2019届高考冲刺解答题专练1
(精校版)2019全国高考真题冲刺140分专题训练6套(含答案,可打印)

2019全国高考真题冲刺140分压轴专题训练 2019年普通高等学校招生全国统一考试1卷三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
19.已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =u u u r u u u r,求|AB |.20.已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.21.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性.2019年普通高等学校招生全国统一考试2卷三、解答题:共70分。
2019年兰州市高三高考语文冲刺考卷附答案解析

兰州市2019届高三冲刺考语文试题卷一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
在先秦两汉时期,就诗礼文化中的诗教与礼制的互动关系而言,两者或离或合,大略经历了五次历史性演变。
先周时期,诗教与礼制天然遇合,生成诗礼文化的初级国家形态。
诗教争礼制最初经历了从自然状态,过渡到舜以来初级国家形态的漫长历程。
当原始部落社会迈进初级国家的门槛时,朴素自然的民间礼俗一变而为初级国家形态的礼制。
于是,礼制建设向诗教提出了前所未有的新要求:“命汝典乐,教胄子……诗言志,歌永言,声依永,律和声。
”(《尚书·舜典》)这是帝舜发出的对子弟开展诗教的命辞。
从此,诗教与礼制相结合,共同启动了诗礼文化建构的历程。
西周时代,诗教与礼制水乳交融,生成诗礼文化的高级国家形态。
西周初创,即十分重视诗礼文化建设。
在周太师整理规范前代已有诗作的基础上,以周公旦、成王诵为代表的诗人群体创制了大量新诗,以施于王室与公室典礼。
其中,以“五礼”为核心的礼仪制度规范,重在明等级;以“六艺”为核心的贵族教育内容,重在调人情。
于是,诗教与礼制二者相互倚重,相与为用,紧密结合,达到了水乳交融的境地。
春秋时期,诗教与礼制渐次分离,制度之教演变为文化之教。
平王东迁,王室渐次衰微,原本以和合礼制为主要任务的诗教,逐渐从礼制系统中淡出。
转而演变为儒、墨、名家的道德修身和言辞进身手段。
此时开始盛行的歌《诗》、引《诗》以“言志”的文化活动,显示出诗教脱离典礼轨道的倾向。
此时的《诗》已不再仅仅是一种艺术化的礼制,而是独立的大学文本了。
诗教因西周传统礼制的变革崩坠而趋向没落,诗教对建构诗礼文化的影响力自然就减弱了。
战国时期,诗教与礼制相互乖离,《诗》成为少数经师传习的文学文本。
当时,七雄争霸,礼崩乐坏,就连儒家在传播《诗》上也有心无力,其他学派如纵横家引述《诗》句完全是出于论辩术的需要,法家则危言耸听地说如果用诗、书、礼、乐治国,“敌至面削,不至必贫”(《商君书·去强》)。
全国重点中学 衡水中学 2019 高三 高考冲刺 有答案

2019届高三五月强化1.答卷前,考生务必用黑色字迹的钢笔或签字笔在答题卡上填写自己的准考证号、姓名、试室号和座位号。
用2B型铅笔把答题卡上试室号、座位号对应的信息点涂黑。
2.选择题每小题选出答案后,用2B型铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡整洁。
考试结束后,将试卷和答题卡一并交回。
一.完形填空Four brothers left home for college, and they became successful doctors and lawyers.Some years later, they got together again. While having dinner, they____1____for a long time. They discussedthe____2____they had given their elderly mother who lived far away in another city. The first said, “I had a____3____house built for Mama." The second said, “I had my Mercedes-Benz dealer ( 奔驰经销商) send a___4____to her." The third said, “I built a beautiful ____5____f or Mama." The fourth said, “You know____6____Mama loved reading poems and you know she can't read any more because she can't ____7____very well. I met a businessman who had a parrot that can recite many___8____. It took him 12 yearsto____9____it to speak and he earns his living by renting it out. I had to pay him $100,000 a year for twenty years,_____10_____it is worth it." On hearing that, the other brothers were_____11_____by his good thought.After the holidays, their mother_____12_____ her thank -you notes, which read,“Milton, the house you built is so huge. I only live in one room, but I have to clean the whole house. It's a (an)_____13_____job. Thanks anyway." “Marvin, I am too oldto____14_____.I stay home and have others work for me, so I'll_____15_____ use the car. The ____16____was good, although not realistic. Thanks."“Michael, you gave me an expensive building for many people to_____17_____plays or I watch movies in it, but all my friends are dead. I've almost_____18_____my hearing and I' m nearly blind.I won't use it. Thank you all the same.' “Dearest Melvin, you are the_____19_____ son to have the good sense to give a little thought to your gift. The chicken tasted so_____20_____. I liked it very much. Thank you."1. A. fought B. studied C. talked D. slept2. A. chances B. gifts C. wishes D. challenges3. A. big B. warm C. safe D. lonely4. A. book B. bike C. car D. bag5. A. station B. museum C. library D. theater6. A. how B. what C. why D. when7. A. listen B. feel C. see D. walk8. A. stories B. poems C. words D. lyrics9. A. protect B. beat C. raise D. train10. A. but B. so C. unless D. although11. A. shocked B. embarrassed C. frightened D. impressed 12. A. took out B. put up C. sent out D. picked up13. A. enjoyable B. tiring C. delightful D. amusing14. A. learn B. work C. exercise D. drive15. A. never B. often C. regularly D. sometimes16. A. future B. idea C. hobby D. program37. A. enjoy B. create C. bring D. record18. A. admired B. lost C. remained D. discovered19. A. same B. last C. only D. next20. A. strange B. unpleasant C. terrible D. delicious二.七选五:Travelling is a great way to interact with a culture which might be completely different from your own.___21___ Before I moved to Sicily I had travelled around the whole of Italy, the south and the north, and I absolutely fell in love with the culture and the language, so I was inspired to learn the language and also to move here. And here I am now, living in Sicily.___22___When you get back home you'll have lots of stories to tell your friends and family. Even if something isn't very fun, it will be funny to look back and laugh at those awkward or harsh moments. For example, I was travelling with a group of friends in Pisa and we took the wrong bus to get to the beach area, so we ended up being stuck in the rain and having to walk back.When you travel, you expose yourself to different people.____23____It's a great learning experience for both you and the other person because you can share and exchange your own ideas and opinions on a range of topics. For example, I met an Iranian philosopher and we talked about the nature of magic. A lot of his ideas were shaped by his Iranian background and Iranian philosophy.___24___Travelling is the realization of home.____25____Since I've been away from London ,I've come to appreciate the little things that I used to take for granted, like our amazing transport- everything runs on time; everything runs well. So sometimes it takes being away from home to realize how much you absolutely love your hometown.A. It was a really interesting discussion.B. Travelling will make you a really good storyteller.C. Travelling could enrich your awareness of the world.'D. They may have a completely different outlook on life.E. We realize how much we miss our hometown when we travel.F. Travelling might just convince you to move to another country.G. Being away from home, we miss our friends and our family very much.