电力二极管的电流参数理解
电力电子技术考核点总结--填空选择教学文案

电力电子技术考核点总结--填空选择1 简要说明四类基本的电力电子变流电路表答:交流变直流,即整流电路交流变交流,即交流电力控制电路或变频变相电路直流变直流,即直流斩波电路直流变交流,即逆变电;2 美国学者W.Newell用倒二角形对电力电子技术进行形象的描述,认为电力电子学是由电力学,电子学,控制理论三个学科交义而形成的。
3 电力电子技术是使用电力电子器件对电能进行变换和控制的技术,其电力变换常分为四大类:直流变直流、直流变交流、交流变交流、交流变直流。
4 根据二极管反向恢复时间的长短,可以将二极管分为普通二极管、快恢复二极管和肖特基二极管。
5 驱动电路需要提供控制电路和主电路之间的电气隔离环节,一般采用光隔离和磁隔离。
6 电力电子装置中可能发生的过电压分为外因过电压和内因过电压,其中内因过电压包括换相过电压和关断过电压。
7 电力电子系统一般由控制电路,驱动电路,主电路组成8 电力电子器件的损耗主要包括开关损耗和通态损耗9 单相半波整流电路带阻性负载时,晶闸管触发角a移相范围是【0~π】,晶闸管导通角沒和触发角α之间的关系是α+β=π或互补10 三相半波整流电路带阻性负载时,晶闸管触发角a移相范围是0-150度,输出电压连续时触发角α移相范围是0-30度11 同步信号为锯齿波的晶闸管触发电路主耍由脉冲的形成与放大,锯齿波的形成和脉冲移相,同步环节三个基本环节12 一般来说,电力电子变流电路中换流方式有器件换流、负载换流、电网换流和强迫换流。
13 直流斩波电路主要有三种控制方式:脉宽调制、脉频调制和混合调制。
14 正弦脉宽调制(SPWM)中,根据载波比N是否为固定值,可以分为同步调制和异步调制15 PWM控制方案优劣体现在输出波形谐波的多少、直流侧电压利用率; 一个周期内的开关次数。
16 PWM整流电路根据是否引入电流反馈可分为直接电流控制和间接电流控制17 根据电力电子电路中的功率器件开关过程中是否产生损耗,其开关方式可以分为软开关和硬开关。
电力电子技术重点

单相半波可控整流电路 带电阻负载的工作情况 直流输出电压平均值⎰+=+==παααπωωπ2cos 145.0)cos 1(22)(sin 221222U U t td U U d 流过晶闸管的电流平均值IdT 和有效值IT 分别为 ddTI I παπ2-=ddT I t d II παπωππα2)(212-==⎰续流二极管的电流平均值IdDR 和有效值IDR 分别为 ddDR I I παπ2+=ddDR I t d I I παπωπαππ2)(2122+==⎰+其移相范围为180,其承受的最大正反向电压均为u2的峰值即22U单相半波可控整流电路的特点是简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。
为使变压器铁芯不饱和,需增大铁芯截面积,增大了设备的容量。
单相桥式全控整流电路 带电阻负载的工作情况 全波整流在交流电源的正负半周都有整流输出电流流过负载,因此该电路为全波整流。
直流输出电压平均值2cos 19.02cos 122)(sin 21222d ααπωωππα+=+==⎰U U t td U U负载直流电流平均值2cos 19.02cos 122R 22d d ααπ+=+==R U R U U I I 2=I d 晶闸管参数计算 ①承受最大正向电压:)2(212U② 承受最大反向电压:22U③ 触发角的移相范围:0=α时,2d 9.0U U =;o 180=α时,0d =U 。
因此移相范围为o 180。
④ 晶闸管电流平均值:2cos 145.0212d dVT α+==R U I I 。
〔5〕流过晶闸管的电流有效值为:IVT =Id ∕2〔6〕晶闸管的额定电压=(2~3)×最大反向电压 〔7〕晶闸管的额定电流=(1.5~2)×电流的有效值∕1.57单相桥式全控整流电路 带阻感负载直流输出电压平均值ααπωωπαπαcos 9.0cos 22)(sin 21222d U U t td U U ===⎰+触发角的移相范围0=α时,2d 9.0U U =;o 90=α时,0d =U 。
1电力电子器件1(二极管)

