圆锥体积练习

合集下载

圆锥体积专项练习60题(有答案)ok

圆锥体积专项练习60题(有答案)ok

圆锥体积专项练习60题(有答案)1.以下直角三角形的直角边AC为轴旋转一圈,所形成的立体图形的体积是多少立方厘米?2.如图ABC是直角三角形,以BC为轴并将三角形绕这个轴旋转一周,得到一个旋转体,它的体积是多少立方厘米?3.把一个体积是150立方厘米的圆柱削成最大的圆锥,削去的体积是多少立方厘米?4.把一个圆柱削成一个等底等高的圆锥后,体积减少了6.28立方分米.原来的圆柱和后来的圆锥的体积各是多少?5.一块长4分米,宽2分米,高3分米的长方体木料.把它削成一个最大的圆锥体.求这个圆锥体的体积?6.把一个长5分米,宽4分米,高6分米的长方体削成一个最大的圆锥,这个圆锥的体积是多少?7.一个长1米的圆柱体平均切成3个同样大小的圆柱体后,表面积增加60平方厘米.如果将原来这个圆柱体削成一个最大的圆锥体,圆锥体的体积是多少立方厘米?8.把一个底面直径为5厘米的圆锥,完全浸没在一个底面半径为5厘米的圆柱形水箱中,水面上升了3厘米.求圆锥的高是多少厘米?9.把一个铅圆锥浸入一个底面周长是12.56米,高6米的圆柱形水池.水面上升了3分米.铅圆锥的体积是多少?10.一个底面直径为8厘米的圆柱形量杯,里面装有水,把一个底面直径为2厘米的小圆锥形铁件放在量杯内水中浸没,这时水的高度由原来的16厘米上升到17厘米.求小圆锥形铁件的高是多少厘米?11.在一底面半径10cm的圆柱形杯子盛有水,水里放着一个底面直径10cm的圆锥,当把圆锥取出来后,水面下降了5cm.求圆锥的高.12.一个圆锥形的沙堆,底面积为8平方米,高为1.5米,用这堆沙子在5米宽的路上铺2厘米厚的路面,能铺多少米?13.一块长30厘米、宽10厘米、高8厘米的长方体铁块,熔铸成一个底面积为100平方厘米的圆锥体铁块,圆锥铁块的高是多少厘米?14.一辆货车箱是一个长方体,它的长是4米,宽是1.5米,高是4米,装满一车沙,卸后沙堆成一个高是2米的圆锥形,它的底面积是多少平方米?15.一个正方体的棱长之和是48厘米,将这个正方体铸造成一个底面积是32平方厘米的圆锥体,这个圆锥体的高是多厘米?16.打谷场上有一堆圆锥形的稻谷,底面周长18.84米,高1.5米,把这堆稻谷装入一个内直径6米的圆柱形粮囤内,稻谷堆的高度是多少米?17.一个圆锥形容器,高12厘米,里面装满了水,然后倒入与它等底等高的圆柱容器内,这时水面的高是多少厘米?18.一个圆柱形橡皮泥,底面积是12cm2,高是5cm.如果把它捏成同样底面大小的圆锥,这个圆锥的高是多少?19.一个圆锥形容器,底面半径4厘米,高9厘米,容器装满水.如果把这些水倒入底面积是12.56平方厘米的圆柱形容器中,水的高度是多少?20.一个圆柱形橡皮泥,底面积是12平方厘米,圆柱的高是5厘米,如果把它捏成底面同样大小的圆锥,这个圆锥的高是多少厘米?21.把底面半径是3cm,长是2cm的圆柱形钢件铸成一个底面积是31.4cm2的圆锥形零件.这个圆锥零件的高是多少厘米?22.一个底面半径是8cm的圆柱形玻璃器皿装满了水,水中浸着一个底面半径是4cm的圆锥形铅锤,当铅锤从水中取出后,水面下降了2cm.这个铅锤的体积是多少?23.把一堆底面半径是2米,高是1.2米的圆柱体沙子,堆成底面直径是6米的圆锥体.能堆多高?24.把一根半径5厘米,长10厘米的圆柱形钢材铸成一个底面积是314平方厘米的圆锥,圆锥的高是多少厘米?25.将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高?26.一个圆柱形容器里面盛满了水,恰好是120毫升,若把这个圆柱形容器里面的水倒入一个与它等底等高的圆锥形容器里面,可能溢出水多少毫升?27.有一段钢可做一个底面直径8厘米,高9厘米的圆柱形零件.如果把它改制成高是12厘米的圆锥形零件,零件的底面积是多少平方厘米?28.一个圆柱形容器里面盛有的水,恰好是120毫升,若把这个圆柱形容器里面的水倒入一个与它等底等高的圆锥形容器里面,可能溢出水多少毫升?29.一枝长18厘米的圆柱形铅笔,底面直径是0.6厘米,把铅笔的笔头削成高是2厘米的圆锥形后,铅笔的体积减少了多少立方厘米?30.一个圆柱和一个圆锥等底等高,它们的体积之和是12.56cm3.圆锥的底面直径是2cm,那么它的高应该是多少厘米?31.