解释结构模型 ISM
解释结构模型(ISM)

要素集合 M-L1
M-L1-L2
层次划分
si
P(si)
Q(si)
P(si)∩Q(si)
层次
2
2
2,3,6,7,8,9
2
3
2,3
3,6,7,8,9
3
5
5
5,6,7,8,9
5
6
2,3,5,6
6
6
L2={s2,s5}
7
2,3,5,7,8,9
7
7
8
2,3,5,8,9
7,8,9
8
9
2,3,5,8,9
7,8,9
7
1,2,3,4,5,7,8,9
8
1,2,3,4,5,8,9
9
1,2,3,4,5,8,9
L1={s1,s4}
Q(si)
1,2,3,6,7,8,9 2,3,6,7,8,9 3,6,7,8,9 4,5,6,7,8,9 5,6,7,8,9 6 7 7,8,9 7,8,9
P(si)∩Q(si)
1 2 3 4 5 6 7 8,9 8,9
机场陆侧衔接系统
邻接矩阵
对于一个有向图,我们可以用一个m×m方形矩阵来表示。m为系统要 素的个数。矩阵的每一行和每一列对应图中一个节点(系统要素)。 规定:
aij
1 0
当Si对S j有影响 当Si对S j无影响
邻接矩阵
可达矩阵
如果系统A满足条件:
( A I ) k1 ( A I )k ( A I )k1 M
如果 Psi Qsi Psi ,则 si为当前的最高级要素
层次划分: 先找出符合以上条件的最高级要素,将他们从缩减可达矩阵 中划去,然后再找到新矩阵中的最高级要素,这样层层递进 就可以将影响因素划分层次。
第二讲 解释结构模型及其应用

结果
(骨架图)
15
2.2
有向图和邻接矩阵
1 2 3 4
2
1
1
3
2
3
4
4
0 0 0 1
1 0 0 0
0 1 0 0
0 1 1 0
16
邻接矩阵运算规则
矩阵运算 矩阵乘 矩阵加
逻辑乘 逻辑加 + (取小) + (取大)
11=1 10=0 1+1=1 1+0=1
01=0
44
1 1 4 6 7
4
6
7
1 1 1 1
0 1 0 1
1 1 1 1
0 0 0 1
是 否
R(4)={1,4,6} A(4)={4,7}
45
1 1 4 6 7
4
6
7
1 1 1 1
0 1 0 1
1 1 1 1
0 0 0 1
是 否
是
否
46
2 1 4
24
3
若通道长大于n-1,通道中必有环
2 1 4 3
去掉环后的通道还是完整的通道
25
1.1.2
可达矩阵
1 1 I 1 1
R I A A A
2 k
只要变量间存在通道,R的相应元素为1 若变量间不存在通道,R的相应元素为0
1 0 0 1 0 1 1 0
8
1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1
SPSS解释结构模型(ISM)——研究系统结构关系情况

SPSS解释结构模型(ISM)——研究系统结构关系情况解释结构模型(ISM)是一种系统分析方法,用于得到要素之间的复杂相互关系和层次。
其思想是先通过调查或者技术手段找出问题的组成要素或影响因素,然后通过矩阵模型分析各要素之间的联系,得到一个多级递阶结构模型。
比如现在我们要分析旅游社的萧条原因,发现可能跟如下要素有关:疫情影响、价格过高、旅游套餐不合理、导游质量不行、景区质量下滑、气候问题。
使用解释结构模型对其进行分析。
1. 矩阵中有哪些要素由研究问题的目标抽象确定,一般希望要素较为精炼,没有冗余重复的要素。
2. 判断要素之间的两两因果关系,如要素1对要素2是否存在影响、要素2对要素1是否存在影响,存在影响则赋值为1。
要素自身的因果关系则无需判断,故对角线的值固定为0。
其中,因果关系的判断可以根据ISM小组讨论结果、或者采用德尔菲方法确定。
邻接矩阵是表示顶点之间相邻关系的矩阵(是有向图的矩阵描述),从行的方向看,如果值为1,则代表行名的元素对列名的元素有影响。
(如图中,第一行第三/五列的值为1,则代表疫情影响对旅游套餐不合理和景区质量下滑有影响。
)分析步骤1.由研究问题的目标抽象确定模型中的要素和要素之间的关系,最终得到邻接矩阵。
要素之间的关系可以通过实际调研,组建ISM小组进行讨论、或者采用德尔菲法等方法进行确定。
2.计算邻接相乘矩阵,再通过不断自乘直至矩阵不再发生变化,得到可达矩阵。
3.通过可达矩阵进行模型的层级分解,最终得到模型的层级情况。
一般认为顶层为系统的最终目标,而下面各层分别为上一层的原因。
4.层次划分完毕后,再通过绘制有向连接图,更直观的表示模型的层次结构。
软件操作Step1:选择解释结构模型(ISM);Step2:增加要素或者减少要素;Step3:输入邻接矩阵的值(注:邻接矩阵的值只能为0/1);Step4:点击【开始分析】进入分析;输出结果分析输出结果1:邻接矩阵上表展示了模型的邻接矩阵,邻接矩阵即为初始输入矩阵。
1解释结构模型ISM及其应用