三.改错:When I grow up, I'll work with animals. Though I don't know exactly how I can do for the animals yet, I can at least to follow my brother. He is a excellent vet. He looks after frightened snakes. He says that snakes are easy to deal as they don't have any legs. My father, a scientist, works to save rarely birds, some of that are really clever and can even say some words. My mother trains dolphins every workday. They practise in the pool. She hears the dolphins talk and sang. That sounds really cool! There are so many, animal job to choose from, but which one is right for them? I'll have to wait and see!2019届 高三五月强化四.形容词副词单句填空1.After the long journey, the three of them went back home, hungry and (tire).2.. Of the two coats ,I’d choose the (cheap) one to spare some money for a book.3.You should look (far) into the matter to get more information about it -4.He played the piano ____________ (success) than we have thought.5.5日英语答案【答案】1. C 2. B 3. A 4. C 5. D 6. A 7. C 8. B 29. D 10. A 11. D 12. C 13. B 14. D 15. A 16. B 17. A 18. B 19. C 20. D 【分析】 这是一篇故事类阅读。
2019届高三数学备考冲刺140分问题01数集与点集的运算含解析

问题01 数集与点集的运算一、考情分析集合是高考数学必考内容,一般作为容易题.给定集合判定集合间的关系、集合的交、并、补运算是考查的主要形式,常与函数的定义域、值域、不等式(方程)的解集相结合,在知识交汇处命题,以选择题为主,多出现在试卷的前3题中. 二、经验分享(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;如下面几个集合请注意其区别: ①{}220x x x -=;②{}22x y x x =-;③{}22y y x x =-;④(){}2,2x y y xx =-.(2)二元方程的解集可以用点集形式表示,如二元方程2xy =的整数解集可表示为()()()(){}1,2,2,1,1,2,2,1----.(3)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.(4)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系. (5)一般讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(6)解决以集合为背景的新定义问题,要抓住两点:①紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;②用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质. 三、知识拓展1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1. 2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UUAB A B U ⇔=∅⇔=痧 .3.奇数集:{}{}{}21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z .4. 数集运算的封闭性,高考多次考查,基础知识如下若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的.自然数集N 对加法运算是封闭的;整数集对加、减、乘法运算是封闭的.有理数集、复数集对四则运算是封闭的.对加、减、乘运算封闭的数集叫数环,有限数集{0}就是一个数环,叫零环.设F 是由一些数所构成的集合,其中包含0和1,如果对F 中的任意两个数的和、差、积、商(除数不为0),仍是F 中的数,即运算封闭,则称F 为数域. 四、题型分析(一)与数集有关的基本运算【例1】【2018年理新课标I 卷】已知集合,则A. B.C.D.【分析】首先利用一元二次不等式的解法,求出的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.【点评】对于集合的运算,一般先把参与运算的集合化简,解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果,要注意端点值的取舍.【小试牛刀】【2017全国1理1】已知集合{}1A x x =<,{}31xB x =<,则( ). A. {}0AB x x =< B. A B =R C. {}1A B x x => D. A B =∅【答案】A【解析】{}1A x x =<,{}{}310x B x x x =<=<,所以{}0A B x x =<,{}1AB x x =<.故选A.(二)与点集有关的基本运算 【例2】已知3(,)|3,{(,)|20},2y M x y N x y ax y a M N x -⎧⎫===++==∅⎨⎬-⎩⎭,则=a ( )A .-2B .-6C .2D .一2或-6【分析】首先分析集合M 是除去点(2,3)的直线33y x =-,集合N 表示过定点(1,0)-的直线,MN =∅等价于两条直线平行或者直线20ax y a ++=过(2,3),进而列方程求a 的值.【解析】由3333(2)2y y x x x -=⇒=-≠-若M N φ=,则①:点(2,3)在直线20ax y a ++=上,即2602a a a ++=⇒=-;②:直线33y x =-与直线20ax y a ++=平行,∴362aa -=⇒=-,∴2a =-或6-.【点评】分析集合元素的构成,将集合运算的结果翻译到两条直线的位置关系是解题关键. 【小试牛刀】【2018年理数全国卷II 】已知集合,则中元素的个数为A. 9B. 8C. 5D. 4 【答案】A 【解析】,当时,;当时,;当时,;所以共有9个,选A.(三)根据数集、点集满足条件确定参数范围【例3】设常数a ∈R ,集合A ={|(-1)(-a )≥0},B ={|≥a -1},若A ∪B =R ,则a 的取值范围为( ) A .(-∞,2) B .(-∞,2] C .(2,+∞) D .[2,+∞)【分析】先得到A =(-∞,1]∪[a ,+∞),B =[a -1,+∞),再根据区间端点的关系求参数范围.【点评】求解本题的关键是对a 进行讨论.【小试牛刀】已知P ={|2<<,∈N},若集合P 中恰有3个元素,则的取值范围为________. 【答案】(5,6]【解析】因为P 中恰有3个元素,所以P ={3,4,5},故的取值范围为5<≤6. (四) 数集、点集与其他知识的交汇【例4】已知集合M 是满足下列性质的函数()f x 的全体:存在非零常数T,对任意x ∈R,有()()f x T Tf x +=成立.(1)函数()f x x =是否属于集合M ?说明理由;(2)设函数()(0x f x a a =>且1a ≠)的图象与y x =的图象有公共点,证明:()x f x a =∈M ;(3)若函数()sin f x kx =∈M ,求实数k 的取值范围.【分析】抓住集合M 元素的特征,集合M 是由满足()()f x T Tf x +=的函数构成. 【解析】(1)对于非零常数T ,f (+T )=+T ,Tf ()=T . 因为对任意∈R,+T =T 不能恒成立,所以f ()= M .(2)因为函数f ()=a (a >0且a ≠1)的图象与函数y =的图象有公共点,所以方程组:⎪⎩⎪⎨⎧==x y a y x有解,消去y 得a =,显然=0不是方程的a =解,所以存在非零常数T ,使a T =T . 于是对于f ()=a ,有f (+T )=a +T = a T ·a =T ·a =T f (),故f ()=a ∈M .【点评】集合与其他知识的交汇处理办法往往有两种:其一是根据函数、方程、不等式所赋予的实数的取值范围,进而利用集合的知识处理;其二是由集合的运算性质,得到具有某种性质的曲线的位置关系,进而转化为几何问题处理.【小试牛刀】在直角坐标系xoy 中,全集},|),{(R y x y x U ∈=,集合}20,1s i n )4(c o s |),{(πθθθ≤≤=-+=y x y x A ,已知集合A 的补集A C U 所对应区域的对称中心为M ,点P 是线段)0,0(8>>=+y x y x 上的动点,点Q 是x 轴上的动点,则MPQ ∆周长的最小值为( )A .24B .104C .14D .248+ 【答案】B(五)与数集、点集有关的信息迁移题 【例5】若集合A 具有以下性质: (Ⅰ)0∈A,1∈A ;(Ⅱ)若∈A ,y ∈A ,则-y ∈A ,且≠0时,1x∈A .则称集合A 是“好集”.下列命题正确的个数是( ) (1)集合B ={-1,0,1}是“好集”;(2)有理数集Q 是“好集”;(3)设集合A 是“好集”,若∈A ,y ∈A ,则+y ∈A . A .0 B .1 C .2 D .3【分析】抓住新定义的特点,根据“好集”满足的两个性质,逐个进行验证.【解析】选C,(1)集合B 不是“好集”,假设集合B 是“好集”,因为-1∈B,1∈B ,所以-1-1=-2∈B ,这与-2∉B 矛盾.(2)有理数集Q 是“好集”,因为0∈Q,1∈Q ,对任意的∈Q ,y ∈Q ,有-y ∈Q ,且≠0时,1x∈Q ,所以有理数集Q 是“好集”.(3)因为集合A 是“好集”,所以0∈A ,若∈A ,y ∈A ,则0-y ∈A ,即-y ∈A ,所以-(-y )∈A ,即+y ∈A .【点评】紧扣新定义,抓住新定义的特点,把新定义叙述的问题的本质搞清楚,并能够应用到具体的解题过程中.【小试牛刀】【2017浙江温州高三模拟】已知集合22{(,)|1}M x y x y =+≤,若实数λ,μ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M 的“和谐实数对”,则以下集合中,存在“和谐实数对”的是( ) A .{(,)|4}λμλμ+= B .22{(,)|4}λμλμ+= C .2{(,)|44}λμλμ-= D .22{(,)|4}λμλμ-= 【答案】C.【解析】分析题意可知,所有满足题意的有序实数对(,)λμ所构成的集合为{(,)|11,11}λμλμ-≤≤-≤≤,将其看作点的集合,为中心在原点,(1,1)-,(1,1)--,(1,1)-,(1,1)为顶点的正方形及其内部,A,B,D 选项分别表示直线,圆,双曲线,与该正方形及其内部无公共点,选项C 为抛物线,有公共点(0,1)-,故选C. 五、迁移运用1.【安徽省宿州市2018届第三次质检】已知全集,集合,集合,则( )A. B.C.D.【答案】A2.【四川省成都市2018届模拟】设,则是的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】由得或,作出函数和,以及的图象,如图所示,则由图象可知当时,,当时,,因为,所以“”是“”的充分不必要条件,故选A.点睛:本题主要考查了充分条件和必要条件的判定问题,其中正确作出相应函数的图象,利用数形结合法求解是解答的关键,着重考查了数形结合思想方法的应用,以及推理与论证能力.3.【辽宁省葫芦岛市2018届第二次模拟】设集合,,则()A. B. C. D.【答案】B【解析】,的子集个数为故选C.4.