一元一次方程配套问题教案

合集下载

人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4

人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4

人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4一. 教材分析《实际问题与一元一次方程——配套问题》是人教版七年级数学上册第三章第四节的内容。

本节课的主要任务是通过实际问题引导学生理解一元一次方程的解法,培养学生运用数学知识解决实际问题的能力。

教材中给出了四个配套问题,分别是:购物问题、速度问题、利润问题和工程问题。

这些问题都是日常生活中常见的问题,通过这些问题让学生感受数学与生活的紧密联系,激发学生的学习兴趣。

二. 学情分析七年级的学生已经学习了代数的基础知识,对一元一次方程有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,更不知道如何运用一元一次方程解决问题。

因此,在教学过程中,教师需要引导学生正确地将实际问题转化为数学问题,并运用一元一次方程进行解答。

三. 说教学目标1.知识与技能目标:让学生掌握一元一次方程的解法,能运用一元一次方程解决实际问题。

2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣。

四. 说教学重难点1.教学重点:让学生掌握一元一次方程的解法,能运用一元一次方程解决实际问题。

2.教学难点:如何引导学生将实际问题转化为数学问题,并运用一元一次方程进行解答。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。

2.教学手段:利用多媒体课件、实物模型和教学卡片等辅助教学。

六. 说教学过程1.导入新课:通过一个购物问题引入本节课的内容,激发学生的学习兴趣。

2.知识讲解:讲解一元一次方程的解法,并通过实例让学生理解解法的步骤。

3.案例分析:分析教材中的四个配套问题,引导学生将实际问题转化为数学问题,并运用一元一次方程进行解答。

4.实践环节:让学生分组讨论,选取一个实际问题进行解决,培养学生的动手能力和团队协作能力。

5.3 实际问题与一元一次方程—配套问题 课件2024-2025学年人教版(2024)数学七年级上册

5.3 实际问题与一元一次方程—配套问题 课件2024-2025学年人教版(2024)数学七年级上册

根据题意,列方程:3×40x = (6-x)×240.
解得
x = 4.
则 பைடு நூலகம்-x = 2.
共配成仪器:4×40=160 (套).
答:应用 4 立方米钢材做 A 部件, 2 立方米钢材做 B 部件, 共配成仪器 160 套.
小结 解决此类问题有如下规律:
如果 a件甲产品和 b件乙产品配成一套,那么
甲:乙=a:b
试一试
制作一张桌子要用一个桌面和4条桌腿,1木材可以做20个桌面,或制作400条桌 腿,现有12 木材,应怎样用料才能制作尽可能多的桌子?
.某纺织厂有纺织工人300人,为增产创收,纺织厂又增设了制衣车间,准备将这300 名纺织工人合理分配到纺织车间和制衣车间。现在知道工人每人每天平均能织布30 米或制4件成衣,每件成衣用布1.5米若使生产出的布刚好制成成衣,问应有多少人 去生产成衣?
小结
用一元一次方程解决实际问题的基本过程:
一审(用列表法理解问题中的基本关系) 二设(设适当的未知数) 三列(列出方程方程) 四解(解一元一次方程) 五验(数学方程的解,实际问题有意义) 六答(实际问题的答案)


若某个工厂的工人每人每天可以生产1000个口罩面或 1200根耳绳,1个口罩面配2根耳绳:
则3个工人生产口罩面,6个工人生产耳绳,则生产出来的 口罩和 耳绳可以刚好配套吗?为什么
例1 某车间有40名工人,每人每天可以生产1000个口罩面或1200
根耳绳.1个口罩面配2根耳绳,为使每天生产的口罩面和耳绳 刚好配套,应安排生产口罩面和耳绳的工人各多少名?
生产口罩面人数 生产耳绳人数
口罩面 耳绳
每人每天的工作 效率
人数
40名工人

