6,BC=2,∠BAO=45°.(1)OC 的长为 ;(2)D 是OA 上一点,以BD 为直径作⊙M ,⊙M 交AB 于点Q .当⊙M 与y 轴相切时,sin ∠BOQ= ; (3)如图2,动点P 以每秒1个单位长度的速度,从点O 沿线段OA 向点A 运动;同时动点D 以相同的速度,从点B 沿折线B ﹣C ﹣O 向点O 运动.当点P 到达点A 时,两点同时停止运动.过点P 作直线PE ∥OC ,与折线O ﹣B ﹣A 交于点E .设点P 运动的时间为t (秒).求当以B 、D 、E 为顶点的三角形是直角三角形时点E 的坐标. 22.(10分)如图,AD 是等腰△ABC 底边BC 上的高,点O 是AC 中点,延长DO 到E ,使AE ∥BC ,连接AE .求证:四边形ADCE 是矩形;①若AB =17,BC =16,则四边形ADCE 的面积= . ②若AB =10,则BC = 时,四边形ADCE 是正方形.23.(12分)解方程(1)2430x x --=;(2)()22(1)210x x ---= 24.(14分)综合与探究如图,抛物线y=﹣2323333x x -+与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,直线l 经过B ,C 两点,点M 从点A 出发以每秒1个单位长度的速度向终点B 运动,连接CM ,将线段MC 绕点M 顺时针旋转90°得到线段MD ,连接CD ,BD .设点M 运动的时间为t (t >0),请解答下列问题: (1)求点A 的坐标与直线l 的表达式;(2)①直接写出点D 的坐标(用含t 的式子表示),并求点D 落在直线l 上时的t 的值; ②求点M 运动的过程中线段CD 长度的最小值;(3)在点M 运动的过程中,在直线l 上是否存在点P ,使得△BDP 是等边三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、B 【解题分析】先利用三角函数计算出∠OAB =60°,再根据旋转的性质得∠CAB =30°,根据切线的性质得OC ⊥AC ,从而得到∠OAC =30°,然后根据含30度的直角三角形三边的关系可得到OC 的长. 【题目详解】解:在Rt △ABO 中,sin ∠OAB =OB OA =34=32, ∴∠OAB =60°,∵直线l 1绕点A 逆时针旋转30°后得到的直线l 1刚好与⊙O 相切于点C ,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=12OA=1.故选B.【题目点拨】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.2、D【解题分析】试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,当1-a=0时,即a=1,整式方程无解,当x+1=0,即x=-1时,分式方程无解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故选D.点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.3、A【解题分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【题目详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a=()2=.故选A.4、D【解题分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【题目详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥. 故选D . 【题目点拨】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识. 5、C 【解题分析】由DE ∥BC 可得△ADE ∽△ABC ,再根据相似三角形的性质即可求得结果. 【题目详解】 ∵DE ∥BC ∴△ADE ∽△ABC ∴13AD AE AB AC == ∵2cm =AE ∴AC=6cm 故选C.考点:相似三角形的判定和性质点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上. 6、B 【解题分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可. 【题目详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:B . 【题目点拨】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组. 7、B 【解题分析】分析:直接利用反比例函数的性质进而分析得出答案.详解:A.反比例函数y=1x,图象经过点(﹣1,﹣1),故此选项错误;B.反比例函数y=1x,图象在第一、三象限,故此选项正确;C.反比例函数y=1x,每个象限内,y随着x的增大而减小,故此选项错误;D.反比例函数y=1x,当x>1时,0<y<1,故此选项错误.故选B.点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.8、C【解题分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【题目详解】A.∵∠3=∠A,本选项不能判断AB∥CD,故A错误;B.∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C.∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D.∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【题目点拨】考查平行线的判定,掌握平行线的判定定理是解题的关键.9、B【解题分析】试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.故选B.考点:一元一次方程的应用10、B【解题分析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.二、填空题(共7小题,每小题3分,满分21分)11、2x=或x=-1【解题分析】由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴.【题目详解】∵点A的坐标为(-2,0),线段AB的长为8,∴点B的坐标为(1,0)或(-10,0).∵抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,∴抛物线的对称轴为直线x=262-+=2或x=2102--=-1.故答案为x=2或x=-1.【题目点拨】本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键.12、1【解题分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【题目详解】∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案为1.【题目点拨】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13、45【解题分析】过点B 作BD ⊥AC 于D ,设AH=BC=2x ,根据等腰三角形三线合一的性质可得BH=CH=12BC=x ,利用勾股定理列式表示出AC ,再根据三角形的面积列方程求出BD ,然后根据锐角的正弦=对边:斜边求解即可.【题目详解】如图,过点B 作BD ⊥AC 于D ,设AH=BC=2x ,∵AB=AC ,AH ⊥BC ,∴BH=CH=12BC=x , 根据勾股定理得,2222(2)AH CH x x +=+5x , S △ABC =12BC•AH=12AC•BD , 即12•2x•2x=125, 解得25x , 所以,sin ∠BAC=454555x BD AB x==. 故答案为45.14、1【解题分析】∵13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,∴第7个数是1分,∴中位数为1分,故答案为1.15、65°【解题分析】解:由题意分析之,得出弧BD对应的圆周角是∠DAB,∠=40°,由此则有:∠OCD=65°所以,DOB考点:本题考查了圆周角和圆心角的关系点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要对圆心角、弧、弦等的基本性质要熟练把握16、x=0.1【解题分析】分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.详解:方程两边都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,当x=1时,x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案为:x=0.1点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.17、7【解题分析】⊥,交AB于点H.如图所示,过点C作CH AB在菱形ABCD 中,∵8AB BC ==,且60B ∠=︒,所以ABC 为等边三角形,3sin sin 608432CH CB B CB ∴=⋅∠=⋅︒=⨯= 根据“等腰三角形三线合一”可得 18422AB AH HB ===⨯=,因为3BP =,所以1HP HB BP =-=. 在Rt CHP △中,根据勾股定理可得,2222(43)17CP CH HP ++=.因为梯形APQD 沿直线PQ 折叠,点A 的对应点为A ',根据翻折的性质可得,点A '在以点P 为圆心,PA 为半径的弧上,则点A '在PC 上时,CA '的长度最小,此时APQ CPQ =∠∠,因为AB CD ∥.所以CQP APQ =∠∠,所以CQP CPQ ∠=∠,所以7CQ CP ==.点睛:A ′为四边形ADQP 沿PQ 翻折得到,由题目中可知AP 长为定值,即A ′点在以P 为圆心、AP 为半径的圆上,当C 、A ′、P 在同一条直线时CA ′取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ 的长度即可.三、解答题(共7小题,满分69分)18、(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解题分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【题目详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0),∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94. 19、0.3 4【解题分析】(1)由统计图易得a 与b 的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【题目详解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:3 12=14.【题目点拨】本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.20、(1);(2)20分钟.【解题分析】(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.21、(4)4;(2)35;(4)点E的坐标为(4,2)、(53,103)、(4,2).【解题分析】分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(4)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(4)过点B作BH⊥OA于H,如图4(4),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH=BHHA=4,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2).由(4)得:OH=2,BH=4.∵OC与⊙M相切于N,∴MN⊥OC.设圆的半径为r,则MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=12(BC+OD),∴OD=2r﹣2,∴DH=OD OH-=24r-.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=(2﹣(x )2.