【河南省洛阳市2018届三模】设集合,,则的子集个数为()A. 4 B. 8 C. 16 D. 32【答案】C5.【安徽省皖江八校2018届联考】设集合,,若,则()A. B. C. D.【答案】B【解析】∵,∴,即,∴,故选B.6.【山东省济南2018届二模】设全集,集合,集合则下图中阴影部分表示的集合为()A. B. C. D.【答案】D【解析】由题意可得:,,∴故选:D7.【安徽省江南十校2018届二模理】已知全集为,集合,,则()A. B. C. D.【答案】C【解析】因为,,所以,即.8.【2018届四川成都高三上学期一诊模拟】已知集合2{|},{|320},A x x aB x x x=<=-+<若,A B B⋂=则实数a的取值范围是()A. 1a< B. 1a≤ C. 2a> D. 2a≥【答案】D【解析】集合{}{}{}2|,|320|12A x x a B x x x x x =<=-+<=<<, ,A B B B A ⋂=∴⊆,则2a ≥,故选D.9.【2018届安徽蒙城高三上学期“五校”联考】已知集合{}{}0,1,1,0,3A B a ==-+,若A B ⊆,则a 的值为( )A. 2-B. 1-C. 0D. 1 【答案】A【解析】 因为{}{}0,1,1,0,3A B a ==-+,且A B ⊆, 所以31a +=,所以2a =-,故选A.10.【2018届湖南省五市十校教研教改共同体高三12月联考】已知集合{}220M x x x =--<,{N x y ==,则M N ⋃=( )A. {}1x x >- B. {}12x x ≤< C. {}12x x -<< D. {}0x x ≥ 【答案】A【解析】[)[){|12},1,1,2M x x N M N =-<<=+∞∴⋃=,选A. 11.已知集合,,则的元素个数为( )A .B .C .D . 【答案】B12.设集合,,记,则点集所表示的轨迹长度为( )A .B .C .D .【答案】D 【解析】由题意的圆心为,半径为1,而圆心(-3sin α,-3cos α),满足(-3sin α)2+(-3cos α)2=9, 故圆心在以(0,0)圆心,半径为3的圆上,∴集合A 对应的几何图形为圆2+y 2=4和2+y 2=16之间的圆环区域,13.【2017全国2理2】设集合{}1,2,4A =,{}240B x x x m =-+=.若1AB =,则B =().A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【答案】C【解析】由题意知1x =是方程240x x m -+=的解,代入解得3m =,所以2430x x -+=的解为1x =或3x =,从而{}13B =,.故选C.14.若集合{}2|870,|3x M x N x x P x N ⎧⎫=∈-+<=∉⎨⎬⎩⎭,则M P 等于( )A.{}3,6B.{}4,5C.{}2,4,5D.{}2,4,5,7 【答案】C【解析】因为{}{}{}2|870|17=2,3,4,5,6,|3x M x N x x x N x P x N ⎧⎫=∈-+<=∈<<=∉⎨⎬⎩⎭,所以{}2,4,5MP =,故选C.15.已知集合{}∅=-==B A x y x A ,1,则集合B 不可能是( )A .{}124+<x x x B .{}1),(-=x y y xC .{}1-=x yD .{})12(log 22++-=x x y y【答案】D 【解析】{}{}11≥=-==x x x y x A ,{}{}1)12(log 22≤=++-=y y x x y y ,故选D. 16.已知集合M 是由具有如下性质的函数()f x 组成的集合:对于函数()f x ,在定义域内存在两个变量12,x x 且12x x <时有1212()()f x f x x x ->-.则下列函数①()(0)x f x e x =>;②ln ()x f x x=;③()f x =()1sin f x x =+在集合M 中的个数是 A .1个 B .2个 C .3个 D .4个【答案】B对于③()()0f x f x '==>,函数()f x 在(0,)+∞单调递增,在定义域内存在两个变量12,x x 且12x x <时,在()f x 单调增区间时有0()1f x '<<,此时只须1x >时可得0()1f x '<<.满足题意 对于④()1sin ,,()cos f x x f x x '=+=,函数()f x 在3(2,2)()22k k k Z ππππ++∈单调递减,在定义域内存在两个变量12,x x 且12x x <时,在()f x 单调减区间时有()0f x '<,满足题意.17.设{}n a 是公比为q 的等比数列,||1q >,令1(1,2,)n n b a n =+=,若数列{}n b 有连续四项在集合{53,23,19,37,82}--中,则q =( )A .32-B .43-C .23-D .32【答案】A18.已知集合A ={(,y )|2+y 2≤1,,y ∈},B ={(,y )|||≤2,|y |≤2,,y ∈},定义集合A ⊗B ={(1+2,y 1+y 2)|(1,y 1)∈A ,(2,y 2)∈B },则A ⊗B 中元素的个数为( )A .77B .49C .45D .30【答案】C【解析】如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合A ⊗B 显然是集合{(,y )|||≤3,|y |≤3,,y ∈}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A ⊗B 表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A ⊗B 中元素的个数为45.故选C.19.非空集合G 关于运算⊕满足:(1)对任意a ,G b ∈,都有G a b ⊕∈;(2)存在G e ∈,使得对一切G a ∈,都有a e e a a ⊕=⊕=,则称G 关于运算⊕为“融洽集”.现给出下列集合和运算:①{}G =非负整数,⊕为整数的加法;②{}G =偶数,⊕为整数的乘法;③{}G =平面向量,⊕为平面向量的加法;④{}G =二次三项式,⊕为多项式的加法;⑤{}G =虚数,⊕为复数的乘法.其中G 关于运算⊕为“融洽集”的是( )A .①③B .②③C .①⑤D .②③④【答案】B20.若集合(){},,,|04,04,04,,,E p q r s p s q s r s p q r s N =≤<≤≤<≤≤<≤∈且,(){},,,|04,04,,,F t u v w t u v w t u v w N =≤<≤≤<≤∈且,用()card X 表示集合X 中的元素个数,则()()card E card F +=( )A .50B .100C .150D .200【答案】D【解析】()()333312*********card E card F +=++++⨯=,故选D.21.【2018届江苏省南京市多校高三上学期第一次段考】已知集合{}1,2,21A m =--,集合{}22,B m =,若B A ⊆,则实数m =__________.【答案】1【解析】由题意得2211m m m =-⇒=,验证满足22.设P 是一个数集,且至少含有两个数,若对任意a 、b P ∈,都有a b +、a b -、ab 、a P b ∈(除数0b ≠),则称P 是一个数域,例如有理数集Q 是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q M ⊆,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .【答案】①④【解析】当a b =时,0,1a a b P b -==∈,故可知①正确;当11,2,2a b Z ==∉不满足条件,故可知②不正确;对③当M 中多一个元素i 则会出现1i M +∉所以它也不是一个数域;故可知③不正确;根据数据的性质易得数域有无限多个元素,必为无限集,故可知④正确,故答案为①④.【点评】本题考查简单的合情推理、新定义问题以及转化与划归思想,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答都围绕新概念“数域” 对任意a 、b P ∈,都有a b +、a b -、ab 、aP b∈这一性质展开的.。
2019届高考数学(江苏卷)模拟冲刺卷(含附加及详细解答,共8套)

2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 已知集合A ={1,2},B ={a ,a 2-3},若A ∩B ={1},则实数a 的值为________.2. 若命题“∀t ∈R , t 2-at -a ≥0”是真命题,则实数a 的取值范围是________.3. 已知复数z 满足z (1-i)=2+i ,其中i 为虚数单位,则复数z 的模|z |=________.4. 根据如图所示的伪代码,当输出y 的值为1时,则输入的x 的值为________. Read xIf x ≤0 Then y ←x 2+1 Elsey ←ln x End If Print y5. 若函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥4,f (x +3),x <4,则f (log 238)=________.6. 盒子中有2个白球、1个黑球,一人从盒中抓出两球,则两球颜色不同的概率为________.7. 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x -y -2≤0,x +y -2≥0,则z =3x -y 的最大值为________.8. 如图,F 1,F 2是双曲线C 1:x 2-y 23=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若△AF 1F 2为等腰三角形,则C 2的离心率是________.9. 已知α,β∈(3π4,π),sin(α+β)=-35,sin(β-π4)=13,则cos(α+π4)=________.10. 如图,在△ABC 中,AB =3,BC =2,D 在边AB 上,BD →=2DA →,若DB →·DC →=3,则边AC 的长为__________.11. 设正四面体ABCD 的棱长为6,P 是棱AB 上的任意一点(不与A ,B 重合),且P 到平面BCD 、平面ACD 的距离分别为x ,y ,则3x +1y的最小值是________.12. 已知数列{a n }的前n 项和S n =-a n -(12)n -1+1(n 为正整数),则数列{a n }的通项公式为________.13. 已知函数f (x )(x ∈R )的图象关于点(1,2)对称,若函数y =2xx -1-f (x )有四个零点x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.14. 已知函数f (x )=1e x -ae x(x >0,a ∈R ),若存在实数m ,n ,使得f (x )≥0的解集恰为[m ,n ],则实数a 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.如图,在三棱柱ABCA 1B 1C 1中,M ,N 分别为线段BB 1,A 1C 的中点,MN ⊥AA 1,且MA 1=MC .求证:(1)平面A 1MC ⊥平面A 1ACC 1; (2)MN ∥平面ABC .16. (本小题满分14分)已知在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且2cos 2B2=3sin B ,b =1.(1)若A =5π12,求边c 的大小;(2)若sin A =2sin C ,求△ABC 的面积.学校A,B两餐厅每天供应1 000名学生用餐(每人每天只选一个餐厅用餐),调查表明:开学第一天有200人选A餐厅,并且学生用餐有以下规律:凡是在某天选A餐厅的,后面一天会有20%改选B餐厅,而选B餐厅的,后面一天则有30%改选A餐厅.若用a n,b n分别表示在开学第n天选A餐厅、B餐厅的人数.(1)求开学第二天选择A餐厅的人数;(2)若某餐厅一天用餐总人数低于学校用餐总数的920,则该餐厅需整改,问B餐厅在开学一个月内是否有整改的可能,如果有可能,请指出在开学后第几天开始整改;如果没有可能,请说明理由.18. (本小题满分16分)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数,直线l:x-y+2=0与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.(1)求椭圆C的方程;(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,m=(k1-2,1),n=(1,k2-2),若m⊥n,求证:直线AB过定点.在等比数列{a n }中,a 2=14,a 3·a 6=1512.