初中方程的配套问题教案

初中方程的配套问题教案

初中方程的配套问题教案教学目标:1. 理解一元一次方程的概念和性质。

2. 学会解一元一次方程的方法。

3. 能够应用一元一次方程解决实际问题。

教学内容:1. 一元一次方程的定义和性质。

2. 一元一次方程的解法。

3. 一元一次方程在实际问题中的应用。

教学步骤:一、导入(5分钟)1. 引导学生回顾小学学过的加减乘除运算。

2. 提问:如果我们知道两个数的和、差、积、商,能不能找出这两个数呢?3. 学生尝试解答,教师总结解题思路。

二、新课讲解(20分钟)1. 引入一元一次方程的概念,解释方程的组成部分:未知数、常数、运算符号。

2. 通过示例,讲解一元一次方程的解法:代入法、加减法、乘除法。

3. 引导学生总结解一元一次方程的步骤:去分母、去括号、移项、合并同类项、化简。

三、配套问题解答(15分钟)1. 给学生发放配套问题练习册。

2. 引导学生独立解答练习册上的题目。

3. 教师巡回指导,解答学生遇到的问题。

四、课堂小结(5分钟)1. 回顾本节课所学的内容,让学生复述一元一次方程的定义和解法。

2. 强调解一元一次方程的步骤和注意事项。

五、课后作业(5分钟)1. 布置课后作业,要求学生独立完成。

2. 提醒学生在做作业时注意审题,避免计算错误。

教学评价:1. 课后收集学生的练习册,评估解答的正确率。

2. 在下一节课开始时,进行课堂小测,检验学生对一元一次方程的掌握程度。

3. 关注学生在实际问题中的应用能力,鼓励学生将所学知识运用到生活中。

教学反思:本节课通过导入、新课讲解、配套问题解答、课堂小结和课后作业等环节,帮助学生掌握一元一次方程的概念和解法。

在教学过程中,要注意关注学生的学习情况,及时解答学生遇到的问题,提高学生的解题能力。

同时,要引导学生将所学知识与实际生活相结合,培养学生的应用能力。

在课后作业的布置上,要注重难度的适当,避免过于简单或过于困难,以保证学生能够巩固所学知识。

实际问题与一元一次方程配套问题教学设计及反思

实际问题与一元一次方程配套问题教学设计及反思

实际问题与一元一次方程(配套问题)教学设计及反思一、教材分析本节知识是探究如何用一元一次方程解决实际问题。

在本章出现了很多题型如彳亍程问题、工程问题、配套问题、销售中的盈亏等, 这对学生掌握用一元一次方程解实际问题造成了很大的困扰。

在前面我们结合实际问题已经学习了如何利用相等关系列出一元一次方程以及如何解一元一次方程,本课讲述在此基础上我们进一步探究实际问题中的相等关系,讲述一元一次方程的应用,在课堂中教师出示例题,启发学生思考,师生共同探讨,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。

本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数、几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。

在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

二、学情分析1.学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

2.学生在列方程解应用题时,可能存在三个方面的困难:(1)抓不准相等关系;(2)找出相等关系后不会列方程;(3)习惯于用小学算术解法,用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

3.学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

4.学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

5.学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

三、教学目标1、通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系,建立数学模型一列方程。

3.4实际问题与一元一次方程(3)-配套问题(教案)

3.4实际问题与一元一次方程(3)-配套问题(教案)
b.理解并运用不同的解方程方法,尤其是当方程形式较为复杂时,如何选择合适的解题策略。
c.在解决问题的过程中,对等量关系的把握,特别是在涉及多个未知数时,如何进行合理假设和消元。
举例说明:
-在装修房子问题中,难点在于如何将面积和单价的关系转换为方程,以及如何处理可能出现的分数和小数。
-对于一些涉及多个物品或多个条件的搭配问题,学生可能难以一次性列出所有可能的情况,需要教师引导如何通过假设和验证的方法来逐步解决问题。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了如何将实际问题转化为一元一次方程,以及如何解这类方程。同时,我们也通过实践活动和小组讨论加深了对一元一次方程在实际问题中应用的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
5.引导学生通过解决配套问题,体会数学与生活的紧密联系,增强数学在生活中的实际应用价值认识,提升数学素养。
三、教学难点与重点
1.教学重点
本节课的教学重点是使学生掌握利用一元一次方程解决实际问题中的配套问题,具体包括以下细节:
a.理解并识别实际问题中的数量关系,能够正确列出相应的一元一次方程。
b.学会运用一元一次方程求解实际问题的策略,如消元法、代入法等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实际问题与一元一次方程(3)-配套问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或搭配物品的情况?”比如,如何分配零花钱购买零食,或是如何搭配衣服和鞋子。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程在解决这些问题中的应用。

解一元一次方程(配套问题)

解一元一次方程(配套问题)

3.4实际实际问题与一元一次方程(1.配套问题)教学目标:通过分析零件配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。