解得:x =5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5.在Rt △ORB 中,sin ∠BOR =BR OB35. 故答案为35. (4)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.解得:t =4.则OP =CD =DB =4.∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2, ∴点E 的坐标为(4,2).②当∠BED =90°时,如图4.∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,,∴BE =5t . ∵PE ∥OC ,∴∠OEP =∠BOC .∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO ,∴OEOB =OP BC,2t ,∴OE .∵OE+BE=OB=255,∴t+55t=25.解得:t=53,∴OP=53,OE=553,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=22,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.22、 (1)见解析;(2)①1; ②102. 【解题分析】 试题分析:(1)根据平行四边形的性质得出四边形ADCE 是平行四边形,根据垂直推出∠ADC =90°,根据矩形的判定得出即可;(2)①求出DC ,根据勾股定理求出AD ,根据矩形的面积公式求出即可;②要使ADCE 是正方形,只需要AC ⊥DE ,即∠DOC =90°,只需要OD 2+OC 2=DC 2,即可得到BC 的长.试题解析:(1)证明:∵AE ∥BC ,∴∠AEO =∠CDO .又∵∠AOE =∠COD ,OA =OC ,∴△AOE ≌△COD ,∴OE =OD ,而OA =OC ,∴四边形ADCE 是平行四边形.∵AD 是BC 边上的高,∴∠ADC =90°.∴□ADCE 是矩形.(2)①解:∵AD 是等腰△ABC 底边BC 上的高,BC =16,AB =17,∴BD =CD =8,AB =AC =17,∠ADC =90°,由勾股定理得:AD =22AC CD -=22178-=12,∴四边形ADCE 的面积是AD ×DC =12×8=1.②当BC =102时,DC =DB =52.∵ADCE 是矩形,∴OD =OC =2.∵OD 2+OC 2=DC 2,∴∠DOC =90°,∴AC ⊥DE ,∴ADCE 是正方形.点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中.23、(1)127x =,227x =;(2)11x =,23x =-.【解题分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【题目详解】(1)解:∵1a =,4b =-,3c =-,∴224(4)41(3)280b ac ∆=-=--⨯⨯-=>,∴24(4)2842727b b ac x -±---±±====± ∴127x =227x =;(2)解:原方程化为:2(1)2(1)(1)0x x x --+-=,因式分解得:[](1)(1)2(1)0x x x ---+=,整理得:(1)(3)0x x ---=,∴10x -=或30x --=,∴11x =,23x =-.【题目点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24、(1)A (﹣3,0),y=(2)①D (t ﹣t ﹣3),②CD ;(3)P (2,理由见解析.【解题分析】(1)当y=02x x +,解方程求得A (-3,0),B (1,0),由解析式得C (0),待定系数法可求直线l 的表达式;(2)分当点M 在AO 上运动时,当点M 在OB 上运动时,进行讨论可求D 点坐标,将D 点坐标代入直线解析式求得t 的值;线段CD 是等腰直角三角形CMD 斜边,若CD 最小,则CM 最小,根据勾股定理可求点M 运动的过程中线段CD 长度的最小值;(3)分当点M 在AO 上运动时,即0<t <3时,当点M 在OB 上运动时,即3≤t≤4时,进行讨论可求P 点坐标.【题目详解】(1)当y=0时,﹣233x x -+,解得x 1=1,x 2=﹣3, ∵点A 在点B 的左侧,∴A (﹣3,0),B (1,0),由解析式得C (0,设直线l 的表达式为y=kx+b ,将B ,C 两点坐标代入得mk故直线l 的表达式为y=(2)当点M 在AO 上运动时,如图:由题意可知AM=t ,OM=3﹣t ,MC ⊥MD ,过点D 作x 轴的垂线垂足为N ,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN ,在△MCO 与△DMN 中,{MD MCDCM DMN COM MND=∠=∠∠=∠,∴△MCO ≌△DMN ,∴MN=OC=3,DN=OM=3﹣t ,∴D (t ﹣3+3,t ﹣3);同理,当点M 在OB 上运动时,如图,OM=t ﹣3,△MCO ≌△DMN ,MN=OC=3,ON=t ﹣3+3,DN=OM=t ﹣3,∴D (t ﹣3+3,t ﹣3).综上得,D (t ﹣3+3,t ﹣3).将D 点坐标代入直线解析式得t=6﹣3线段CD 是等腰直角三角形CMD 斜边,若CD 最小,则CM 最小,∵M在AB上运动,∴当CM⊥AB时,CM最短,CD最短,即CM=CO=3,根据勾股定理得CD最小6;(3)当点M在AO上运动时,如图,即0<t<3时,∵tan∠CBO=OCOB3∴∠CBO=60°,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,3NB=4﹣t﹣3tan∠NBO=DN NB,43t--3,解得t=33经检验t=33过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t3,3,OQ=2,P(23);同理,当点M在OB上运动时,即3≤t≤4时,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣31=t﹣3tan∠NBD=DN NB,43t-+3t=33,经检验t=33t=33.故P(23.【题目点拨】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.。