一个圆柱底面周长是一个圆锥底面周长的,而这个圆锥的高是圆柱高的,圆锥的体积是圆柱体积的几分之几?32.一个圆锥形沙堆,底面积为120平方米,高4.5米.这个圆锥形沙堆的体积是多少立方米?33.一个圆锥形麦堆,底面半径是2米,高是1.5米.如果每立方米小麦重0.75吨,那么这堆小麦有多少吨?34.一个正方体棱长是3分米,把它切削成一个最大的圆锥体,圆锥体的体积是多少?35.一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米.36.一个圆锥形容器容积为300立方厘米,从里面量高是12厘米,它的底面积是多少平方厘米?37.张磬宇的爸爸用一个棱长6厘米的正方体木块削成一个最大的圆锥体玩具给她玩,削成的圆锥的体积是多少立方厘米?38.把直径为20cm的圆柱形钢材截下一段,锻造成底面直径60cm,高120cm的圆锥形零件,求要截下多长的钢材?39.圆柱与圆锥的底面面积与高相等,圆柱底面直径4厘米,高6厘米,圆锥的体积是多少?40.一个长方体长8米,宽4米,高3米,一个圆锥的体积与他相等,已知圆锥的底面积是32平方米,求圆锥的高?41.一个圆锥体的高与底面直径的和是9分米,高与底面直径的比是1:2,圆锥体的体积是多少立方分米?42.把一个底面半径是0.5米,高1.2米的圆锥形沙堆铺在一个长2米,宽1.3米的地面上,能铺多少?43.一个圆锥形的沙堆,底面积是18.84平方米,高0.5米.如果每立方米沙重1.6吨,这堆沙重多少吨?44.一个圆锥形钢坯,直径10厘米,高5厘米,每立方厘米钢坯重7.8克,这块钢坯重多少克?45.一个圆锥形稻谷堆的体积是5.024立方米,底面积是12.56平方米,它的高是多少?46.一个圆锥与一个圆柱的底面积比是3:2,体积比是2:5,如果圆柱的高与圆锥高之和是36厘米,求圆锥的高是多少厘米.47.一个圆锥体建筑物,高120分米,体积是94.2立方米,这个建筑物的底面积是多少?48.一个圆锥底面周长37.68厘米,底面半径比高长,圆锥的体积是多少立方厘米?49.一个圆柱和一个圆锥等底等高,它们的体积和是50.24立方分米,如果圆锥的底面半径是2分米,这个圆锥的高是多少分米?50.一个圆锥底面直径是6厘米,高是12厘米.它的体积是多少立方厘米?51.一块圆锥形铁块,底面积是157厘米2,高是21厘米,把它熔铸成一个高是14厘米的圆柱体,这个圆柱体的底面积是多少厘米2?52.等底等高的一个圆柱和一个圆锥的体积相差9.42立方米,求圆锥的体积.53.一个圆锥形零件,它的底面半径是5cm.高是底面半径的3倍,这个零件的体积是多少立方厘米?54.一个体积48立方分米的圆锥,高是3分米,它的底面积是多少平方分米?55.一个圆锥形沙堆的体积是47.1立方米,高是5米,这个沙堆占地多少平方米?56.一个圆锥形谷堆的底面周长是12.56米,高是3米,每立方米稻谷重500千克,这堆稻谷重多少千克?57.圆柱与圆锥的底面积和高相等,圆柱的底面周长是25.12厘米,高是6厘米,圆锥的体积是多少?58.有一个圆锥形沙堆,底面周长是18.84m,高是2.4m,把这些沙子铺在一条长31.4m,宽2m的道路上,能铺多厚?59.一个圆锥形的砂堆,高0.6米,底面直径是4米.如果每立方米的砂子约重1.5吨,那么这堆砂子重多少吨?60.如图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?参考答案:1.×3.14×82×6=3.14×64×2=401.92(立方厘米),答:形成的立体图形的体积是401.92立方厘米2.×3.14×32×4=×3.14×9×4=37.68(立方厘米);答:体积是37.68立方厘米3.150×=100(立方厘米),答:削去的体积是100立方厘米4.圆锥的体积是:6.28÷2=3.14(立方分米),圆柱的体积是:3.14×3=9.42(立方分米);答:原来的圆柱的体积是9.42立方分米,削成的圆锥的体积是3.14立方分米5.3.14×()2×2×=3.14××2×=4.71(立方分米);答:这个圆锥的体积是4.71立方分米6.3.14×(5÷2)2×4×=3.14×6.25×4×≈26.17(立方分米);答:这个圆锥的体积是26.17立方分米7.60÷4=15(平方厘米),1米=100厘米,所以圆锥的体积是:×15×100=500(立方厘米),答:这个最大的圆锥的体积是500立方厘米8.