设b n =log2a 2n 2·log2a 2n +12,T n 为数列{b n }的前n 项和. (1)求a n 和T n ;(2)若对任意的n ∈N *,不等式λT n <n -2(-1)n 恒成立,求实数λ的取值范围.20. (本小题满分16分)已知函数f (x )=ln x +ke x(其中k ∈R ,e =2.718 28…是自然对数的底数).(1) 当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2) 若x e x f (x )>m 对x ∈[1,e]恒成立,求k 的取值范围;(3) 若f ′(1)=0,求证:对任意x >0,f ′(x )<e -2+1x 2+x 恒成立.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤. A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤12c d (c ,d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.B. (选修44:坐标系与参数方程)在极坐标系中,直线l 的极坐标方程为θ=π3(ρ∈R ),以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数),求直线l 与曲线C 的交点P 的直角坐标.C. (选修45:不等式选讲)已知x ,y ,z ∈R ,且x +2y +3z +8=0.求证:(x -1)2+(y +2)2+(z -3)2≥14.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在直三棱柱ABCA1B1C1中,已知CA=CB=1,AA1=2,∠BCA=90°.(1)求异面直线BA1与CB1夹角的余弦值;(2)求二面角BAB1C平面角的余弦值.23. 在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1)当n=2,3时,分别求a2n-a n-1a n+1的值,并判断a2n-a n-1a n+1(n≥2)是否为定值,然后给出证明;(2)求出所有的正整数n,使得5a n+1a n+1为完全平方数.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)1. 1或-2 解析:∵ A ∩B ={1},∴ 1∈B ,∴ a =1或a 2-3=1,∴ a =1或a =±2,但a =2 不合题意,舍去.2. [-4,0] 解析:∵ Δ=a 2+4a ≤0,∴ -4≤a ≤0.3. 102 解析:z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=12+32i ,|z |=14+94=102.4. e 或0 解析:y =⎩⎪⎨⎪⎧x 2+1,x ≤0,ln x ,x >0,令y =1,则x =0或x =e .5. 24 解析:∵ log 238=log 23-3<4,log 23<4,又x <4时,f (x )=f (x +3),∴ f ⎝⎛⎭⎫log 238=f (log 23-3)=f (log 23+3).∵ log 23+3>4,∴ f (log 23+3)=2log 23+3=2log 23·23=24. 6. 23 解析:从盒中抓出两球共有3种方法,其中颜色不同的有2种,故概率为23. 7. 6 解析:作出如图所示可行域,当直线经过最优点(4,6)时,z 取得最大值6.8. 23 解析:∵ AF 2=F 1F 2=2c =4,AF 2-AF 1=2,∴ AF 1=2,∴ a =3,∴ e =23. 9. -82+315 解析:由于α,β∈⎝⎛⎭⎫3π4,π,∴ 3π2<α+β<2π,∴ π2<β-π4<3π4,∴ cos(α+β)=45,cos ⎝⎛⎭⎫β-π4=-223,∴ cos ⎝⎛⎭⎫α+π4=cos[(α+β)-⎝⎛⎭⎫β-π4]=45×⎝⎛⎭⎫-232+⎝⎛⎭⎫-35×13=-82+315. 10. 10 解析:∵ DB →·DC →=3,∴ DB →·(BC →-BD →)=3,∴ DB →·BC →-DB →·BD →=3.又|BD →|=2,∴ BD →·BC →=1,∴ cos B =14,由余弦定理得AC =10.11. 2+3 解析:∵ V ABCD =V PBCD +V P ACD ,正四面体ABCD 的高h =2,∴ x +y =2,∴ 3x+1y =⎝⎛⎭⎫3x +1y ⎝⎛⎭⎫x +y 2=12⎝⎛⎭⎫4+3y x +x y ≥2+3,当且仅当3y x =x y 时等号成立. 12. n -12n 解析:当n =1时,得S 1=-a 1-⎝⎛⎭⎫120+1,即a 1=0;当n ≥2时,∵ S n =-a n-⎝⎛⎭⎫12n -1+1,∴ S n -1=-a n -1-⎝⎛⎭⎫12n -2+1,∴ a n =S n -S n -1=-a n +a n -1+⎝⎛⎭⎫12n -1,∴ 2a n =a n -1+⎝⎛⎭⎫12n -1,即2n a n =2n -1a n -1+1.令b n =2n a n ,则当n ≥2时,b n =b n -1+1,即b n -b n -1=1.又b 1=2a 1=0,故数列{b n }是首项为0,公差为1的等差数列,于是b n =b 1+(n -1)·1=n -1.∵ b n=2n a n ,∴ a n =2-n b n =n -12n .13. 4 解析:y =2x x -1-f (x )的零点即为2x x -1=f (x )的解,∴ y =2xx -1与y =f (x )有四个交点.∵y =2x x -1=2+2x -1,∴ y =2x x -1的图象关于点(1,2)对称.又f (x )(x ∈R )的图象关于点(1,2)对称,∴ y =2xx -1与y =f (x )的四个交点关于(1,2)对称,∴ x 1+x 2+x 3+x 4=2+2=4.14. (0,1) 解析:由f (x )≥0及x >0,得a ≤ex e x 的解集恰为[m ,n ],设 g (x )=exe x ,则g ′(x )=e (1-x )e x,由g ′(x )=0,得x =1,当0<x <1时,g ′(x )>0,g (x )单调递增; 当x >1时,g ′(x )<0,g (x )单调递减,且g (1)=1,g (0)=0,当x >0时,g (x )>0,大体图象如图所示.由题意得方程a =exex 有两不等的非零根,∴ a ∈(0,1).15. 证明:(1) ∵ MA 1=MC ,且N 是A 1C 的中点, ∴ MN ⊥A 1C .又MN ⊥AA 1,AA 1∩A 1C =A 1,A 1C ,AA 1⊂平面A 1ACC 1, 故MN ⊥平面A 1ACC 1. ∵ MN ⊂平面A 1MC ,∴ 平面A 1MC ⊥平面A 1ACC 1. (6分) (2) 如图,取AC 中点P ,连结NP ,BP . ∵ N 为A 1C 中点,P 为AC 中点,∴ PN ∥AA 1,且PN =12AA 1.在三棱柱ABCA 1B 1C 1中,BB 1∥AA 1,且BB 1=AA 1.又M 为BB 1中点,故BM ∥AA 1,且BM =12AA 1,∴ PN ∥BM ,且PN =BM ,于是四边形PNMB 是平行四边形, 从而MN ∥BP .又MN ⊄平面ABC ,BP ⊂平面ABC , ∴ 故MN ∥平面ABC .(14分)16. 解:(1) 由题意,得1+cos B =3sin B ,∴ 2sin ⎝⎛⎭⎫B -π6=1,∴ B -π6=π6或5π6(舍去),∴ B =π3.∵ A =5π12,则C =π4,由正弦定理c sin C =b sin B ,得c =63.(5分)(2) ∵ sin A =2sin C ,由正弦定理,得a =2c .由余弦定理,得b 2=a 2+c 2-2ac cos B , 将b =1,a =2c ,B =π3代入解得c =33,从而a =233,∴ S △ABC =12ac sin B =12×233×33sin π3=36.(14分)17. 解:(1) 第一天选A 餐厅的学生在第二天仍选A 餐厅的学生有200(1-20%)=160(人), 第一天选B 餐厅的学生在第二天改选A 餐厅的学生有(1000-200)×30%=240(人), 故开学第二天选择A 餐厅的人数为160+240=400.(4分) (2) 由题知b n +1=20%a n +b n (1-30%),而a n +b n =1 000,∴ b n +1=12b n +200,∴ b n +1-400=12(b n -400).又b 1=1 000-200=800,∴ 数列{b n -400}是首项为400,公比为12的等比数列,∴ b n -400=400×⎝⎛⎭⎫12n -1,∴ b n =400+400×⎝⎛⎭⎫12n -1.当选B 餐厅用餐总人数低于学校用餐总数的920时, 有400+400×⎝⎛⎭⎫12n -1<920×1 000, 即⎝⎛⎭⎫12n -1<18,∴ n >4,∴ B 餐厅有整改的可能,且在开学第5天开始整改.(14分) 18. (1) 解:∵ 等轴双曲线的离心率为2,∴ 椭圆的离心率为e =22,∴ e 2=c 2a 2=a 2-b 2a 2=12,∴ a 2=2b 2.∵ 直线l :x -y +2=0与圆x 2+y 2=b 2相切, ∴ b =1,∴ 椭圆C 的方程为x 22+y 2=1.(4分)(2) 证明:由(1)知M (0,1),∵ m =(k 1-2,1),n =(1,k 2-2),m ⊥n ,∴ k 1+k 2=4. ① 若直线AB 的斜率存在,设AB 方程为y =kx +m ,依题意m ≠±1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得 (1+2k 2)x 2+4kmx +2m 2-2=0,则有x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k 2.由k 1+k 2=4,可得y 1-1x 1+y 2-1x 2=4,∴ kx 1+m -1x 1+kx 2+m -1x 2=4,即2k +(m -1)·x 1+x 2x 1x 2=4,将x 1+x 2,x 1x 2代入得k -km m +1=2,∴ m =k2-1,故直线AB 的方程为y =kx +k2-1,即y =k ⎝⎛⎫x +12-1,∴ 直线AB 过定点⎝⎛⎭⎫-12,-1;(10分) ② 若直线AB 的斜率不存在,设方程为x =x 0, 则点A (x 0,y 0),B (x 0,-y 0).由已知y 0-1x 0+-y 0-1x 0=4,得x 0=-12,此时AB 方程为x =x 0,显然过点⎝⎛⎭⎫-12,-1. 综上所述,直线AB 过定点⎝⎛⎭⎫-12,-1.(16分) 19. 解:(1) 设{a n }的公比为q ,由a 3a 6=a 22·q 5=116q 5=1512,得q =12,∴ a n =a 2·q n -2=⎝⎛⎭⎫12n .(2分)b n =log2a 2n 2·log2a 2n +12=log ⎝⎛⎭⎫122n -12·log ⎝⎛⎭⎫122n +12=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴ T n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1. (5分)(2) ① 当n 为偶数时,由λT n <n -2恒成立,得λ<(n -2)(2n +1)n =2n -2n -3恒成立,即λ<⎝⎛⎭⎫2n -2n -3min ,(6分) 而2n -2n-3随n 的增大而增大,∴ n =2时⎝⎛⎭⎫2n -2n -3min =0,∴ λ<0;(8分) ② 当n 为奇数时,由λT n <n +2恒成立得,λ<(n +2)(2n +1)n =2n +2n +5恒成立,即λ<⎝⎛⎭⎫2n +2n +5min .(12分) 而2n +2n +5≥22n ·2n+5=9,当且仅当2n =2n,即n =1时等号成立,∴ λ<9.综上,实数λ的取值范围是(-∞,0).(16分)20. (1) 解:由f (x )=ln x +2e x,得f ′(x )=1-2x -xln xxe x,x ∈(0,+∞),(1分)∴ 曲线y =f (x )在点(1,f (1))处的切线斜率为f ′(1)=-1e .∵ f (1)=2e ,∴ 曲线y =f (x )切线方程为y -2e =-1e (x -1),即y =-1e x +3e.(4分) (2) 解:由xe x f (x )>m ,得k >mx-ln x ,令F (x )=mx-ln x ,则k >F (x )max ,又F ′(x )=-m x 2-1x =-1x2(x +m ),x ∈[1,e ].当m ≥0时,F ′(x )<0,F (x )在[1,e ]上单调递减, ∴ F (x )max =F (1)=m ,∴ k >m ;当m <0时,由F ′(x )=0,得x =-m ,在(0,-m )上F ′(x )>0,F (x )单调递增,在(-m ,+∞)上F ′(x )<0,F (x )单调递减.