作电路分析时,为简单起见往往用理想开关来代替
1.1.1 电力电子器件的概念和特征
(3) 实用中,电力电子器件往往需要由信息电子电 路来控制。
在主电路和控制电路之间,需要一定的中间电路 对控制电路的信号进行放大,这就是电力电子器 件的驱动电路。
承受的电压和电流决定的
按照驱动电路加在器件控制端和公共端之间信号的 性质,分为两类:
➢ 电流驱动型——通过从控制端注入或者抽出电流 来实现导通或者关断的控制
➢ 电压驱动型——仅通过在控制端和公共端之间施 加一定的电压信号就可实现导通或者关断的控制
1.1.3 电力电子器件的分类
➢ 电压驱动型器件实际上是通过加在控 制端上的电压在器件的两个主电路端 子之间产生可控的电场来改变流过器 件的电流大小和通断状态,所以又称 为场控器件,或场效应器件
➢ 2. 动态特性
➢ 动态特性——因结电容的存在,三种状态之间的 转换必然有一个过渡过程,此过程中的电压—电 流特性是随时间变化的
1.2.2 电力二极管的基本特性
➢ 开关特性——反映通态和断态之间的转换过程
➢ 关断过程:
➢ 须经过一段短暂的时间才能重新获得反向阻断能 力,进入截止状态
➢ 在关断之前有较大的反向电流出现,并伴随有明 显的反向电压过冲
度,分为以下三类:
(1) 半控型器件——通过控制信号可以控制 其导通而不能控制其关断
➢ 晶闸管(Thyristor)及其大部分派生器件 ➢ 器件的关断由其在主电路中承受的电压和电流
决定
1.1.3 电力电子器件的分类
(2) 全控型器件——通过控制信号既可控制 其导通又可控制其关断,又称自关断器件
电力二极管的电流参数理解

1.电力二极管的电流参数:正向平均电流)(AV F I (额定电流)指电力二极管长期运行时,在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的平均值.但是在实际的变流电路中,流过器件的电流不可能正好是正弦半波电流,因此在设计电路,选取器件的时候,要按照实际电路中电流的有效值与正弦半波有效值相等的原则,再换算成平均值计算得出器件的额定电流。
具体的工频正弦半波电流在一个周期内的波形如图1所示I图1 正弦半波电流波形图该波形在一个周期内的表达式为⎩⎨⎧≤≤≤≤=πππ200sin t t t I I m F 该波形的平均值为πππππππm m m av F I t I dt dt t I I =-=⎥⎦⎤⎢⎣⎡+=⎰⎰0)cos (20sin 2120)( 该波形的有效值为222cos 12sin 2102022)(m m m eff F I dt t I tdt I I =-==⎰⎰ππππ 因此,该波形的平均值和有效值之间的关系为)()()(57.12av F av F eff F I I I ==π2.课堂练习图2中阴影部分为流过二极管的电流波形,计算电流的平均值d I 与电流有效值I 。
如果不考虑安全裕量,问A 100的电力二极管能送出平均电流d I 为多少,相应的电流最大值m I 为多少?Im图2 电流波形图 解:该电流的平均值为402122/2/0m m d I dt dt I I =⎥⎦⎤⎢⎣⎡+=⎰⎰ππππ 该电流的有效值为2212/02m m I dt I I ==⎰ππ 由题可知,电力二极管的额定电流为A 100,因此流过它的电流有效值为A 157。
图2的电流流过电力二极管,要满足器件的电流额定要求,必须根据有效值相等原则,使该电流的有效值A I 157=由它与最大值之间的关系,可得A I I m 3142==从而得到该电流的平均值为A I I m d 5.784== 注:该练习说明如果电路的电流是图2所示的波形,那么只要电流最大值不超过314A,电力二极管就能正常工作。
电力二极管解读

电容影响PN结的工作频率,尤其是高速的开关 状态。
1-20
1.2.2
1) 静态特性
电力二极管的基本特性
I
主要指其伏安特性
门槛电压 UTO ,正向电流 IF开始明显增加所对应的 电压。 与IF对应的电力二极管两 端的电压即为其正向电 压降UF 。 承受反向电压时,只有 微小而数值恒定的反向 漏电流。
1-1
1.1
电力电子器件概述
1.1.1 电力电子器件的概念和特征
1.1.2 应用电力电子器件的系统组成
1.1.3 电力电子器件的分类
1.1.4 本章内容和学习要点
1-2
机械开关、理想开关及半导体开关
• 电力电子器件是变流装置中的开关设备,在对它讨 论之前,我们先来了解在电力电子设备中为什么使 用半导体器件而不是机械开关。
(1) 开关在关断状态时,电路中流过的电流、即漏电流 (Ioff)为零。
(2)开关在导通状态时,开关的电压(Von)为零。 (3) 开关从导通状态变为关断状态的时间(toff),或者从关 断状态变为导通状态的时间(ton)为零。
(4) 开关即使是高速、长时间反复导通与关断也不损坏。
1-4
3、半导体开关要求的条件
126fav对应的有效值为157例如如果手册上给出某电力二极管的额定电流fav100a由此得到允许通过正弦半波电流的幅值允许通过任意波形的有效值为157a也就是说额定电流为100a的二极管可以通过幅314a的半波正弦电流可以在全周期内通过任意波形的有效值为157a的电流其功耗发热不超过允许127国产普通功率二极管的型号规定如下
1-32
1.2.4
电力二极管的主要类型
3. 肖特基二极管
以金属和半导体接触形成的势垒为基础的二极管称为肖 特基势垒二极管(Schottky Barrier Diode ——SBD)。 肖特基二极管的弱点
电力电子技术考核点总结--填空选择