从可达性矩阵各元素是 1 还是 0 很容易进 行关系划分。
关系划分可以表示为:
14
2、区域划分 2 ( S )
区域划分将系统分成若干个相互独立的、 没有直接或间接影响的子系统。
可达集 先行集 底层单元集(初始集,其中元素具有此性质: 不能存在一个单元只指向它而不被它所指向。)
15
对属于初始集B的任意两个元素 t、t′,如果可能指 向相同元素 这种划分对经济区划分、行政区、 R( t )∩R( t′)≠φ 功能和职能范围等划分工作很有 意义。 则元素 t 和 t′属于同一区域; 反之,如果 t、t′不可能指向相同元素 R( t )∩R( t′)=φ 则元素 t 和 t′属于不同区域。 这样可以以底层单元为标准进行区域的划分。 经过上述运算后,系统单元集系统就划分成若干区 域, 可以写成 π2(S)={P1,P2,…,Pm}, 其中m为区域数。
34
7
6
5
4 3
1
2
图4-2
35
1 1 2
2
3
4
5
6
7
1 1 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 1 1 0 1 0
0 0 1 1 1 1 0
0 0 1 1 0 1 0
0 0 0 0 0 0 1
3
M= 4 5 6 7
36
1.区域划分
为对给出的与图4-5所对应的可达矩阵进行区域划分,可列出任一要 素Si(简记作i,i=1,2,…,7)的可达集R(Si) 、先行集A(Si) 、共同 集C (Si),并据此写出系统要素集合的起始集B(S),如表4-1所示:
18
R(e3 ) ? A(e3 )
系统结构模型法(ISM法)课件

根据关联矩阵,建立子系统的层级结构,将子系 统按照层级进行组织。
建立因果关系图
根据关联矩阵和层级结构,建立因果关系图,用 于表示子系统之间的因果关系和作用机制。
系统结构的简化与解释
简化系统结构
对建立的层级结构和因果关系图进行简化,去除不必要的细节和冗余信息,使系统结构更加清晰易懂 。
解释系统结构
需要收集完整的系统要素和关系 数据,对数据质量和完整性要求 较高。
02
计算复杂度大
03
对主观性依赖较强
对于大规模系统,ISM法的计算 复杂度较高,需要高性能计算机 和优化算法。
在确定系统要素和关系时,主观 判断和经验对分析结果有一定影 响。
02 ISM法的基本原理
系统分解
确定系统的边界和范围
确定子系统的关系
案例四:环境保护系统优化
总结词
通过ISM法分析环境保护各要素之间的关系,优化环境 保护系统,提高环境质量。
详细描述
运用ISM法对环境保护各要素之间的相互关系进行深入 分析,明确各要素在环境保护中的作用和影响,找出存 在的问题和瓶颈,优化环境保护系统,提高环境质量, 实现可持续发展。
05 ISM法的扩展与改进
划分系统层级与解释系统结构
要点一
总结词
要点二
详细描述
划分系统层级与解释系统结构
根据可达矩阵进行系统层级划分,并对系统结构进行解释 ,以直观地展示系统的层次结构和功能模块。
04 ISM法的应用案例
案例一:企业组织结构优化
总结词
通过ISM法分析企业内部各部门之间的关系 ,优化组织结构,提高管理效率。
定义
ISM法是一种基于图论和矩阵论的方法,通过构建邻接矩阵和可达矩阵来分析系统的结构特征和行为模式。
ISM方法实验报告