① 若-m ≤1即-1≤m <0,则F (x )在[1,e ]上单调递减,k >F (x )max =F (1)=m ;② 若1<-m <e 即-e <m <-1,则F (x )在[1,-m ]上单调递增,在[-m ,e ]上单调递减, k >F (x )max =F (-m )=-1-ln (-m );③ 若-m ≥e 即m ≤-e ,则F (x )在[1,e ]上单调递增,k >F (x )max =F (e )=me-1,综上,当m ≥-1时,k ∈(m ,+∞);当-e <m <-1时,k ∈(-1-ln (-m ),+∞);当m ≤-e 时,k ∈⎝⎛⎭⎫me -1,+∞.(8分) (3) 证明:由f ′(1)=0,得k =1. 令g (x )=(x 2+x )f ′(x ),∴ g (x )=x +1ex (1-x -xln x ),x ∈(0,+∞),因此,对任意x >0,g (x )<e -2+1等价于1-x -xln x <e xx +1(e -2+1). 由h (x )=1-x -xln x ,x ∈(0,+∞),得h ′(x )=-ln x -2,x ∈(0,+∞),因此,当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减,∴ h (x )的最大值为h (e -2)=e -2+1,故1-x -xln x ≤e -2+1.设φ(x )=e x -(x +1),∵ φ′(x )=e x -1,所以x ∈(0,+∞)时φ′(x )>0,∴ φ(x )单调递增,φ(x )>φ(0)=0,故x ∈(0,+∞)时,φ(x )=e x -(x +1)>0,即e x x +1>1, ∴ 1-x -xln x ≤e -2+1<e xx +1(e -2+1), 故对任意x >0,f ′(x )<e -2+1x 2+x 恒成立.(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(一)21. A . 解:由题意知⎣⎢⎡⎦⎥⎤12c d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤42c +d =2⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤12c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤3c +d =3⎣⎢⎡⎦⎥⎤11,所以⎩⎪⎨⎪⎧2c +d =2,c +d =3,解得⎩⎪⎨⎪⎧c =-1,d =4,(4分) 所以A =⎣⎢⎡⎦⎥⎤ 12-14,所以A -1=⎣⎢⎡⎦⎥⎤23-1316 16.(10分) B. 解:因为直线l 的极坐标方程为θ=π3(ρ∈R ), 所以直线l 的普通方程为y =3x .(2分)因为曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数), 所以曲线C 的直角坐标方程为y =12x 2(x ∈[-2,2]). (4分) 联立解方程组⎩⎪⎨⎪⎧y =3x ,y =12x 2,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =23,y =6, 由x ∈[-2,2],则x =23,y =6(舍去),故P 点的直角坐标为(0,0).(10分)C. 证明:因为[(x -1)2+(y +2)2+(z -3)2](12+22+32) ≥[(x -1)+2(y +2)+3(z -3)]2=(x+2y +3z -6)2=142,当且仅当x -11=y +22=z -33, 即x =z =0,y =-4时,取等号,所以(x -1)2+(y +2)2+(z -3)2≥14.(10分)22. 解:如图,以{CA →,CB →,CC 1→}为正交基底,建立空间直角坐标系Cxyz ,则A(1,0,0),B(0,1,0),A 1(1,0,2),B 1(0,1,2),所以CB 1→=(0,1,2),AB →=(-1,1,0),AB 1→=(-1,1,2),BA 1→=(1,-1,2).(1) 因为cos 〈CB 1→,BA 1→〉=CB 1→·BA 1→|CB 1→||BA 1→|=35×6=3010, 所以异面直线BA 1与CB 1夹角的余弦值为3010.(4分)(2) 设平面CAB 1的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AB 1→=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧-x +y +2z =0,y +2z =0, 取平面CAB 1的一个法向量为m =(0,2,-1).设平面BAB 1的法向量为n =(r ,s ,t ),则⎩⎪⎨⎪⎧n ·AB 1→=0,n ·AB →=0,即⎩⎪⎨⎪⎧-r +s +2t =0,-r +s =0, 取平面BAB 1的一个法向量为n =(1,1,0),则cos 〈m ,n 〉=m ·n |m||n|=25×2=105. 易知二面角BAB 1C 为锐角, 所以二面角BAB 1C 平面角的余弦值为105.(10分) 23. 解:(1) 由已知得a 3=70,a 4=180,所以当n =2时,a 2n -a n -1a n +1=-500;当n =3时,a 2n -a n -1a n +1=-500.(2分)猜想:a 2n -a n -1a n +1=-500(n ≥2).下面用数学归纳法证明:① 当n =2时,结论成立.② 假设当n =k(k ≥2,k ∈N *)时,结论成立,即a 2k -a k -1a k +1=-500.将a k +1=3a k -a k -1代入上式,可得a 2k -3a k a k -1+a 2k -1=-500,则当n =k +1时,a 2k +1-a k a k +2=a 2k +1-a k (3a k +1-a k )=a 2k +1-3a k a k +1+a 2k =-500,故当n =k +1时结论成立, 根据①②可得a 2n -a n -1a n +1=-500(n ≥2)成立.(4分)(2) 将a n -1=3a n -a n +1代入a 2n -a n -1a n +1=-500,得a 2n +1-3a n a n +1+a 2n =-500,则5a n +1a n =(a n +1+a n )2+500,5a n a n +1+1=(a n +1+a n )2+501.设5a n +1a n +1=t 2(t ∈N *),则t 2-(a n +1+a n )2=501,即[t -(a n +1+a n )](t +a n +1+a n )=501.又a n +1+a n ∈N *,且501=1×501=3×167,故⎩⎪⎨⎪⎧a n +1+a n -t =-1,a n +1+a n +t =501或⎩⎪⎨⎪⎧a n +1+a n -t =-3,a n +1+a n +t =167,所以⎩⎪⎨⎪⎧t =251,a n +1+a n =250或⎩⎪⎨⎪⎧t =85,a n +1+a n =82. 由a n +1+a n =250,解得n =3; 由a n +1+a n =82,得n 无整数解, 所以当n =3时,满足条件.(10分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则A ∩B =________.2. 若复数z 1=4-3i ,z 2=1+i ,则复数(z 1-z 2)i 的模为________.3. 如图所示的程序框图,运行相应的程序,则输出S 的值为________.4. 学校从参加安全知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数,成绩≥80分记为优秀)分成6组后,得到部分频率分布直方图(如图),则分数在[70,80)内的人数为________.5. 如图,在▱ABCD 中,AB =4,AD =3,∠DAB =π3,点E ,F 分别在BC ,DC 边上,且BE →=12EC →,DF →=FC →,则AE →·EF →=________.6. 从1,2,4,8这四个数中一次随机地取2个数,则所取2个数的乘积小于8的概率是________.7. 已知函数f (x )=12x +1,则f (log 23)+f (log 213)=________. 8. 已知锐角θ满足sin(θ2+π6)=45,则cos(π6-θ)的值为________. 9. 若直线l 1:mx +y +1=0,l 2:(m -3)x +2y -1=0,则“m =1”是“l 1⊥l 2”的________条件.10. 已知定义在R 上的函数f (x )的周期为4,当x ∈[0,2]时,f (x )=x 3,且函数y =f (x +2)的图象关于y 轴对称,则f (2 019)=________.11. 设点O ,P ,Q 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y 2=4x 的交点,O 为坐标原点,若△OPQ 的面积为2,则双曲线的离心率为________.12. 若a ≥c >0,且3a -b +c =0,则ac b的最大值为__________. 13. 已知S n 是等差数列{a n }的前n 项和,若S 2≥4,S 4≤16,则S 9的最大值是________.14. 已知函数f (x )=x 3-3x 在区间[a -1,a +1](a ≥0)上的最大值与最小值之差为4,则实数a 的值为________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,三角形PCD 所在的平面与等腰梯形ABCD 所在的平面垂直,AB =AD =12CD ,AB ∥CD ,CP ⊥CD ,M 为PD 的中点.求证:(1)AM ∥平面PBC ;(2)平面BDP ⊥平面PBC .16. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos 2A =-13,c =3,sin A =6sin C . (1)求a 的值;(2) 若角A 为锐角,求b 的值及△ABC 的面积.17. (本小题满分14分)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0),圆O :x 2+y 2=b 2,过椭圆C 的上顶点A 的直线l :y =kx +b 分别交圆O 、椭圆C 于不同的两点P ,Q .(1)若点P (-3,0),点Q (-4,-1),求椭圆C 的方程;(2)若AP →=3PQ →,求椭圆C 的离心率e 的取值范围.18. (本小题满分16分)某公司一种产品每日的网络销售量y (单位:千件)与销售价格x (单位:元/件)满足关系式y =m x -2+4(x -6)2,其中2<x <6,m 为常数.已知销售价格为4元/件时,每日可售出产品21千件.(1)求m 的值;(2)假设网络销售员工的工资、办公等所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格x 的值,使公司每日销售产品所获得的利润最大.(结果保留一位小数)19. (本小题满分16分)已知数列{a n }中,a 1=1,a n +1=⎩⎪⎨⎪⎧13a n +n ,n 为奇数,a n -3n ,n 为偶数.(1)求证:数列⎩⎨⎧⎭⎬⎫a 2n -32是等比数列; (2)若S n 是数列{a n }的前n 项和,求满足S n >0的所有正整数n .20. (本小题满分16分)已知函数f (x )=12x 2+kx +1,g (x )=(x +1)ln(x +1),h (x )=f (x )+g ′(x ). (1)若函数g (x )的图象在原点处的切线l 与函数f (x )的图象相切,求实数k 的值;(2)若h (x )在[0,2]上单调递减,求实数k 的取值范围;(3)若对于∀t ∈[0,e -1],总存在x 1,x 2∈(-1,4),且x 1≠x 2满足f (x i )=g (t )(i =1,2),其中e 为自然对数的底数,求实数k 的取值范围.已知[ln(x +1)]′=1x +1.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)设二阶矩阵A ,B 满足A -1=⎣⎢⎡⎦⎥⎤1234,(BA )-1=⎣⎢⎡⎦⎥⎤1001,求B -1.B. (选修44:坐标系与参数方程)已知直线l 的极坐标方程为ρsin(θ-π3)=3,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),设点P 是曲线C 上的任意一点,求P 到直线l 的距离的最大值.C. (选修45:不等式选讲)已知a ≥0,b ≥0,求证:a 6+b 6≥ab (a 4+b 4).【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的分布列和数学期望E(ξ).23. 设集合A,B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.