2019年福建省厦门市中考地理试卷及答案

2019年福建省厦门市中考地理试卷及答案

2019年福建省厦门市中考地理试卷及答案一、选择题(每题2分,共50分)1.亚洲地域广阔,传统民居深受自然环境影响。

如图示意亚洲东西部传统民居差异,读图完成1﹣4题。

西亚沙特阿拉伯传统民居“平顶厚墙小窗”,反映当地环境特征是()A.潮湿B.干旱C.寒冷D.温暖【解析】受自然环境的影响,不同地区的人们,在生产方式、生活习惯、文化传统等方面也有很大的差异。

【解答】解:墙厚加小窗的民居是西亚地区的特色民居,反映当地环境特征是干旱;西亚地区属于热带沙漠气候,气候炎热干燥,多风沙;所建房屋墙壁厚是用来隔热的,可减少白天通过墙壁进入的太阳热量;窗户小是因为西亚地区光照射强,小窗户有效防止大量强光照射,减少白天从沙漠地区吹来的热风,还可以防风沙的侵袭;厚墙小窗是为了适应当地白天炎热,昼夜温差大的气候。

故选:B。

【点评】此题考查的是人民生活和地理环境的关系,理解是答题的关键。

2.亚洲地域广阔,传统民居深受自然环境影响。

如图示意亚洲东西部传统民居差异,读图完成1﹣4题。

日本传统民居多采用较轻的木质材料,主要原因是()A.地震频发B.石料缺乏C.土质疏松D.山洪多发【解析】日本位于亚洲东部、太平洋西北部,是一个多山的岛国,由北海道岛、本州岛、四国岛、九州岛4个大岛、数千个小岛及附近的海域组成,最大的岛屿是本州岛,西隔日本海和中国、韩国等隔海相望;日本地处环太平洋火山地震带上,多火山、地震。