For j = 1 To n e(i, j) = Val(Mid(fstr, m, 1)h=1 m=1 For i = 1 To n For j = 1 To n
If i = j Then e(i, j) = e(i, j) + 1
End If Next j Next i For i = 1 To n For j = 1 To n
实验一 ISM 方法
一、实验概述 1.解释结构模型(ISM),也称递阶结构模型,特点是把复杂的系统分解为若干子系统,
利用人们的实践经验和知识,以及电子计算机的帮助,最终将系统构造成一个多级递阶的结 构模型;
2.ISM 属于概念模型。 二、实验步骤
利用 VB 完成,实验展示以程序运行为主(由于 VB 具有可视化的优点,便于结果展示)。 1.利用邻接矩阵计算可达矩阵:
ReDim e(1 To n, 1 To n) As Integer ReDim f(1 To n, 1 To n) As Integer ReDim p(1 To n, 1 To n) As Integer fstr = Text1.Text fstr = Trim(fstr) Text1.Text = fstr For i = 1 To n
1解释结构模型ISM及其应用

7 0 0 0 0 0 0 1
关系图
可达性矩阵
17
区域划分表
i 1 2 3 4 5 6 7
R(ei) 1 1,2 3,4,5,6 4,5,6 5 4,5,6 1,2,7
A(e3 )
A(ei) 1,2,7 2,7 3 3,4,6 3,4,5,6 3,4,6 7
R(ei)∩A(ei) 1 2 3 4,6 5 4,6 7
24
4、是否强连接单元的划分 4 ( L) 在级别划分的某一级 Lk 内进行。如果某单元不属 于同级的任何强连接部分,则它的可达集就是它本身, 即 这样的单元称为孤立单元,否则称为强连接单元。 于是,我们把各级上的单元分成两类,一类是孤立 单元类,称为I1类;另一类是强连接单元类,称为I2类, 即 π4(L)={I1,I2}
2
结构模型:
系统有很多要素构成,建立要素之间的相互关系,即系 统的结构模型,是系统分析的重要方法。
3
凡系统必有结构,系统结构决定系统功能; 破坏结构,就会完全破坏系统的总体功能。这说 明了系统结构的普遍性与重要性。 结构模型描述系统结构形态,即系统各部分间 及其与环境间的关系(因果、顺序、联系、隶属、 优劣对比等)。结构模型是从概念模型过渡到定 量分析的中介,即使对那些难以量化的系统来说 也可以建立结构模型,故在系统分析中应用很广 泛。
1 2 11 3 4 5 6
3.上课不认真 6.太贪玩 9.朋友不好
7
8
9
10
8
例:温带草原食物链
12 11 9 10 8
7 2 3 4 6
5 1
1.草 2.兔 3.鼠 4.吃草的鸟 5.吃草的昆虫 6.捕食性昆虫 7.蜘蛛 8.蟾蜍 9.吃虫的鸟 10.蛇 11.狐狸 12.鹰和猫头鹰
解释结构模型(ISM)(课堂PPT)