教学重点:找出能够表示问题全部含义的相等关系。

教学难点:探索实际问题与一元一次方程的关系。

教学过程:一、复习1、解一元一次方程的一般步骤2、列一元一次方程解应用题的步骤:3、解方程4、 a:b=2:3推导3a=2b3:2=200x:50(2x+1)能推出二、新课在实际问题中,大家常见到一些配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等.解决这类问题的方法是:抓住配套关系,设出未知数,根据配套关系列出方程,通过解方程来解决问题例: 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?分析:本题的配套关系是:一个螺钉配两个螺母,即螺钉数:螺母数= 设分配x 名工人生产螺钉,则 名工人生产螺母,则一天生产的螺钉数为 个,生产的螺母数为 个12x 231x =++-解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母.依题意得: 2 000(22-x)=2×1 200x .解方程,得:5(22-x)=6x,110-5x=6x,x=10.22-x=12.答:应安排10名工人生产螺钉,12名工人生产螺母.三、小结:比例关系要转化为相等关系四、课堂训练1、某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?2、用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?五、课外作业:只列方程不解方程1、一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做方桌的桌面50个或做桌腿300条,现有5立方米木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配成多少方桌?2、某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?3、某车间有工人有34人,平均每人每天可加工大齿轮16个或小齿轮10个,又知2个大齿轮与3个小齿轮配成一套,要使每天生产的大小齿轮刚好配套,怎样分配工人?六、作业教材P106 复习巩固每第2和3题。

2023最新-《一元一次方程与实际问题》教学设计【优秀3篇】

2023最新-《一元一次方程与实际问题》教学设计【优秀3篇】

《一元一次方程与实际问题》教学设计【优秀3篇】在教学工作者实际的教学活动中,通常会被要求编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

我们该怎么去写教学设计呢?问渠那得清如许,为有源头活水来,以下是漂亮的编辑帮大家整理的《一元一次方程与实际问题》教学设计【优秀3篇】,欢迎借鉴,希望大家能够喜欢。

实际问题与一元一次方程教学设计篇一【教学目标】1、进一步掌握列一元一次方程解应用题的方法步骤.2、通过分析工作量中的相等关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.3、培养学生自主探究和合作交流的意识和能力,体会数学的应用价值.【教学重点】会运用一元一次方程解决工程问题。

【教学难点】分析工作量中的相等关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.【教学过程】一、复习导入1、一件工作,甲单独做20小时完成,乙单独做12小时完成。

那么两人合作多少小时完成?思考:(1)两人合作32小时完成对吗?为什么?(2)甲每小时完成全部工作的;乙每小时完成全部工作的;甲x小时完成全部工作的;乙x小时完成全部工作的。

2、整理一块地,由一个人做要80小时完成。

那么4个人做需要多少小时完成?分析:一个人做1小时完成的工作量是;一个人做x小时完成的工作量是;4个人做x小时完成的工作量是。

3、一项工作,12个人4个小时才能完成。

若这项工作由8个人来做,要多少小时才能完成呢?(1)人均效率(一个人做一小时的工作量)是。

(2)这项工作由8人来做,x小时完成的工作量是。

总结:一个工作由m个人n小时完成,那么人均效率是。

二、合作探究例1整理一批图书,由一个人做要40小时完成。

现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。

假设这些人的工作效率相同,具体应先安排多少人工作分析:这里可以把工作总量看作1请填空:人均效率(一个人做1小时完成的工作量)为,由x人先做4小时,完成的工作量为,再增加2人和前一部分人一起做8小时,完成的工作量为,这项工作分两段完成任务,两段完成任务的工作量之和为。