【解答】解:日本地处亚欧板块与太平洋板块的交界地带,地壳活跃,多地震;民居多用质地较轻的建筑材料建造,可以减轻地震可能造成的人员伤害及减轻地震造成的损失。

故选:A。

【点评】本题考查日本建筑特点与自然灾害的关系,理解解答即可。

3.亚洲地域广阔,传统民居深受自然环境影响。

如图示意亚洲东西部传统民居差异,读图完成1﹣4题。

甲地的经纬度是()A.60°W,40°S B.60°W,40°N C.60°E,40°S D.60°E,40°N 【解析】由经线和纬线相互交织所构成的网络叫做经纬网,利用经纬网可以确定地球表面任何一个地点的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C B A D主视图 左视图)2009年中考厦门市数学试题一、选择题(本大题共7小题,每小题3分,共21分)1.-2是( )A .负有理数B .正有理数C .自然数D .无理数 2.下列计算正确的是( )A .3+3= 6B .3-3=0C .3·3=9D .(-3)2=-3 3.某种彩票的中奖机会是1%,下列说法正确的是( ) A .买1张这种彩票一定不会中奖 B .买100张这种彩票一定会中奖 C .买1张这种彩票可能会中奖D .买100张这种彩票一定有99张彩票不会中奖 4.下列长度的各组线段能组成一个三角形的是( ) A .4cm ,6cm ,11cm B .4cm ,5cm ,1cm C .3cm ,4cm ,5cm D .2cm ,3cm ,6cm5.下列多边形中,能够铺满地面的是( )A .正八边形B .正七边形C .正五边形D .正四边形6.如图,AB 、BC 、CA 是⊙O 的三条弦,∠OBC =50º,则∠A =( )A .25ºB .40ºC .80ºD .100º7.药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则当1≤x ≤6时,y 的取值范围是( )A . 8 3≤y ≤ 64 11B . 6411≤y ≤8C . 83≤y ≤8 D .8≤y ≤16二、填空题(本大题共10小题,每小题4分,共40分)8.|-2|= .9.已知∠A =70º,则∠A 的余角是 度. 10.某班7名学生的考试成绩(单位:分)如下:52,76,80,78,71,92,68.11.右图是一个立体图形的三视图,则这个图形的名称叫 . 12.“a 的2倍与b 的和”用代数式表示为 .13.方程组⎩⎨⎧x -y =1x +y =3的解是 . 14.若点O 为□ABCD 的对角线AC 与BD 交点,且AO +BO =11cm ,则AC +BD = cm . 15.如图,在△ABC 中,∠C =90º,∠ABC 的平分线BD 交AC 于点D .若BD =10cm ,BC =8cm ,则点D 到直线AB 的距离是 cm .16.已知ab =2.①若-3≤b ≤-1,则a 的取值范围是 ;②若b >0,且a 2+b 2=5,则a +b = .17.在平面直角坐标系中,已知点O (0,0)、A (1,n )、B (2,0),其中n >0,△OAB 是等边三角形.点P是线段OB 的中点,将△OAB 绕点O 逆时针旋转30º,记点P 的对应点为点Q ,则n = ,点Q 的坐标是 .三、解答题(本大题共9小题,共89分) 18.(本题满分18分)(1)计算:(-1)2÷ 1 2+(7-3)× 3 4-( 1 2)0;(2)计算:[(2x -y )(2x +y )+y (y -6x )]÷2x ; (3)解方程:x 2-6x +1=0.19.(8分)(1)求出点数之和是11的概率;(2)你认为最有可能出现的点数之和是多少请说明理由.20.(8分)已知:在△ABC 中,AB =AC .(1)设△ABC 的周长为7,BC =y ,AB =x (2≤x ≤3). 写出y 关于x 的函数关系式,并在直角坐标系中画出此函数的图象;(2)如图,D 是线段BC 上一点,连接AD .若∠B =∠BAD ,求证:△ABC ∽△DBA .21.(8分)如图,已知梯形ABCD ,AD ∥BC ,AF 交CD 于E ,交BC 的延长线于F .A B FE D CA(2)若E 是线段CD 的中点,且CF ∶CB =1∶3,AD =6,求梯形ABCD 中位线的长.22.