(3.14×52×3×3)÷[3.14×]=235.5×3÷19.625=36(厘米).答:圆锥的高是36厘米9.3分米=0.3米,12.56÷3.14÷2=2(米),3.14×22×0.3=12.56×0.3=3.768(立方米),答:铅圆锥的体积是3.768立方米10.3.14×(8÷2)2×(17﹣16)×3÷[3.14×(2÷2)2]=3.14×16×1×3÷[3.14×1]=3.14×16×3÷3.14=48(厘米);答:圆锥的高是48厘米11.圆柱的底面积:3.14×102=314(平方厘米),圆锥的体积:314×5=1570(立方厘米)(即下降的那部分水的体积)圆锥的底面积:3.14×(10÷2)2=3.14×25=78.5(平方厘米);圆锥的高:1570×3÷78.5=60(厘米);答:圆锥的高是60厘米12.2厘米=0.02米,沙堆的体积:×8×1.5=8×0.5=4(立方米);能铺路面的长度:4÷(5×0.02)=4÷0.1=40(米);答:能铺40米13.30×10×8=300×8=2400(立方厘米);2400×3÷100=7200÷100=72(厘米);答:圆锥铁块的高是72厘米14.沙子的体积:4×1.5×4=24(立方米);沙堆的底面积=24×3÷2=36(平方米);答:沙堆的底面积是36平方米15.48÷12=4(厘米),设圆锥的高是x厘米,×32×x=43,x=64,x÷=64÷,x=6;答:这个圆锥体的高是6厘米16.半径是:18.84÷3.14÷2=3(米),×1.5×3.14×32=9.42×1.5=14.13(立方米),14.13÷[3.14×(6÷2)2]=14.13÷[3.14×9]=14.13÷28.26=0.5(米);答:稻谷堆的高度是0.5米17.设两个容器的底面积相等是S,倒入圆柱容器时水的高度是h,根据体积相等可得:Sh=S×12,两边同时除以S可得:h=4,答:这时水面的高度是4厘米18.橡皮泥体积:12×5=60(cm2),圆锥的高:60×3÷12=15(cm);答:圆锥的高是15厘米19.圆锥形容器里水的体积:×3.14×42×9=×3.14×16×9=3.14×16×3=50.24×3=150.72(立方厘米),水的高度:150.72÷12.56=12(厘米),答:水的高度是12厘米20.橡皮泥体积:12×5=60(cm2),圆锥的高:60×3÷12=15(cm);答:圆锥的高是15厘米22.3.14×82×2=3.14×128=401.92(立方厘米);答:这个铅锤的体积是401.92立方厘米23. 3.14×22×1.2÷[3.14×(6÷2)2]÷=3.14×4.8÷3.14÷9×3=4.8÷9×3=1.6(米);答:堆成底面直径是6米的圆锥体.能堆1.6米高24. 3.14×52×10×3÷314=31.4×25×3×=7.5(厘米),答:圆锥的高是7.5厘米25.(×3.14×202×27+3.14×302×20)÷(3.14×152)=(3.14×400×9+3.14×900×20)÷(3.14×225),=(1256×9+2826×20)÷706.5=(11304+56520)÷706.5=67824÷706.5=96(厘米);答:这个圆的高是96厘米26.120×(1)=120×=80(毫升);答:可能溢出水80毫升27.体积是:3.14×(8÷2)2×9=3.14×16×9=50.24×9=452.16(立方厘米),底面积是:452.16×3÷12=1356.48÷12=113.04(平方厘米),答:零件的底面积是113.04平方厘米28.120﹣120÷÷3=120﹣80=40(毫升),答:可能溢出40毫升的水.29.圆柱形底面半径为:0.6÷2=0.3(厘米),铅笔减数的体积为:3.14×0.32×2﹣3.14×0.32×2×=3.14×0.09×2﹣3.14×0.09×2×=0.2826×2﹣0.2826×2×=0.5652﹣0.5652×=0.5652﹣0.1884=0.3768(立方厘米);答:铅笔的体积减少了0.3768平方厘米30.圆锥的体积:12.56÷(1+3)=12.56÷4=3.14(立方厘米),圆锥的高:3×3.14÷(2÷2)2=9.42÷1=9.42(厘米);答:它的高应该是9.42厘米31.假设圆柱的底面积为s,高为h,则圆锥底面积为:s÷()2=s,圆柱的体积:v=sh,圆锥的体积:×s×(h)=sh,sh÷sh=.