(1)若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)1. {x |-1<x ≤0} 解析:由题意可得,A ={x |-1<x <1},B ={y ∈R |y ≤0}={x |x ≤0}.故A ∩B ={x |-1<x ≤0}.2. 5 解析:∵ (z 1-z 2)i =(3-4i )i =4+3i , ∴ |(z 1-z 2)i |=5.3. 154. 18 解析:分数在[70,80)内的人数为[1-(0.005+0.010+0.015×2+0.025)×10]×60=18.5. -3 解析:AE →=AB →+BE →=AB →+13AD →,EF →=EC →+CF →=-12AB →+23AD →,又AB =4,AD =3,∠DAB =π3,∴ AE →·EF →=⎝⎛⎭⎫AB →+13AD →⎝⎛⎭⎫-12AB →+23AD →=-12AB →2+12AB →·AD →+29AD →2=-12×42+12×4×3×cos π3+29×32=-3. 6. 13解析:从1,2,4,8这四个数中一次随机地取2个数相乘,共有6个结果,其中乘积小于8的有2个,故所求概率为26=13.7. 1 解析:∵ f (x )+f (-x )=12x +1+12-x +1=1,∴ f (log 23)+f ⎝⎛⎭⎫log 213=f (log 23)+f (-log 23)=1.8. 2425 解析:∵ 0<θ<π2,∴ π6<θ2+π6<5π12,∴ cos ⎝⎛⎭⎫θ2+π6=35,∴ sin ⎝⎛⎭⎫θ+π3=2425,∴ cos ⎝⎛⎭⎫π6-θ=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π3=sin ⎝⎛⎭⎫θ+π3=2425.9. 充分不必要 解析:l 1⊥l 2 的充要条件是m (m -3)+1×2=0,即m =1或m =2,∴ “m =1”是“l 1⊥l 2”的充分不必要条件.10. 1 解析:∵ 函数y =f (x +2)的图象关于y 轴对称,∴ 函数y =f (x )的图象关于直线x =2对称.又函数f (x )的周期为4,∴ f (2 019)=f (3)=f (1)=1.11. 5 解析:不妨设P (x 0,y 0)(x 0>0,y 0>0),则y 20=4x 0,12x 0(2y 0)=2,∴ x 0=1,y 0=2.又y 0=b a x 0,∴ b a =2,∴ b 2a 2=4,∴ c 2-a 2a 2=4,∴ e = 5.12. 36 解析:∵ 3a -b +c =0,则b =3a +c ,设t =c a ,则t ∈(0,1],∴ ac b =ac 3a +c =c a 3+c a =t 3+t 2=13t+t .∵ 3t +t ≥23,∴ ac b ≤123=36,∴ ac b 的最大值为36. 13. 81 解析:设等差数列{a n }的公差为d ,∵ S 2≥4,S 4≤16,∴ 2a 1+d ≥4,4a 1+6d ≤16,即2a 1+d ≥4且2a 1+3d ≤8.又S 9=9a 1+9×82d =9(a 1+4d ),由线性规划可知,当a 1=1,d =2时,S 9取得最大值81. 14. 1或0 解析:f ′(x )=3(x +1)(x -1),令f ′(x )=0,则x =-1或x =1,则f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.∵ a ≥0,x ∈[a -1,a +1],∴ a -1≥-1,a +1≥1.① 当a -1<1即a <2时,f (x )min =f (1)=-2,f (x )max =max {f (a -1),f (a +1)},又f (x )max -f (x )min=4,f (x )max =2,∴ ⎩⎪⎨⎪⎧f (a -1)=2f (a +1)≤f (a -1)或⎩⎪⎨⎪⎧f (a +1)=2,f (a -1)≤f (a +1),∴ a 的值为1或0;② 当a -1≥1即a ≥2时,f (x )min =f (a -1),f (x )max =f (a +1), ∴ f (a +1)-f (a -1)=4,无解. 综上,a 的值为1或0.15. 证明:(1) 如图,取为PC 中点N ,连结MN ,BN , ∵ M 为PD 的中点,N 为PC 中点,∴ MN ∥CD ,MN =12CD .又AB ∥CD ,AB =12CD ,∴ MN ∥AB ,MN =AB ,∴ 四边形ABNM 为平行四边形, ∴ AM ∥BN .又AM ⊄平面PBC ,BN ⊂平面PBC , ∴ AM ∥平面PBC .(7分)(2) 如图,在等腰中梯形ABCD 中,取CD 中点T ,连结AT ,BT .∵ AB =12CD ,AB ∥CD ,∴ AB =DT ,AB ∥DT ,∴ 四边形ABTD 为平行四边形.又AB =AD ,∴ 四边形ABTD 为菱形, ∴ AT ⊥BD .同理,四边形ABCT 为菱形,∴ AT ∥BC . ∵ AT ⊥BD ,∴ BC ⊥BD .∵ 平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,CP ⊥CD ,CP ⊂平面PCD , ∴ CP ⊥平面ABCD ,又BD ⊂平面ABCD , ∴ CP ⊥BD .∵ BC ⊥BD ,BC ∩CP =C ,∴ BD ⊥平面PBC . 又BD ⊂平面BDP ,∴平面BDP ⊥平面PBC .(14分) 16. 解:(1) 由题知,c =3,sin A =6sin C .由正弦定理a sin A =c sin C ,得a =csin C·sin A =3 2.(6分)(2) ∵ cos 2A =1-2sin 2A =-13,且0<A <π,∴ sin A =63.由于角A 为锐角,得cos A =33.由余弦定理,a 2=b 2+c 2-2bc cos A ,∴ b 2-2b -15=0, 解得b =5或b =-3(舍去),所以S △ABC =12bc sin A =522.(14分)17. 解:(1) 由P 在圆O :x 2+y 2=b 2上得b =3,又点Q 在椭圆C 上,得(-4)2a 2+(-1)232=1,解得a 2=18,∴ 椭圆C 的方程是x 218+y 29=1.(6分)(2) 由⎩⎪⎨⎪⎧y =kx +b ,x 2+y 2=b 2,得x =0或x P =-2kb 1+k 2; 由⎩⎪⎨⎪⎧y =kx +b ,x 2a 2+y 2b 2=1,得x =0或x Q =-2kba 2a 2k 2+b 2.∵ AP →=3PQ → ,∴ AP →=34AQ →,∴ 2kba 2k 2a 2+b 2·34=2kb 1+k 2,即a 2a 2k 2+b 2·34=11+k2,∴ k 2=3a 2-4b 2a 2=4e 2-1. ∵ k 2>0,∴ 4e 2>1,即e >12.又0<e <1,∴ 12<e <1,即离心率e 的取值范围是(12,1).(14分)18. 解:(1) 因为当x =4时,y =21,代入关系式y =m x -2+4(x -6)2,得m2+16=21,解得m =10. (6分)(2) 由(1)可知,产品每日的销售量为y =10x -2+4(x -6)2, 所以每日销售产品所获得的利润为f (x )=(x -2)·⎣⎡⎦⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x <6),从而f ′(x )=12x 2-112x +240=4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,且在⎝⎛⎭⎫2,103上,f ′(x )>0,函数f (x )单调递增;在⎝⎛⎭⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以当x =103≈3.3时,函数f (x )取得最大值,故当销售价格约为3.3元/件时,该公司每日销售产品所获得的利润最大.(16分)19. (1) 证明:设b n =a 2n -32,因为b n +1b n =a 2n +2-32a 2n -32=13a 2n +1+(2n +1)-32a 2n -32=13(a 2n -6n )+(2n +1)-32a 2n -32=13a 2n -12a 2n -32=13,所以数列{a 2n -32}是以a 2-32即-16为首项,以13为公比的等比数列.(6分)(2) 解:由(1)得b n =a 2n -32=-16·⎝⎛⎭⎫13n -1=-12·⎝⎛⎭⎫13n ,即a 2n =-12·⎝⎛⎭⎫13n +32,由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=-12·⎝⎛⎭⎫13n -1-6n +152,所以 a 2n -1+a 2n =-12·⎣⎡⎦⎤⎝⎛⎭⎫13n -1+⎝⎛⎭⎫13n -6n +9=-2·⎝⎛⎭⎫13n -6n +9, 所以S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=-2⎣⎡⎦⎤13+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n -6(1+2+…+n )+9n =-2·13⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13-6·n (n +1)2+9n=⎝⎛⎭⎫13n -1-3n 2+6n =⎝⎛⎭⎫13n -3(n -1)2+2, 显然当n ∈N *时,{S 2n }单调递减,又当n =1时,S 2=73>0,当n =2时,S 4=-89<0,所以当n ≥2时,S 2n <0;S 2n -1=S 2n -a 2n =32·⎝⎛⎭⎫13n -52-3n 2+6n ,同理,当且仅当n =1时,S 2n -1>0.综上,满足S n >0的所有正整数n 为1和2.(16分) 20. 解:(1) 函数g (x )的定义域为(-1,+∞), g ′(x )=ln (x +1)+1,则g (0)=0,g ′(0)=1,∴ 直线l :y =x .联立⎩⎪⎨⎪⎧y =12x 2+kx +1,y =x ,消去y ,得x 2+2(k -1)x +2=0.∵ l 与函数f (x )的图象相切,∴ Δ=4(k -1)2-8=0⇒k =1±2.(4分)(2) 由题意知,h (x )=12x 2+kx +1+ln (x +1)+1,h ′(x )=x +k +1x +1.令φ(x )=x +k +1x +1,∵ φ′(x )=1-1(x +1)2=x (x +2)(x +1)2>0对x ∈[0,2]恒成立, ∴ φ(x )=x +k +1x +1,即h ′(x )在[0,2]上为增函数,∴ h ′(x )max =h ′(2)=k +73.∵ h (x )在[0,2]上单调递减,∴ h ′(x )≤0对x ∈[0,2]恒成立,即h ′(x )max =k +73≤0,∴ k ≤-73,即k 的取值范围是(-∞,-73].(8分)(3) 当x ∈[0,e -1]时,g ′(x )=ln (x +1)+1>0,∴ g (x )=(x +1)ln (x +1)在区间[0,e -1]上为增函数,∴ x ∈[0,e -1]时,0≤g (x )≤e2.∵ f (x )=12x 2+kx +1的对称轴为直线x =-k ,∴ 为满足题意,必须-1<-k <4,此时f (x )min =f (-k )=1-12k 2,f (x )的值恒小于f (-1)和f (4)中最大的一个.∵ 对于∀t ∈[0,e -1],总存在x 1,x 2∈(-1,4), 且x 1≠x 2满足f (x i )=g (t )(i =1,2),∴ ⎣⎡⎦⎤0,e2⊆(f (x )min ,min {f (-1),f (4)}),∴ ⎩⎪⎨⎪⎧-1<-k <4,f (x )min<0,e2<f (4),e 2<f (-1)⇒⎩⎪⎨⎪⎧-4<k <1,1-12k 2<0,e 2<4k +9,e 2<32-k ,∴e 8-94<k <-2, 即k 的取值范围是(e 8-94,-2).(16分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(二)21. A . 解:设B -1=⎣⎢⎡⎦⎥⎤a b c d ,因为(BA )-1=A -1B -1,所以⎣⎢⎡⎦⎥⎤1001=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤a b c d , 即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 1 32-12.(10分) B. 解:由ρsin ⎝⎛⎭⎫θ-π3=3,可得ρ⎝⎛⎭⎫12sin θ-32cos θ=3,所以y -3x =6,即3x -y +6=0.(4分)由⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ得x 2+y 2=4,圆的半径为r =2, 所以圆心到直线l 的距离d =62=3,所以P 到直线l 的距离的最大值为d +r =5.