1 简要说明四类基本的电力电子变流电路表答:交流变直流,即整流电路交流变交流,即交流电力控制电路或变频变相电路直流变直流,即直流斩波电路直流变交流,即逆变电;2 美国学者W.Newell用倒二角形对电力电子技术进行形象的描述,认为电力电子学是由电力学,电子学,控制理论三个学科交义而形成的。
3 电力电子技术是使用电力电子器件对电能进行变换和控制的技术,其电力变换常分为四大类:直流变直流、直流变交流、交流变交流、交流变直流。
4 根据二极管反向恢复时间的长短,可以将二极管分为普通二极管、快恢复二极管和肖特基二极管。
5 驱动电路需要提供控制电路和主电路之间的电气隔离环节,一般采用光隔离和磁隔离。
6 电力电子装置中可能发生的过电压分为外因过电压和内因过电压,其中内因过电压包括换相过电压和关断过电压。
7 电力电子系统一般由控制电路,驱动电路,主电路组成8 电力电子器件的损耗主要包括开关损耗和通态损耗9 单相半波整流电路带阻性负载时,晶闸管触发角a移相范围是【0~π】,晶闸管导通角沒和触发角α之间的关系是α+β=π或互补10 三相半波整流电路带阻性负载时,晶闸管触发角a移相范围是0-150度,输出电压连续时触发角α移相范围是0-30度11 同步信号为锯齿波的晶闸管触发电路主耍由脉冲的形成与放大,锯齿波的形成和脉冲移相,同步环节三个基本环节12 一般来说,电力电子变流电路中换流方式有器件换流、负载换流、电网换流和强迫换流。
13 直流斩波电路主要有三种控制方式:脉宽调制、脉频调制和混合调制。
14 正弦脉宽调制(SPWM)中,根据载波比N是否为固定值,可以分为同步调制和异步调制15 PWM控制方案优劣体现在输出波形谐波的多少、直流侧电压利用率; 一个周期内的开关次数。
16 PWM整流电路根据是否引入电流反馈可分为直接电流控制和间接电流控制17 根据电力电子电路中的功率器件开关过程中是否产生损耗,其开关方式可以分为软开关和硬开关。
电力电子技术_洪乃刚_第二章电力电子器件

返回
2、晶闸管的电流参数 通态平均电流和额定电流 通态平均电流IAV国际规 定是在环境温度为40°C和在规定冷却条件下,稳定结 温不超过额定结温时,晶闸管允许流过的最大正弦半 波电流的平均值。晶闸管以通态平均电流标定为额定 电流。 当通过晶闸管的电流不是正弦半波时,选择额定 电流就需要将实际通过晶闸管电流的有效值IT折算为 正弦半波电流的平均值,其折算过程如下: 通过晶闸管正弦半波电流的平均值 :
晶闸管开通和关断过程
晶闸管在受反向电压关断时,反向阻断恢复时间 trr,正向电压阻断能力恢复的这段时间称为正向阻断 恢复时间tgr,晶闸管的关断时间toff=trr+tgr,约为 数百微秒。 (2)dv/dt和di/dt限制 晶闸管在断态时,如果加在阳极上的正向电压上 升率dv/dt很大会使晶闸管误导通,因此,对晶闸管正 向电压的dv/dt需要作一定的限制。 晶闸管在导通过程中,如果电流上升率di/dt很 大 会引起局部结面过热使晶闸管烧坏,因此,在晶闸 管导通过程中对di/dt也要有一定的限制。
返回
二、电力二极管的伏安特性
当施加在二极管上的正向电压大于UTO 时, 二极管导通。当二极管受反向电压时,二极管仅 有很小的反向漏电流(也称反向饱和电流)。
二极管的伏安特性
返回
三、电力二极管的主要参数
A、额定电压 B、额定电流 C、结温
电力二极管实物图
返回
A、电力二极管的额定电压 反向重复峰值电压和额定电压: 额定电压即是能够反复施加在二极管上,二极 管不会被击穿的最高反向重复峰值电压URRM,该电压 一般是击穿电压UB的2/3。在使用中额定电压一般取 二极管在电路中可能承受的最高反向电压(在交流 电路中是交流电压峰值),并增加一定的安全裕量。
01第1章电力电子器件 基本模型 电力二极管 晶闸管