答:圆锥的体积是圆柱体积的32.圆锥的体积=×底面积×高=×120×4.5=180立方米答:这个圆锥形沙堆的体积是180立方米33. ×3.14×22×1.5=×3.14×4×1.5=6.28(立方米);0.75×6.28=4.71(吨);答:这堆小麦有4.71吨34.3÷2=1.5(分米);3.14×1.52×3×=3.14×2.25=7.065(立方分米),答:圆锥体的体积为7.065立方分米35.15.7×3÷3.14=57.1÷3.14=15(分米);答:它的高是15分米36.300×3÷12=75(平方厘米),答:它的底面积是75平方厘米37.3.14×(6÷2)2×6×=3.14×9×6×=56.52(立方厘米);答:削成的圆锥的体积是56.52立方厘米×3.14×(60÷2)2×120÷[3.14×(20÷2)2]=113040÷314=360(厘米),答:要截下360厘米的钢材38.39.3.14××6÷3=3.14×4×6÷3=25.12(立方厘米),答:圆锥的体积是25.12立方厘米40.8×4×3×3÷32=288÷32=9(米);答:圆锥的高是9米41.底面直径:9×=6(分米),高:9﹣6=3(分米),42. 3.14×0.52×1.2÷(2×1.3)= 3.14×0.25×1.2÷2.6=0.314÷2.6≈0.12(米);答:大约能铺0.12米厚43.18.84×0.5×1.6=15.072(吨).答:这堆沙重15.072吨44.圆锥形钢坯的体积:3.14×(10÷2)2×5×=392.5×≈130.83(立方厘米),这块钢坯重:7.8×130.83≈1020.47(克).答:这块钢坯重1020.47克.45.设高为h,则有,h=,h=,h=1.2;答:它的高是1.2米46.圆柱与圆锥的高之比=:(2×)=5:4,圆锥的高:36×=16(厘米);答:圆锥的高是16厘米47.120分米=12米,94.2×3÷12=23.55(平方米),答:这个建筑物的底面积是23.55平方米48.圆锥的底面半径:37.68÷3.14÷2=6(厘米),圆锥的高:6÷(1)=6=6×=5(厘米),体积: 3.14×62×5= 3.14×36×5=188.4(立方厘米);答:圆锥的体积是188.4立方厘米49.50.24÷4=12.56(立方分米),3.14×22=12.56(平方分米),12.56×3÷12.56=3(分米),答圆锥的高是3分米50.6÷2=3(厘米),×3.14×32×12=3.14×9×4=113.04(立方厘米),答:圆锥的体积是113.04立方厘米51.×157×21÷14=1099÷14=78.5(平方厘米);答:圆柱的底面积是78.5平方厘米52.9.42÷2=4.71(立方米),答:圆锥的体积是4.71立方米53.×3.14×52×(5×3)=×3.14×25×15,=392.5(立方厘米);答:这个零件的体积是392.5立方厘米54.483=48×3÷3=48(平方分米),答:它的底面积是48平方分米55.47.1×3÷5=28.26(平方米),答:这个沙堆占地28.26平方米56.求底面半径:12.56÷3.14÷2=2(米);求体积:×3.14×22×3=×3.14×4×3=12.56(立方米);求重量:500×12.56=6280(千克).答:这堆稻谷重6280千克57.25.12÷3.14÷2=4(厘米),所以圆锥的体积为:×3.14×42×6=×3.14×16×6=100.48(立方厘米);答:圆锥的体积是100.48立方厘米58.圆锥的底面半径是:18.84÷3.14÷2=3(米),沙子的体积是:×3.14×32×2.4=×3.14×9×2.4=22.608(立方米);22.608÷(31.4×2)=22.608÷62.8=0.36(米);答:能铺0.36米厚59.4÷2=2(米),×3.14×22×0.6=×3.14×4×0.6=2.512(立方米);2.512×1.5=3.768(吨);答:这堆砂子约重3.768吨60.画出圆锥内部的高线与底面半径R与液面的半径r,这里组成了一个三角形,,很显然r与R的比是1:2,设水的底面半径是1,则圆锥容器的底面半径是2;所以水的体积与容积之比是:πh:πh=1:8,水的体积是5升,所以容器的容积是5×8=40(升),40﹣5=35(升),答:还能装下35升水。