(10分) C .证明:由题得a 6+b 6-ab (a 4+b 4) =a 5(a -b )-(a -b )b 5 =(a -b )(a 5-b 5)=(a -b )2(a 4+a 3b +a 2b 2+ab 3+b 4).(4分) 又a ≥0,b ≥0,∴ a 6+b 6-ab (a 4+b 4)≥0, 即a 6+b 6≥ab (a 4+b 4).(10分)22. 解:(1) 比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.所以比赛结束后甲的进球数比乙的进球数多1个的概率为P =C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 13×⎝⎛⎭⎫123+C 33×⎝⎛⎭⎫233×C 23×⎝⎛⎭⎫123=1136.(3分) (2) ξ的取值为0,1,2,3,则P (ξ=0)=⎝⎛⎭⎫133×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×C 13×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 23×⎝⎛⎭⎫123+⎝⎛⎭⎫233×⎝⎛⎭⎫123=724, P (ξ=1)=⎝⎛⎭⎫133×C 13×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×C 23×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×C 13×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫232×13×⎝⎛⎭⎫123+⎝⎛⎭⎫233×C 23×⎝⎛⎭⎫123=1124,P (ξ=2)=⎝⎛⎭⎫133×C 23×⎝⎛⎭⎫123+C 23×⎝⎛⎭⎫23×13×⎝⎛⎭⎫123+C 13×23×⎝⎛⎭⎫132×⎝⎛⎭⎫123+⎝⎛⎭⎫233×C 13×⎝⎛⎭⎫123=524, P (ξ=3)=⎝⎛⎭⎫133×⎝⎛⎭⎫123+⎝⎛⎭⎫233×⎝⎛⎭⎫123=124, 所以ξ(8分)所以数学期望E(ξ)=0×724+1×1124+2×524+3×124=1.(10分)23. 解:(1) 110(2分)(2) 集合M 有2n 个子集,不同的有序集合对(A ,B)有2n (2n -1)个. 当A B ,并设B 中含有k(1≤k ≤n ,k ∈N *)个元素,则满足A B 的有序集合对(A ,B )有错误!C 错误!=(3n -2n )个.同理,满足B A 的有序集合对(A ,B)有(3n -2n )个.故满足条件的有序集合对(A ,B)的个数为2n (2n -1)-2(3n -2n )=4n +2n -2×3n .(10分)2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分. 不需写出解答过程,请把答案直接写在指定位置上.1. 已知集合A ={x |x -x 2≥0},B ={x |y =lg(2x -1)},则集合A ∩B =________.2. 已知复数z =11+i+i(i 为虚数单位),则|z |=________.3. 某学校高三年级有700人,高二年级有700人,高一年级有800人,若采用分层抽样的办法,从高一年级抽取80人,则全校总共抽取________人.4. 已知a ∈R ,则“a >2”是“1a <12”的________条件.5. 从1,2,4,8这四个数中一次随机地取2个数,则所取2个数差的绝对值小于2的概率是________.6. 执行如图所示的伪代码,最后输出的S 值为________. n ←1 S ←0While S <9S ←S +(-1)n +n n ←n +1 End While Print S7. 曲线f (x )=x -cos x 在点(π2,f (π2))处的切线方程为________.8. 若函数f (x )=⎩⎪⎨⎪⎧kx -1(x ≥1),2x -x 2(x <1)是R 上的增函数,则实数k 的取值范围是________. 9. 若sin α=35且α是第二象限角,则tan(α-π4)=________.10. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右端点分别为A ,B ,点C (0,b2),若线段AC 的垂直平分线过左焦点F ,则椭圆的离心率为________.11. 已知数列{a n }是首项为a ,公差为1的等差数列,b n =a n +2a n,若对任意的n ∈N *,都有b n ≥b 6成立,则实数a 的取值范围是________.12. 已知x ,y 为正实数,满足2x +y +6=xy ,则xy 的最小值为________.13. 已知向量a ,b 是单位向量,若a·b =0,且|c -a|+|c -2b |=5,则|c -b |的最小值是________.14. 已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≤0,x ln x ,x >0,g (x )=kx -1,若方程f (x )-g (x )=0在x ∈(-2,2)上有三个实数根,则实数k 的取值范围是______________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,在四棱锥P ABCD 中,平面P AB ⊥平面ABCD ,∠PBC =∠BAD =90°.求证: (1)BC ⊥平面P AB ;(2)AD ∥平面PBC .16. (本小题满分14分)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3.(1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.17. (本小题满分14分)如图,某地要在矩形区域OABC 内建造三角形池塘OEF ,E ,F 分别在AB ,BC 边上,OA =5 m ,OC =4 m ,∠EOF =π4,设CF =x ,AE =y .(1)试用解析式将y 表示成x 的函数;(2)求三角形池塘OEF 的面积S 的最小值及此时x 的值.18. (本小题满分16分)在直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,过点(1,32).(1)求椭圆C 的方程;(2)已知点P (2,1),直线l 与椭圆C 相交于A ,B 两点,且线段AB 被直线OP 平分. ① 求直线l 的斜率;② 若P A →·PB →=0,求直线l 的方程.19. (本小题满分16分)已知数列{a n}是首项为a,公比为q的等比数列,且a n>0.(1)若a=1,a1,a3+2,a5-5成等差数列,求a n;(2)如果a2a4n-2=a4n,①当a=2时,求证:数列{a n}中任意三项都不能构成等差数列;②若b n=a n lg a n,数列{b n}的每一项都小于它后面的项,求实数a的取值范围.20. (本小题满分16分)设函数f(x)的导函数为f′(x).若不等式f(x)≥f′(x)对任意实数x恒成立,则称函数f(x)是“超导函数”.(1)请举一个“超导函数” 的例子,并加以证明;(2)若函数g(x)与h(x)都是“超导函数”,且其中一个在R上单调递增,另一个在R上单调递减,求证:函数F(x)=g(x)h(x)是“超导函数”;(3)若函数y=φ(x)是“超导函数”且方程φ(x)=φ′(x)无实根,φ(1)=e(e为自然对数的底数),判断方程φ(-x-ln x)=e-x-ln x的实数根的个数并说明理由.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三题中选做2题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤. A. (选修42:矩阵与变换)设矩阵A =⎣⎢⎡⎦⎥⎤m 00n ,若矩阵A 的属于特征值1的一个特征向量为⎣⎢⎡⎦⎥⎤10,属于特征值2的一个特征向量为⎣⎢⎡⎦⎥⎤01,求矩阵A .B. (选修44:坐标系与参数方程)在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A ,B 两点,且AB =3,求直线l 的方程.C. (选修45:不等式选讲) 解不等式:|x -2|+x |x +2|>2.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为37,47.(1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率分布列和数学期望.23. 已知抛物线C:x2=2py(p>0)过点(2,1),直线l过点P(0,-1)与抛物线C交于A,B两点.点A关于y轴的对称点为A′,连结A′B.(1)求抛物线C的标准方程;(2)问直线A′B是否过定点?若是,求出定点坐标;若不是,请说明理由.2019年普通高等学校招生全国统一考试(江苏省)模拟试卷(三)1. ⎝⎛⎦⎤12,1 解析:A ={x |0≤x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >12,A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪12<x ≤1. 2. 22 解析:z =1-i 2+i =12+12i ,∴ |z |=22.3. 220 解析:设全校总共抽取x 人,则x 700+700+800=80800,∴ x =220.4. 充分不必要 解析:由1a <12,得a <0或a >2,∴ “a >2”是“1a <12”的充分不必要条件.5. 16解析:从1,2,4,8这四个数中一次随机地取2个数,有6个结果,绝对值小于2的只有一个,即取2个数差的绝对值小于2的概率是16.6. 10 解析:当n =1时,S =0;当n =2时,S =3;当n =3时,S =5;当n =4时,S =10.7. 2x -y -π2=0 解析:f ⎝⎛⎭⎫π2=π2,f ′⎝⎛⎭⎫π2=1+sin π2=2,切线方程为y -π2=2⎝⎛⎭⎫x -π2,即2x -y -π2=0.8. [2,+∞) 解析:由题知,k >0且k ×1-1≥2×1-12, ∴ k ≥2.9. -7 解析:∵ sin α=35且α是第二象限角,∴ cos α=-45,∴ tan α=-34,∴ tan⎝⎛⎭⎫α-π4=-7.10. 4-13 解析:k AC =b2a ,AC 中点为P ⎝⎛⎭⎫-a 2,b 4,k FP =b 4c -a2,由题知,k AC ·k FP =-1,∴ 3a 2-8ac +c 2=0,∴ e 2-8e +3=0,∴ e =4±13,又0<e <1, ∴ e =4-13.11. (-6,-5) 解析:a n =a +n -1,b n =1+2a +n -1=1+2n +a -1,由y =1x 的图象可得6<1-a <7,∴ -6<a <-5.12. 18 解析:∵ 2x +y +6=xy ,∴ xy -6=2x +y ≥22xy ,令t =2xy ,则12t 2-6≥2t 即t 2-4t -12≥0,∴ t ≥6,∴ xy ≥18,当且仅当2x =y =6时“=”成立,∴ xy 的最小值为18.13. 55解析:设a =(1,0),b =(0,1),将c 的起点放在原点,则|c -a |+|c -2b |的几何意义是c 的终点到向量a ,2b 的终点M (1,0),N (0,2)的距离之和,由于点(1,0),(0,2)的距离为5,故c 的终点在线段MN 上,∴ |c -b |的最小值即为点(0,1)到直线MN 的距离,即55.14. (1,ln 2e )∪⎝⎛⎭⎫32,2 解析:显然x =0不是方程f (x )-g (x )=0的解,由f (x )-g (x )=0,得k =h (x )=⎩⎨⎧x +1x +4,x <0,ln x +1x,x >0,由图象可得实数k 的取值范围是(1,ln 2e )∪⎝⎛⎭⎫32,2. 15. 证明:(1) 如图,在平面P AB 内过点P 作PH ⊥AB 于H , 因为平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB ,PH ⊂平面P AB , 所以PH ⊥平面ABCD .(4分)。
2019届高考数学备战冲刺预测卷1文科(含答案)

1、设 (1 i)z i (其中 i 为虚数单位),则复数 z ( )
A. 1 1 i 22
B. 1 1 i 22
C. 1 1 i 22
D. 1 1 i 22
2、设全集U R ,集合 A x 3 x 1, B x x 1 0,则
32 4
2 52 4
2 ,
当且仅当 y 2x 可以取到最大值 5 2 2 ,此时 a 4 2 5,b 6 4 2 .故答案为: 5 2 2 .
xy
4
4
15.4
解析:圆心 0, 0到 M 的距离 OM 32 42 5 ,所以所求最小值为 5 1 4 .