8,9
7
L5={s7}
L 1 s1 , s4L 2 s2 , s5 L 3 s3L 4 s6 , s8 , s9L 5 s7
L1
s
,
1
s4
L 2 s 2, s 5
L3 s3
L 4 s 6, s 8, s 9
L5 s7
系统结构模型
含义
article
基于解释结构模型的公交客流量影响因素分析
—— 孙慧, 周颖, 范志清
article
article
article
article
总结
Thank you!
则称M为系统A的可达矩阵。其中,I为单位矩阵。 可达矩阵表示从一个要素到另一个要素是否存在连接的路径。
ISM方法的基本步骤
要素关系表
邻接矩阵
可达矩阵
层次划分
➢ 可达集 P(si): P s i s jm i j1i 1 ,2 , ,n ➢ 先行集 Q(sj): Q s i s im j i1i 1 ,2 , ,n
M-L1-L2
层次划分
si
P(si)
Q(si)
P(si)∩Q(si)
层次
2
2Hale Waihona Puke 2,3,6,7,8,92
3
2,3
3,6,7,8,9
3
5
5
5,6,7,8,9
5
6
2,3,5,6
6
6
L2={s2,s5}
7
2,3,5,7,8,9
7
7
8
2,3,5,8,9
7,8,9
8
9
2,3,5,8,9
7,8,9
9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
6
3,6
6
7
3,7,8,9
7
6
7
L3={s3}
8
3,8,9
7,8,9
8,9
9
3,8,9
7,8,9
8,9
层次划分
要素集合
si
6
M-L1-L2-L3
7
8
9
M-L1-L2-L3-L4
7
P(si) 6
7,8,9 8,9 8,9
7
Q(si) 6 7
7,8,9 7,8,9
7
P(si)∩Q(si) 6
层次
7 L4={s6,s8,s9}
8
1,2,3,4,5,8,9
9
1,2,3,4,5,8,9
L1={s1,s4}
Q(si)
1,2,3,6,7,8,9 2,3,6,7,8,9 3,6,7,8,9 4,5,6,7,8,9 5,6,7,8,9 6 7 7,8,9 7,8,9
P(si)∩Q(si)
1 2 3 4 5 6 7 8,9 8,9
要素集合 M-L1
如果 P s iQ s i P s i,则 si为当前的最高级要素
层次划分: 先找出符合以上条件的最高级要素,将他们从缩减可达矩阵 中划去,然后再找到新矩阵中的最高级要素,这样层层递进 就可以将影响因素划分层次。
层次划分
si
P(si)
1
1
2
1,2
பைடு நூலகம்
3
1,2,3
4
4
5
4,5
6
1,2,3,4,5,6
7
1,2,3,4,5,7,8,9
解释结构模型(ISM)
content
1. ISM基本概念 2. ISM应用步骤 3. 论文实例
有向图
有向图形——是系统中各要素之间的联系情况的一种模型化描述方法。它由 节点和边两部分组成 节点——利用一个圆圈代表系统中的一个要素,圆圈标有该要素的符号; 边——用带有箭头的线段表示要素之间的影响。箭头代表影响的方向
M-L1-L2
层次划分
si
P(si)
Q(si)
P(si)∩Q(si)
层次
2
2
2,3,6,7,8,9
2
3
2,3
3,6,7,8,9
3
5
5
5,6,7,8,9
5
6
2,3,5,6
6
6
L2={s2,s5}
7
2,3,5,7,8,9
7
7
8
2,3,5,8,9
7,8,9
8
9
2,3,5,8,9
7,8,9
9
3
3
3,6,7,8,9
机场陆侧衔接系统
邻接矩阵
对于一个有向图,我们可以用一个m×m方形矩阵来表示。m为系统要 素的个数。矩阵的每一行和每一列对应图中一个节点(系统要素)。 规定:
aij 10
当Si对Sj有影响 当Si对Sj无影响
邻接矩阵
可达矩阵
如果系统A满足条件:
( A I ) k 1 ( A I ) k ( A I ) k 1 M
则称M为系统A的可达矩阵。其中,I为单位矩阵。 可达矩阵表示从一个要素到另一个要素是否存在连接的路径。
ISM方法的基本步骤
要素关系表
邻接矩阵
可达矩阵
层次划分
➢ 可达集 P(si): P s i s jm i j1i 1 ,2 , ,n ➢ 先行集 Q(sj): Q s i s im j i1i 1 ,2 , ,n
8,9
8,9
7
L5={s7}
L 1 s 1 , s4 L 2 s2 , s5 L 3 s3 L 4 s6 , s8 , s9 L 5 s7
L1
s
,
1
s4
L 2 s 2, s 5
L3 s3
L4
s
,
6
s 8,
s9
L5 s7
系统结构模型
含义
article
基于解释结构模型的公交客流量影响因素分析
—— 孙慧, 周颖, 范志清
article
article
article
article
总结
Thank you!