圆锥体积练习题及答案

圆锥体积练习题及答案

圆锥体积练习题及答案一、选择题1. 一个圆锥的底面半径为3cm,高为4cm,则该圆锥的体积是:A. 9πcm³B. 24πcm³C. 36πcm³D. 48πcm³答案:C2. 一个圆锥体的半径和高分别为r和h,如果将该圆锥的半径和高都增加到原来的2倍,则新圆锥的体积是原来的几倍?A. 4倍B. 6倍C. 8倍D. 16倍答案:D3. 一个圆锥的体积为400πcm³,底面半径为8cm,求该圆锥的高。

A. 5cmB. 10cmC. 15cmD. 20cm答案:D4. 若一个圆锥的体积为1000cm³,底面半径为r,则该圆锥的高等于多少?A. 10cmB. 20cmC. 30cmD. 40cm答案:A5. 一个圆锥的体积为125πcm³,高为10cm,求该圆锥的底面半径。

A. 2cmB. 3cmC. 4cmD. 5cm答案:B二、填空题1. 一个圆锥的底面直径为6cm,高为8cm,其体积为______cm³。

答案:48π2. 一个圆锥的底面半径为5cm,高为12cm,其体积为______cm³。

答案:100π3. 一个圆锥的体积为1000cm³,底面半径为10cm,则其高为______cm。

答案:104. 若一个圆锥的体积为2000πcm³,底面半径为15cm,则其高为______cm。

答案:85. 一个圆锥的体积为144πcm³,底面半径为6cm,则其高为______cm。

答案:8三、解答题1. 一个圆锥的体积为300πcm³,底面半径为4cm,求该圆锥的高。

解:已知圆锥的体积为300πcm³,底面半径为4cm。

圆锥体积的公式为V = (1/3)πr²h,代入已知数据可得:300π = (1/3)π(4)²h300π = (1/3)π(16)h300 = (1/3) × 16h900 = 16hh = 900 ÷ 16h ≈ 56.25所以,该圆锥的高约为56.25cm。

2022-2023学年人教版数学六年级下册圆锥的体积练习题(含答案)

2022-2023学年人教版数学六年级下册圆锥的体积练习题(含答案)
原来的体积可表示为:
现在的体积表示为:
故答案为:C
【点睛】本题主要考查了圆柱体积公式的灵活运用。
10.C
【分析】圆柱的体积=圆柱的底面积×圆柱的高,圆锥的体积=圆锥的底面积×圆锥的高× ,假设圆柱的高是1,圆锥的高则是4,圆柱的底面积是2,则圆锥的底面积是1,即可得出圆柱的体积∶圆锥的体积=(2×1)∶(1×4× ),再根据比的基本性质进行化简即可得出答案。
23.如图,圆锥形容器中装有水40升,水面高度是这个容器的一半,这个容器最多能装水多少升?
24.用一块长18.84分米,宽5分米的长方形铁皮做一个高5分米的圆柱形水桶的侧面,再配一个底做成圆柱形水桶。做这样一个水桶还需要多少平方分米的铁皮?这个水桶最多可盛水多少升?
25.用铁皮制作一个有盖的圆柱形铁桶,底面半径是3dm,高是6dm。
【详解】A.圆柱的体积是圆锥体积的3倍,所以原说法错误;
B.圆柱的体积比圆锥体积多2倍,所以原说法错误;
C.圆锥的体积是圆柱体积的 ,所以原说法错误;
D.圆锥的体积比圆柱体积少 ,所以原说法正确。
故答案为:D
【点睛】本题考查圆柱和圆锥的体积关系,等底等高的圆柱的体积是圆锥体积的3倍。
13.C
【分析】把圆柱形木料截成3个小圆柱,表面积增加了4个底面的面积,其中一个底面的面积=增加的表面积÷4;原来这根木料的体积=底面积×高。
【详解】36÷3=12(厘米)
【点睛】掌握圆柱、圆锥等体积等底时,它们高的关系是解题的关键。
【详解】解:设有水部分底面半径为r,则
r∶4=5∶7
7r=20
r=
3×42×3+3×42×7× -3× ×5×
=144+112-3× ×5×
=256-

圆锥体积练习课件3

圆锥体积练习课件3

作业
练习四:1、2、3、4、
5、6、7、8题。
小丽,你的学 习为什么总是那么 优秀呢?
其实没什么,我
的学习方法就是不懂 就问。如果你们能做 到不懂就问,相信你 们的学习就会比我好。
1 3
×12.56×1.2
=3.14×4
=12.56×0.4
=12.56(平方米)
=5.024(立方米)
答:这堆沙子大约5.024立方米。
计算下面各 圆锥 的体积。
已知条件
体积
底面直径24厘米,高8厘米。
底面周长3.14米,高5米。
底面积7.8平方厘米,高1.8厘米。
底面半径2.5分米,高4分米。
所以:圆锥的体积=圆柱的体积×
1 3
底面积×高
圆锥的体积=
1 3
×底面积×高
圆柱的体积计算公式用
字母表示是:V=
1 3
பைடு நூலகம்sh
做一做
工地上有一些沙子,堆起来 近似一个圆锥,这堆沙子大约多 少立方米?
圆锥的体积=
1 3
×底面积×高
V=
1 3
sh
(1)、沙堆的底面积: (2)、沙堆的体积:
3.14×(4÷2)
通过观察,我们发现图中的圆锥和圆柱的底面积相
等,它们的高也相等。通过实验,我们发现在圆锥中装
满沙子或水,再倒入圆柱中刚好三次把圆柱装满;在圆
柱中装满沙子或水,再往圆锥里倒正好三次倒完 。这个
实验说明等底等高的圆锥和圆柱,圆锥的体积是圆柱的
三分之一或圆柱的体积是圆锥的3倍。
因为:圆锥的体积是圆柱的三分之一
圆锥的认识与体积 (练习课)
说一说,圆锥是由哪几部分组成的?圆柱各部分都有 什么特征?