天津冶金职业技术学院教案( 首页)天津冶金职业技术学院教案( 首页)图1.3.2 晶闸管的内部结构和等效电路)导通:阳极施加正向电压时→给门极G也加正向电压T I I图1.3.6 控晶闸管的电气图形符号和伏安特性a) 电气图形符号b) 伏安特性1.4 可关断晶闸管可关断晶闸管(Gate-Turn-Off Thyristor)简称GTO。
天津冶金职业技术学院教师授课教案沟道沟道MOSFET耗尽型:增强型:耗尽型增强型之间就存在导电沟道;才存在导电沟道1. IGBT的结构图1.7.1 IGBT的结构、简化等效电路与电气符号IGBT的结构如图1.7.1(a)所示。
它是在VDMOS管结构的基础上再增加一个P+层,形成了一个大面积的P+N结1J,和其它结2J、3J一起构成了一个相当于由VDMOS驱动的厚基区PNP型GTR;简化等效电路如图1.7.1(b)所示。
电气符号如图1.7.1(c)所示GBT有三个电极:集电极C、发射极E和栅极G。
2. IGBT的工作原理IGBT也属场控器件,其驱动原理与电力MOSFET基本相同,是一种由栅电压GEU控制集电极电流的栅控自关断器件。
1.7.2 缘栅双极型晶体管的特性IGBT的伏安特性和转移特性图1.7.2 IGBT的伏安特性和转移特性天津冶金职业技术学院教案( 首页)构,如图1.8.4(a)。
)三极:阳极A 、阴极、栅极G ,)原理:栅极开路,在阳极和阴极之间加正向电压,有电流流过SITH ;在栅极G 和阴极K 之间加负电压,G-K 之间PN 结反偏,在两个栅极图1.9.5 GTO 的基本驱动电路2)导通和关断过程:图1.9.5(b)导通时GTO 门极与阴极间流过负电流而被关断;由于GTO 的开通和关断均依赖于一个独立的电源,故其关断能力强且可控制,其触发脉冲可采用窄脉冲;3)图1.9.5(c)中,导通和关断用两个独立的电源,开关元件少,电路简单。
4)图1.9.5(d),对于300A 以上的GTO ,用此驱动电路可以满足要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.电力二极管的电流参数:正向平均电流)(AV F I (额定电流)
指电力二极管长期运行时,在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的平均值。
但是在实际的变流电路中,流过器件的电流不可能正好是正弦半波电流,因此在设计电路,选取器件的时候,要按照实际电路中电流的有效值与正弦半波有效值相等的原则,再换算成平均值计算得出器件的额定电流。
具体的工频正弦半波电流在一个周期内的波形如图1所示
I
图1 正弦半波电流波形图
该波形在一个周期内的表达式为
⎩⎨⎧≤≤≤≤=πππ20
0sin t t t I I m F 该波形的平均值为
πππππππm m m av F I t I dt dt t I I =-=⎥⎦⎤⎢
⎣⎡+=⎰⎰0)cos (20sin 2120)( 该波形的有效值为
222cos 12sin 2102022
)(m m m eff F I dt t I tdt I I =-==⎰⎰ππ
ππ 因此,该波形的平均值和有效值之间的关系为
)()()(57.12av F av F eff F I I I ==
π
2.课堂练习
图2中阴影部分为流过二极管的电流波形,计算电流的平均值d I 与电流有效值I 。
如果不考虑安全裕量,问A 100的电力二极管能送出平均电流d I 为多少,相应的电流最大值m I 为多少?
Im
图2 电流波形图
解:该电流的平均值为
402122/2/0m m d I dt dt I I =⎥⎦⎤⎢
⎣⎡+=⎰⎰ππππ 该电流的有效值为
2
21
2
/02m m I dt I I ==⎰ππ 由题可知,电力二极管的额定电流为A 100,因此流过它的电流有效值为A 157。
图2的电流流过电力二极管,要满足器件的电流额定要求,必须根据有效值相等原则,使该电流的有效值
A I 157=
由它与最大值之间的关系,可得
A I I m 3142==
从而得到该电流的平均值为
A I I m d 5.784==。