初中数学《一元一次方程与实际问题-配套问题》课件

初中数学《一元一次方程与实际问题-配套问题》课件

3.红光服装厂要生产某种型号学生服一批,已知每3米长的布 料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划 用600米长的这种布料生产学生服,应分别用多少布料生产上 衣和裤子,才能使上衣和裤子恰好配套?共能生产多少套?
解:设用x米布料生产上衣,根据题意得
x 2 600 x 3,
3
1.某土建工程共需动用15台挖运机械,每台机械每小时
能挖土3 m3或者运土2 m3,为了使挖土和运土工作同时结
束,安排了x台机械运土,这里x应满足的方程是( )
A.2x=3(15-x)
B.3x=2(15-x)
C.15-2x=3x
D.3x-2x=15
2.加工某种产品需要两个工序,第一道工序每人每天可完成 900件,第二道工序每人每天可完成1200件.现有7位工人参加 这两道工序,应怎样安排人力,才能使每天第一、第二道工序 所完成的件数相等? 解:设应安排x人在第一道工序, 则安排(7-x)人在第二道工序. 根据题意,得:900x=1 200(7-x), 解得:x=4,所以7-x=3. 答:应安排4人在第一道工序,安排3人在第二道工序.
1.理解配套问题的背景. 2.能正确找出作为列方程依据的等量关系.(难点) 3.掌握用一元一次方程解决实际问题的基本过程.(重点)
复习回顾
1、解一元一次方程的步骤 2、解方程的五个步骤在解题时不一定都需要,可根据 题意灵活运用 3、去分母时不要忘记添括号,不漏乘不含分母的项
知识点 1 用一元一次方程解决配套问题 【例1】某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉
1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品 刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设用x张白铁皮制盒身,(36-x)张制盒底,则共制盒身25x个,共制盒底40(36-x)个,根据题意,得
2×25x=40(36-x)
解得x=16,36-xபைடு நூலகம்20
所以用16张制盒身,20张制盒底正好使盒身与盒底配套.
例题1是生产调度问题即如何规划分工使两种产品在数量上配套的问题.“螺母的数量是螺钉数量的2倍”是本题中特有的相等关系.“每人每天的工作效率×人数=每天的工作量”两者结合,就能列出方程.
让学生自由发挥,最后板书如下:
桌腿的数量=4×桌面的数量
3.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?
4.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?
由学生尝试解决问题,即学生完成板演,集体订正.
然后可以用幻灯片打出完整的解题过程,让学生进行比较,明确步骤中的各个要点.
分析:本题的配套关系是:每天挖的土方等于每天运走的土方.
例题2是物体分配问题是如何分配材料,从而使产品刚好配套。生产的盒身的数量是盒底数量的一半或盒底数量是盒身数量的2倍是列方程的等量关系。
是针对例题1、2设置的练习题.
要求学生自己先独立完成,然后相互交流。
归纳总结
抓住配套关系,设出未知数,根据配套关系列出方程,通过解方程来解决问题
学习小组内互相交流,讨论,展示.




作业:
必做题:课本第101页1题
106页3题
选做题:107页9题
作业可设必做题和选做题,体现要求的层次性,以满足不同学生的需要
合作学习,让会做的学生给同学讲解,使每个小组的同学都会列方程。
还可以怎么列方程?




请你来试一试:练习
制作一张桌子要用一个桌面和4条桌腿,1 m3木材可制作20个桌面,或者制作400条桌腿,现有12 m3木材,应怎样计划用料才能制作尽可能多的桌子?
【分析】(先由学生读题,教师引导)这是一个学生生活中的实际问题,大家每天都用、都见的物品,其中的数量关系即相等关系显而易见。
情感
态度
进一步体会化归思想,引导学生关注生活实际,建立数学应用意识,热爱数学.
重点
分析实际问题,根据实际问题列出一元一次方程,并利用“去括号”法则解决此类实际问题.
难点
依据实际问题,列出一元一次方程.
【教学环节安排】
环节
教学问题设计
教学活动设计
问题最佳
解决方案








下面我们来看一个实际问题:
【课堂练习】:某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?
二、配套与物质分配问题
例2用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套。现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?
3.4实际问题与一元一次方程
——配套问题
民张中学郭喜琴
【教学任务分析】




知识
技能
1、能根据实际问题中的等量关系列出方程,掌握配套问题;
2、培养学生分析问题,解决问题的能力.
过程
方法
通过自主探索与小组合作交流,学会能合理清晰地表达自己的思维过程,掌握根据具体问题中的数量关系,列出方程,并依据乘法的分配律去括号,感悟方程是刻画现实世界的一个有效模型,训练学生运用新知识解决实际问题的能力.




解:设应分配x名工人生产螺钉,其余(22-x)名工人生产螺母.根据螺母数量和螺钉数量的关系,列得
2×1200x=2000(22-x)
去括号,得
2400x=44000-2000x
移项及合并同类项,得
4400x=44000
系数化为1,得
X=10
生产螺母的人数为22-x=12
答:应分配10名工人生产螺钉,12名工人生产螺母.
配套与人员分配问题
【问题1】例题1某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应分配多少名工人生产螺钉,多少名工人生产螺母?
【分析】引导学生分析题意,找出相等关系
每人每天的工作效率×人数=每天的工作量(产品数量)
螺母的数量=螺钉数量×2
相关文档
最新文档