圆锥的体积练习题

圆锥的体积练习题

圆锥的体积练习题圆锥是一种常见的几何图形,它由一个圆和一条连接圆心与圆上一点的曲线组成。

计算圆锥的体积是数学中的基本知识之一。

在本文中,我们将通过一些练习题来熟悉如何计算圆锥的体积,并掌握相关的计算方法。

练习题1:已知一个圆锥的半径为5cm,高度为12cm,求该圆锥的体积。

解答:根据圆锥的体积公式:V = 1/3 * π * r^2 * h,其中V表示体积,π表示圆周率,r表示半径,h表示高度。

将给定的数值代入公式中,得到 V = 1/3 * π * (5cm)^2 * 12cm = 1/3 * π * 25cm^2 * 12cm = 1/3 * π * 300cm^3 = 100πcm^3,约等于314.16cm^3。

练习题2:已知一个圆锥的底面半径为8cm,体积为150.72cm^3,求该圆锥的高度。

解答:将已知的数值代入圆锥的体积公式,得到 150.72cm^3 = 1/3 * π * (8cm)^2 * h,化简得 150.72cm^3 = 1/3 * π * 64cm^2 * h。

两边同时除以 1/3 * π * 64cm^2,得到 h = 150.72cm^3 / (1/3 * π * 64cm^2) = 3.14cm。

练习题3:一个圆锥体的底面半径是10cm,高度是15cm,如果将该圆锥切割成一个高度为3cm的小圆锥和一个高度为12cm的大圆锥,求这两个圆锥的体积之比。

解答:首先求出小圆锥的体积,根据体积公式,小圆锥的体积 V1 =1/3 * π * (10cm)^2 * 3cm = 1/3 * π * 100cm^2 * 3cm = 100πcm^3。

然后求出大圆锥的体积,大圆锥的高度是15cm,减去小圆锥的高度3cm,得到大圆锥的高度是12cm。

根据体积公式,大圆锥的体积 V2 = 1/3 * π * (10cm)^2 * 12cm = 1/3 * π * 100cm^2 * 12cm = 400πcm^3。

圆锥的体积练习课

圆锥的体积练习课

6分米 4分米 4分米
18分米
等底、等体积的圆柱和圆锥,圆锥的高是圆柱的3倍。
山羊伯伯送给狐狸和小白兔各一堆粮食,狐狸 认为圆锥形的粮食多,就抢先要了圆锥形的粮堆, 小白兔又笑了笑,要了圆柱形粮堆。狐狸占到便宜 了吗?
2米
2米
底面积:4平方米
底面积:12平方米
山羊伯伯送给狐狸和小白兔各一堆粮食,狐狸 认为圆锥形的粮食多,就抢先要了圆锥形的粮堆, 小白兔又笑了笑,要了圆柱形粮堆。狐狸占到便宜 了吗?
计算下面零件的体积。
6分米
6分米
2分米
8.一根圆柱形木材长20分米,把截 成4个相等的圆柱体. 表面积增加 了18.84平方分米.截后每段圆柱 3 15.7dm 体积是( ).
18.84÷6= 3.14 dm2
20÷4= 5 dm
5×3.14= 15.7 dm3
一个圆柱形玻璃容器的底面直径是20厘米, 现在把一块石块放入容器里的水中,水面上升 了2厘米。这块石块的体积是多少?
二、回答下面的问题,并列出算式。 一个圆柱形水桶,底面半径10分米,高20分米。 ①给这个水桶加个盖,是求哪个部分? ②给这个水桶加个箍,是求哪个部分? ③给这个水桶的外面涂上油漆,是求哪个部分? ④这个水桶能装多少水,是求哪个部分?
1. 压路机前轮直径1.2米,宽1.8米,前轮转动一周, 可以压路多少平方米?如果平均每分前进50米,这台压 路机每时压路多少平方米? 2. 一个棱长4cm的正方体与一个圆锥体积相等,已知圆 锥的高是6cm, 圆锥底面积是多少平方米? 3.圆柱与圆锥等底等高,圆柱体积比圆锥体积大36立方 分米,圆柱与圆锥体积各是多少? 4.将一根长5米的圆柱形木料锯成4段,表面积增加60平 方分米。这根木料的体积是多少立方分米?