(8分)供电局的电力维修工甲、乙两人要到45千米远的A 地进行电力抢修.甲骑摩托车先行,t (t ≥0)小时后乙开抢修车载着所需材料出发.(1)若t = 38(小时),抢修车的速度是摩托车的倍,且甲、乙两人同时到达,求摩托车的速度;(2)若摩托车的速度是45千米/小时,抢修车的速度是60千米/小时,且乙不能比甲晚到则t 的最大值是多少23.(9分)已知四边形ABCD ,AD ∥BC ,连接BD .(1)小明说:“若添加条件BD 2=BC 2+CD 2,则四边形ABCD 是矩形.”你认为小明的说法是否正确若正确,请说明理由;若不正确,请举出一个反例说明.(2)若BD 平分∠ABC ,∠DBC =∠BDC ,tan ∠DBC =1,求证:四边形ABCD 是正方形.24.(9分)如图,已知AB 是⊙O 的直径,点C 在⊙O 上,P 是△OAC 的重心,且OP = 23,∠A =30º.(1)求劣弧AC ⌒的长;(2)若∠ABD =120º,BD =1,求证:CD 是⊙O 的切线.25.(9分)我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交.如图,在平面直角坐标系中,正方形OABC 的顶点为O (0,0)、A (1,0)、B (1,1)、C (0,1).(1)判断直线y = 1 3x + 56与正方形OABC 是否相交,并说明理由;(2)设d 是点O 到直线y =-3x +b 的距离,若直线y =-3x +b 与正方形OABC 相交,求d 的取值范围.26.(11分)已知二次函数y =x 2-x +c .(1)若点A (-1,a )、B (2,2n -1)在二次函数y =x 2-x +c 的图象上,求此二次函数的最小值;(2)若点D (x 1,y 1)、E (x 2,y 2)、P (m ,n )(m >n )在二次函数y =x 2-x +c 的图象上,且D 、E 两点关于坐标原点成中心对称,连接OP .当22≤OP ≤2+2时,试判断直线DE 与抛物线y =x 2-x +c +3 8的交点个数,并说明理由.厦门市2009年初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;3.解答题评分时,给分或扣分均以1分为基本单位.二、填空题(本大题有10小题,每小题4分,共40分)8. 2. 9. 20度. 10. 40分. 11.长方体(四棱柱). 12. 2a +b . 13.⎩⎨⎧x =2,y =1.14. 22厘米. 15. 6厘米. 16. (1) -2≤a ≤-23 ;(2) 3 . 17. 3;(32,12).三、解答题(本大题有9小题,共89分)18. (本题满分18分)(1)解:(-1)2÷12+(7-3)×34-(12)0=1×2+4×34-1 ……4分=2+3-1 ……5分 =4. ……6分=(4x 2-y 2+y 2-6xy )÷2x ……10分=(4x 2-6xy )÷2x ……11分 =2x -3y . ……12分(3)解法1:x 2-6x +1=0∵ b 2-4ac =(-6)2-4=32 ……13分∴ x =-b ±b 2-4ac 2a ……14分=6±322 ……15分=3±2 2. ……16分 即x 1=3+22,x 2=3-2 2. ……18分解法2:x 2-6x +1=0(x -3)2-8=0 ……14分(x -3)2=8 ……15分 x -3=±2 2 ……16分即x 1=3+22,x 2=3-2 2. ……18分19.(本题满分8分)(1)解:P(点数之和是11)=236=118. ……4分(2)解:最有可能出现的点数之和是7. ……6分 ∵ 在所有可能出现的点数之和中,7是众数. ……8分或: P(点数之和是7)=16, ……7分是所有可能出现的点数之和的概率的最大值. ……8分 20.(本题满分8分)(1)解:y =7-2x (2≤x ≤3) ……1分画直角坐标系 ……2分 画线段 ……4分 (2)证明:∵ AB =AC ,∴ ∠B =∠C . ……5分 ∵ ∠B =∠BAD ,∴ ∠BAD =∠C . ……6分 又∵ ∠B =∠B , ……7分 ∴ △BAC ∽△BDA . ……8分 21.