圆锥的体积-练习题

圆锥的体积练习题一、填空1、( )叫做圆锥的体积。

2、一个圆锥体与圆柱等底等高,则圆锥的体积等于圆柱体积的(),圆柱的体积等于圆锥体积的( )。

所以圆锥的体积=( ),用字母表示()。

3、一个圆柱和一个圆锥等底等高,如果圆锥的体积是3.6立方厘米,则圆柱的体积是( )立方厘米。

4、一个圆锥的底面积是113.04平方厘米,高是6厘米,体积是( )立方厘米。

5、一个圆锥形的沙堆,底面周长是62.8平方米,高是6米,这堆沙子()立方米。

6、一个圆锥的底面半径是6厘米,高是10厘米,它的体积是()立方厘米。

7、把一个体积是36立方分米的圆柱体,削去( )立方分米才能削成一个最大的圆锥体。

8、等底等高的圆柱和圆锥,体积相差10平方米,那么圆柱的体积是( )立方米,圆锥的体积是( )立方米。

9、以直角三角形的一条直角边为轴,旋转一周所形成的图形是()。

10、一个圆柱与一个圆锥等底等高,体积之比是()。

二、判断。

(对的画“√”,错的画“×”。

)1、底面积大的圆锥体积就大。

()2、一个圆锥的底面积是一个圆柱底面积的3倍,它们的高相等,则它们的体积相等。

()3、圆柱的体积是圆锥体积的3倍。

()4,如果一个圆锥的体积是一个圆柱体积的,那么这个圆锥和这个圆柱一定等底等高。

()5、一个圆锥与圆柱的底面积,体积都相等,圆柱的高是12厘米,圆锥的高是36厘米。

()三、解决问题1、一个圆锥形的钢质零件,底面半径是10厘米,高是15厘米,如果每立方厘米的钢重7.8克,这个零件重多少千克?(得数保留整数千克)2、一个圆锥的底面直径与高相等,它的底面周长是28.26厘米,这个圆锥的体积是多少立方厘米?3、一个圆柱与一个圆锥等底等高,已知圆柱体积比圆锥的体积大48立方厘米,求圆锥体积。

4、一个圆锥的碎石堆,底面周长是18.84米,高是6米,每立方米碎石约重2吨,如果用一辆载重为4吨的汽车去运这堆碎石,多少次可以运完?5、有一块正方体木料,它的棱长是6分米,把这块木料加工成一个最大的圆锥体,这个圆锥的体积是多少?6、一个长是8厘米,宽5厘米,高4厘米的长方体的体积与一个圆锥的体积相等,圆锥的底面积是多少平方厘米?--。

圆锥体积专项练习60题(有答案)ok

圆锥体积专项练习60题(有答案)ok1.求以直角边AC为轴旋转一圈所得立体图形的体积。

2.以BC为轴旋转直角三角形ABC一周,求旋转体的体积。

3.将体积为150立方厘米的圆柱削成最大的圆锥,求削去的体积。

4.将一个圆柱削成等底等高的圆锥后,体积减少了6.28立方分米。

求原圆柱和圆锥的体积。

5.将长4分米,宽2分米,高3分米的长方体木料削成最大的圆锥体,求圆锥体的体积。

6.将长5分米,宽4分米,高6分米的长方体削成最大的圆锥,求圆锥的体积。

7.将长1米的圆柱体均匀切成3个同样大小的圆柱体后,表面积增加60平方厘米。

如果将原圆柱削成最大的圆锥体,求圆锥体的体积。

8.将底面直径为5厘米的圆锥完全浸没在底面半径为5厘米的圆柱形水箱中,水面上升了3厘米。

求圆锥的高。

9.将一个铅圆锥浸入底面周长为12.56米,高为6米的圆柱形水池,水面上升了3分米。

求铅圆锥的体积。

10.在底面直径为8厘米的圆柱形量杯内装有水,放入底面直径为2厘米的小圆锥形铁件后,水面上升了1厘米。

求小圆锥形铁件的高。

11.在一底面半径为10厘米的圆柱形杯子中盛有水,水里放着一个底面直径为10厘米的圆锥。

当圆锥取出时,水面下降了5厘米。

求圆锥的高。

12.一个底面积为8平方米,高为1.5米的圆锥形沙堆,用这些沙子在5米宽的路上铺2厘米厚的路面,能铺多少米?13.将长30厘米,宽10厘米,高8厘米的长方体铁块熔铸成底面积为100平方厘米的圆锥体铁块,求圆锥铁块的高。

14.一个长方体货车箱长4米,宽1.5米,高4米,装满沙子后卸下,沙子堆成一个底面积为多少平方米,高为2米的圆锥形。

15.将正方体的棱长之和为48厘米的铸件铸造成底面积为32平方厘米的圆锥体,求圆锥体的高。

16.在打谷场上有一堆底面周长为18.84米,高为1.5米的圆锥形稻谷堆,将稻谷装入内直径为6米的圆柱形粮囤内,求稻谷堆的高度。

17.一个高为12厘米的圆锥形中装满了水,将其倒入等底等高的圆柱形中,求水面的高度。

2022-2023学年人教版数学六年级下册圆锥的体积练习题(含解析)