(本题满分8分)(1)∵ ∠DCB +∠DCF =180°, ……1分 又∵ ∠B +∠DCF =180°,∴ ∠B =∠DCB . ……2分 ∵ 四边形ABCD 是梯形,∴ 四边形ABCD 是等腰梯形. ……3分 (2)∵ AD ∥BC ,∴ ∠DAE =∠F . ……4分 ∵ E 是线段CD 的中点,∴ DE =CE . 又∵ ∠DEA =∠FEC ,∴ △ADE ≌△FCE . ……5分∵ CF ∶BC =1∶3,∴ AD ∶BC =1∶3.∵ AD =6,∴ BC =18. ……7分 ∴ 梯形ABCD 的中位线是 (18+6)÷2=12. ……8分 22.(本题满分8分)(1)解:设摩托车的速度是x 千米/时,则抢修车的速度是千米/时.由题意得 45x-错误!=错误!, ……2分解得x =40. ……3分 经检验,x =40千米/时是原方程的解且符合题意.答:摩托车的速度为40千米/时. ……4分(2)解:法1:由题意得t +4560≤4545, ……6分解得t ≤14. ∴ 0≤t ≤14. ……7分法2:当甲、乙两人同时到达时,由题意得t +4560=4545, ……5分解得t =14. ……6分∵ 乙不能比甲晚到,∴ t ≤14. ……7分∴ t 最大值是 14(时);或:答:乙最多只能比甲迟 14(时)出发. ……8分23.(本题满分9分)(1)解: 不正确. ……1分 如图作(直角)梯形ABCD , ……2分使得AD ∥BC ,∠C =90°.连结BD ,则有BD 2=BC 2+CD 2. ……3分 而四边形ABCD 是直角梯形不是矩形. ……4分 (2)证明:如图, ∵ tan ∠DBC =1,∴ ∠DBC =45°. ……5分 ∵ ∠DBC =∠BDC , ∴ ∠BDC =45°.且BC =DC . ……6分 法1: ∵ BD 平分∠ABC ,∴ ∠ABD =45°,∴ ∠ABD =∠BDC . ∴ AB ∥DC .∴ 四边形ABCD 是平行四边形. ……7分 又∵ ∠ABC =45°+45°=90°,∴ 四边形ABCD 是矩形. ……8分 ∵ BC =DC ,∴ 四边形ABCD 是正方形. ……9分 法2:∵ BD 平分∠ABC , ∠BDC =45°,∴∠ABC =90°. ∵ ∠DBC =∠BDC =45°,∴∠BCD =90°. ∵ AD ∥BC ,∴四边形ABCD是矩形. ……8分又∵BC=DC∴四边形ABCD是正方形. ……9分法3:∵BD平分∠ABC,∴∠ABD=45°. ∴∠BDC=∠ABD.∵AD∥BC,∴∠ADB=∠DBC.∵BD=BD,∴△ADB≌△CBD.∴AD=BC=DC=AB. ……7分∴四边形ABCD是菱形. ……8分又∵∠ABC=45°+45°=90°,∴四边形ABCD是正方形. ……9分24.(本题满分9分)(1)解:延长OP交AC于E,∵P是△OAC的重心,OP=23,∴OE=1,……1分且E是AC的中点.∵OA=OC,∴OE⊥AC.在Rt△OAE中,∵∠A=30°,OE=1,∴OA=2. ……2分∴∠AOE=60°.∴∠AOC=120°. ……3分∴︵AC=43π. ……4分(2)证明:连结BC.∵E、O分别是线段AC、AB的中点,∴BC∥OE,且BC=2OE=2=OB=OC.∴△OBC是等边三角形. ……5分法1:∴∠OBC=60°.∵∠OBD=120°,∴∠CBD=60°=∠AOE. ……6分∵BD=1=OE,BC=OA,∴△OAE ≌△BCD. ……7分∴∠BCD=30°.∵∠OCB=60°,∴∠OCD=90°. ……8分∴CD是⊙O的切线. ……9分法2:过B作BF∥DC交CO于F.∵∠BOC=60°,∠ABD=120°,∴OC∥BD. ……6分∴四边形BDCF是平行四边形. ……7分∴CF=BD=1.∵OC=2,∴F是OC的中点.∴BF⊥OC. ……8分∴CD⊥OC.25.(本题满分10分)(1)解:相交. ……2分∵ 直线y =13x +56与线段OC 交于点(0,56)同时 ……3分直线y =13x +56与线段CB 交于点(12,1), ……4分∴ 直线y =13x +56与正方形OABC 相交.(2)解:当直线y =-3x +b 经过点B 时, 即有 1=-3+b ,∴ b =3+1.即 y =-3x +1+ 3. ……5分 记直线y =-3x +1+3与x 、y 轴的交点分别为D 、E . 则D (3+33,0),E (0,1+3). ……6分法1:在Rt △BAD 中,tan ∠BDA =BA AD=133=3,∴ ∠EDO =60°, ∠OED =30°.