【详解】底面周长:2×3.14×2
=6.28×2
=12.56(cm)
表面积:2×3.14×2×3+2×3.14×22
=6.28×2×3+2×3.14×4
=37.68+25.12
=62.8(cm2)
3.14×22=12.56(cm2)
体积:12.56×3=37.68(cm3)
圆锥体积:37.68× =12.56(cm3)
2022-2023学年人教版数学六年级下册圆锥的体积练习题
学校:___________姓名:___________班级:____________
一、选择题
1.在学习圆柱的体积计算公式时,是把圆柱转化为()推导出来的。
A.正方体B.长方体C.长方形
2.一个长方形,如果它的长扩大到原来的3倍,宽不变,那么它的面积就会扩大到原来的( )倍。
③圆柱有无数条高,圆锥只有一条高。④5的倍数一定是合数。
A.①③B.②④C.②③D.②③④
12.一个圆柱和一个圆锥等底等高,圆锥的体积比圆柱的体积少0.8立方分米,那么圆柱的体积是()立方分米。
A.0.4B.0.8C.1.2D.2.4
13.圆锥的底面半径和高都扩大到原来的2倍,它的体积扩大到原来的()倍。
四、解答题
21.有一段钢可做一个底面直径6厘米,高9厘米的圆锥体零件。如果把它改制成高是6厘米的圆柱体零件,零件的底面积是多少平方厘米?
22.一堆煤呈圆锥形,底面直径是2m,高是1.5m。已知每立方米的煤重1.2t,这堆煤大约有多少吨?(得数保留整数)
23.甲乙两人比赛400米跑,甲离终点100米时,乙刚好跑到中点,照这样的速度,乙跑到终点时,比甲正好慢25秒,甲平均每秒跑多少米?
A.3B.6C.9

北师大版数学第十二册《圆锥的体积练习》课件


计算下面各圆锥的体积。
3dm 3.6m 8dm 8cm 12cm
s 9m
2
列式计算,求体积。
底面积800平 方米,高90米。
V=800×90÷3
小宇的房子 底面积5平方 米,高12米
V=5×12÷3
• 小娇的房子 • 底面直径4米,高6 米。
V=3.14×(4÷2)2×6÷3
张在新的房子底面周 长125.6米,高 30米。
圆锥的体积练习
教学目标
1.通过练习,使同学们进一步掌握求圆锥 体积的计算公式; 2.能熟练应用圆锥体的体积计算公式解答 有关圆锥体体积的实际问题,提高同学 们解答实际问题的能力。
高 5 米
圆柱的体积: V=SH =20×5 =100(立方米)
底面积20平方米
高 5 米
底面积20平方米
圆锥的体积: V=SH/3 =20×5÷3 ≈33.33(立方米)
1 3
思考 • 一个直角三角板两直角边分别是5 厘米和8厘米,绕着它的一条直角 边旋转一周,得到什么图形?它的 体积是多少?
圆锥的体积V等于和它等底等高 的圆柱体积的三分之一
V圆柱=sh
1 V= 3
sh
判断
• ① 圆锥的体积等于圆柱体积的3倍。 • (× ) • ② 一个圆锥的底面半径扩大3倍,高不变, 它的体积也扩大3倍。 (√,削掉部 分是60厘米,这个圆柱的体积是( C ) 立方厘米。 • A、20 B、30 C、90 D、180 • ② 一个圆柱体积可以熔铸成( B)个与 它等底等高的圆锥体零件。 • A、4 B、3 C、2 D、1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.一个近似圆锥形的麦堆,底面周长 12.56米,高1.2米,如果每立方米小麦 重750千克,这堆小麦重多少千克? 5.一个长方体容器,长5厘米,宽4厘 米,高3厘米,装满水后将水全部倒入一 个高6厘米的圆锥形的容器内刚好装满。 这个圆锥形容器的底面积是多少?
6.一个圆柱形油桶,底面半径是 1.4分米,高5分米,做这样一个油桶 需要多少铁皮?这个圆柱形油桶可以 盛汽油多少升?(得数保留一位小数)
口答:
1.把一个圆柱体木料削成一个最大的圆 锥体木料, 圆锥的体积占圆柱体的几分 之几?削去的部分占圆柱体的几分之几? 2.一个圆柱体比它等底等高的圆锥体积 大48立方厘米,圆柱体和圆锥体的体积 各是多少?
3.圆柱和圆锥体积相等、底面积也相 等,圆柱的高和圆锥的高有什么关系?
4.圆柱和圆锥体积相等、高也相等, 圆柱的底面积和圆锥的底是 如何推导的? 2、填空: (1)一个圆柱体积是18立方厘米,与 它等底等高的圆锥的体积是( )立 方厘米。 (2)一个圆锥的体积是18立方厘米, 与它等底等高的圆柱的体积是( )
(3)一个圆柱与和它等底等高的圆 锥的体积和是144立方厘米。圆柱的体 积是( )立方厘米,圆锥的体积是 ( )立方厘米。 (4)一个圆柱体的体积和底面积与 一个圆锥体分别相等,圆柱体的高是圆 锥体高的( )
(5)一个圆柱和一个圆锥的底面积相等, 圆柱的体积是圆锥体积的2倍,圆柱的高 是圆锥的高的( )。 (6)用边长是1厘米的正方形围成一个 圆柱体,它的体积是( )。
3、求下列圆锥体的体积。 (1)底面半径4厘米,高6厘米。 (2)底面直径6分米,高8厘米。 (3)底面周长31.4厘米.高12厘米。
相关文档
最新文档