过O 作OF 1⊥DE ,垂足为F 1,则OF 1=d 1. ……7分 在Rt △OF 1E 中,∵ ∠OED =30°, ∴ d 1=3+12. ……8分 法2:∴ DE =23(3+3).过O 作OF 1⊥DE ,垂足为F 1,则OF 1=d 1. ……7分 ∴ d 1=3+33×(1+3)÷23(3+3)=3+12. ……8分 ∵ 直线y =-3x +b 与直线y =-3x +1+3平行.法1:当直线y =-3x +b 与正方形OABC 相交时,一定与线段OB 相交,且交点不与 点O 、 B 重合.故直线y =-3x +b 也一定与线段OF 1相交,记交点为F ,则 F 不与点O 、 F 1重合,且OF =d . ……9分 ∴ 当直线y =-3x +b 与正方形相交时, 有 0<d <3+12. ……10分 法2:当直线y =-3x +b 与直线y =x (x >0)相交时, 有 x =-3x +b ,即x =b1+3.① 当0<b <1+3时,0<x <1, 0<y <1.此时直线y =-3x +b 与线段OB 相交,且交点不与点O 、 B 重合. ② 当b >1+3时,x >1,此时直线y =-3x +b 与线段OB 不相交.而当b ≤0时,直线y =-3x +b 不经过第一象限,即与正方形OABC 不相交.此时有0<d <3+12. ……10分 26.(本题满分11分)(1)解:法1:由题意得⎩⎨⎧n =2+c ,2n -1=2+c . ……1分解得⎩⎨⎧n =1,c =-1.……2分法2:∵ 抛物线y =x 2-x +c 的对称轴是x =12,且 12-(-1) =2-12,∴ A 、B 两点关于对称轴对称.∴ n =2n -1 ……1分∴ n =1,c =-1. ……2分∴ 有 y =x 2-x -1 ……3分=(x -12)2-54.∴ 二次函数y =x 2-x -1的最小值是-54. ……4分(2)解:∵ 点P (m ,m )(m >0), ∴ PO =2m .∴ 22≤2m ≤2+2.∴ 2≤m ≤1+ 2. ……5分法1: ∵ 点P (m ,m )(m >0)在二次函数y =x 2-x +c 的图象上,∴ m =m 2-m +c ,即c =-m 2+2m . ∵ 开口向下,且对称轴m =1, ∴ 当2≤m ≤1+ 2 时,有 -1≤c ≤0. ……6分 法2:∵ 2≤m ≤1+2, ∴ 1≤m -1≤ 2.∴ 1≤(m -1)2≤2.∵ 点P (m ,m )(m >0)在二次函数y =x 2-x +c 的图象上,∴ m =m 2-m +c ,即1-c =(m -1)2. ∴ 1≤1-c ≤2.∴ -1≤c ≤0. ……6分 ∵ 点D 、E 关于原点成中心对称, 法1: ∴ x 2=-x 1,y 2=-y 1.∴ ⎩⎨⎧y 1=x 12-x 1+c ,-y 1=x 12+x 1+c .∴ 2y 1=-2x 1, y 1=-x 1. 设直线DE :y =kx . 有 -x 1=kx 1.由题意,存在x 1≠x 2.∴ k =-1.∴ 直线DE : y =-x . ……8分 法2:设直线DE :y =kx .则根据题意有 kx =x 2-x +c ,即x 2-(k +1) x +c =0.∵ -1≤c ≤0,∴ (k +1)2-4c ≥0.∴ 方程x 2-(k +1) x +c =0有实数根. ……7分∵ x 1+x 2=0,∴ k +1=0.∴ k =-1.∴ 直线DE : y =-x . ……8分若 ⎩⎪⎨⎪⎧y =-x ,y =x 2-x +c +38.则有 x 2+c +38=0.即 x 2=-c -38. ① 当 -c -38=0时,即c =-38时,方程x 2=-c -38有相同的实数根, 即直线y =-x 与抛物线y =x 2-x +c +38有唯一交点. ……9分 ② 当 -c -38>0时,即c <-38时,即-1≤c <-38时, 方程x 2=-c -38有两个不同实数根, 即直线y =-x 与抛物线y =x 2-x +c +38有两个不同的交点. ……10分 ③ 当 -c -38<0时,即c >-38时,即-38<c ≤0时, 方程x 2=-c -38没有实数根, 即直线y =-x 与抛物线y =x 2-x +c +38没有交点. ……11分。

相关文档
最新文档