所表示的区域为正方形内以 为半径的圆的外部,其面积为 S 2 3 ,因此,事件“函数
f
(x)
x2
2ax b2
2 有零点”的概率为 P
S' S
4 2 3 4 2
1 4
,故选
B.
10.D
解析:因为 F1PF2 的三边长成等差数列,不妨设 PF2 , PF1 , F1F2 成等差数列,
3 ,并且经过定点 0,1
2
1.求椭圆 E 的方程
2.问是否存在直线 y x+m ,使直线与椭圆交于 A, B 两点,满足 OA OB ,若存在,求 m 值,若不存在说明理由
22、在直角坐标系
xOy
中,圆
C
x 的参数方程为{
2
2
cos
(
为参数),以
O
为极点,
x 轴的非负半轴为极轴建
唐山市一中2019年高考考前冲刺理科综合试题卷一及答案解析

A.它们的成分不同,功能不同
B
C.它们都含有多种酶,是代谢的重要场所
.它们都含有 DNA和 RNA D .它们都含有自由水和 ATP
2. 将某种植物的成熟细胞放入一定浓度的物质 A 溶液中,发现其原生质体(即植物细 胞中细胞壁以内的部分)的体积变化趋势如图所示。下列叙述正确的是
A. T2 时物质 A 开始通过细胞膜进入细胞内 B. T1 时细胞质基质的渗透压大于细胞液的渗透压,而 T3 时相反
2
唐山市一中 2019 年高考考前冲刺理科综合试题卷一及答案解析
9. 化合物
( 甲 )、
(乙)、
( 丙 )的分子式均为 C8H8,下列说法不
正确的是
A. 甲、乙、丙在空气中燃烧时均产生明亮并带有浓烟的火焰 B. 甲、乙、丙中只有甲的所有原子可能处于同一平面
C. 等量的甲和乙分别与足量的溴水反应,消耗 D. 甲、乙、丙的二氯代物数目最少的是丙
Br 2 的量:甲 >乙
10. A 、B、 C、D、 E 是原子序数依次增大的五种短周期元素且 B、 C 相邻, A 元素可
以与 B、C、E 元素分别形成甲、乙、丙三种物质且甲、乙均为 10 电子化合物,丙为 18 电子
化合物。 D 元素最外层电子数与核外电子层数相等。已知:甲 列说法正确的是
+E2→ 丙+ B 2,甲 +丙 →丁,下
唐山市一中 2019 年高考考前冲刺理科综合试题卷一及答案解析
唐山市一中 2019 年高考考前冲刺 理科综合能力测试卷一
第Ⅰ卷(选择题共 126 分)
本卷共 21 小题,每小题 6 分,共 126 分。
可能用到的相对原子质量: H 1 C 12 N 14 O 16 Na 23 S 32 Cu 64 Pb 207
(6套)2019年高考物理复习高考冲刺卷含答案(全国通用).docx

岂2019版物理学业水平测试复习小高考冲剌卷(1 ) Word 版含答案电2019版物理学业水平测试复习小高考冲剌卷(2 ) Word 版含答案勺2019版物理学业水平测试复习小高考冲剌卷(3 ) Word 版含答案厠;2019版物理学业水平测试复习小高考冲剌卷(4 ) Word 版含答案哲2019版物理学业水平测试真习小高考冲剌卷(5 ) Word 版含答案哲2019版物理学业水平测试复习小高考冲剌卷(6 ) 2019年高考物理冲刺卷(一)物理 本试卷包含选择题(第1题〜第23题,共23题69分)、非选择题(第24题〜第28题,共5题31分)共两部分.本次考试时间为75分钟.一、单项选择题:每小题只有一个选项符合题意(本部分23小题,每小题3分,共69分).9 9 9 91. 关于物体的重心,下列说法中正确的是()A. 任何物体的重心都一定在这个物体上B. 重心的位置只与物体的形状有关C. 形状规则、质量分布均匀的物体,其重心在物体的儿何中心D. 物体重心的位置一定会随物体形状改变而改变2. 一根一端封闭,另一端装有阀门的玻璃管,内有纸片、羽毛、金属片.用抽气机把管 内的空气儿乎抽尽,再把玻璃管倒过來(如图所示).观察这些物体下落的快慢情况,下列说法 中正确的是()A. 纸片下落最快B.羽毛下落最快C.金属片下落最快D.三者下落一样快3. 如图所示给出了两个物体做直线运动的速度一时间图象.其屮图线甲与横轴平行,图 线乙为通过坐标原点的直线.由图可知()A. 甲做匀速直线运动B. 甲处于静止C. 乙做匀速直线运动D. 乙做匀减速直线运动2019年高考物理复习高考冲刺卷Word 版含答案4.右图是某摄影师“追拍法”的成功之作,在该摄影师眼屮清晰的飞翔的小鸟是静止的,而模糊的背景是运动的,摄影师用自己的方式表达了运动之美•请问摄影师选择的参考系是()A.地而B.静止的树木C.飞翔的小鸟D.静止于地面上的人5.已知河水自西向东流动,流速的大小为V],小船在静水中的速度的大小为V2,且v2 >5渡河时船头始终垂直河岸,用虚线表示小船过河的路径,则下列选项中小船过河路径可能正确的是()河岸西、、、东6. 在“互成角度的两个力的合成”实验中,用两个弹赞测力计分别钩住细绳套,互成角 度地拉橡皮条,使它伸长到某一位置0点.为了确定两个分力的大小和方向,这一步操作中 必须记录的是()橡皮条固定端的位置描下0点位置、两条细绳套的方向及两个弹簧测力计的读数橡皮条伸长后的总长度两个弹簧测力计的读数7. 将原长10cm 的轻质弹簧竖直悬挂,当下端挂200g 的钩码时,弹簧的长度为12cm, 则此弹簧的劲度系数约为()A. lN/mB. 10N/mC. 100N/mD. 1 OOON/m&人乘电梯匀速上升,在此过程中人受到的重力为G,电梯对人的支持力为F N ,人对 电梯的压力为F N ,贝9()A. G 和F N 是一对平衡力B. G 和Ft 是一对平衡力C. G 和F N 是一对相互作用力D. G 和Ft 是一对相互作用力9. 一个做匀速圆周运动的物体,在运动过程屮,若所受的一切外力都突然消失,则由牛 顿第一定律可知,该物体将()A. 立即静止B.改做匀速直线运动C.继续做匀速圆周运动D.改做变速圆周运动釦、I %7777^7777777777^7710. 如图所示,质量相同的P 、Q 两球均处于静止状态,现用小锤打击弹性金属片,使P 球沿水平方向抛出,Q 球同时被松开而自由下落.则下列说法中正确的是()A. P 球先落地B. Q 球先落地C. 两球下落过程中垂力势能变化相等D. 两球落地时速度方向相同11. 今年年初我国南方部分地区遭遇了严重雪灾.在抗雪救灾中,运输救灾物资的汽车以额定功率上坡时,为增大牵引力,司机应使汽车的速度()A. 减小B.增大C.保持不变D.先增大后保持不变12. 甲、乙两质点做匀速圆周运动,其半径之比R, : R 2=3 : 4,角速度之比◎: 32=4: 3,则甲、乙两质点的向心加速度之比是()A. B. C. D.A.|B. |C.D. Y13.小明用如图所示的装置做“验证机械能守恒定律”实验.关于该实验,下列说法中正确的是()A.重锤的质量一定是越大越好B.必须用秒表测出重锤下落的时间C.把秒表测得的时I'可代入计算重锤的速度D.释放纸带前,手捏住纸带上端并使纸帯处于竖直14.关于元电荷,下列说法正确的是()A.元电荷就是质子B.物体所带电荷量是元电荷的任意倍数C.元电荷是带电物体所带电荷量的最小值D.物体所带电荷量可能比元电荷小15.两个完全相同的金属小球,分别带有+ 3Q和一Q的电量,当它们相距I•时,它们之间的库仑力是F.若把它们接触后分开,再置于相距彳的两点,则它们的库仑力的大小为()A.|B.FC. 9FD. 3F16.下列各图中,能正确表示对等量异种电荷电场线分布的是(A17. 磁场中某区域的磁感线如图所示.则()A. a 点磁感应强度比b 点小B. a 点磁感应强度比b 点大C. 同一小段通电导线放在“处吋受力一定比b 处吋大D. 同一小段通电导线放在a 处时受力一定比b 处时小1&如图所示,匀强磁场垂直于纸面,磁感应强度为B.边长为a 的正方形线框与磁场垂 直,且一条对角线与磁场边界重合.则通过线圈平面的磁通量为()B. BaC. Ba 2D. 2Ba19. 带电粒子M 和N,先后以大小不同的速度沿PO 方向射入圆形匀强磁场区域,运动轨 迹如图所示,不计重力.则下列分析正确的是()A. M 带正电,N 带负电B. M 和N 都带正电C. M 带负电,N 带正电D. M 和N 都带负电I F/N/\ /\ /V °\.\ 23 4.3 5.4 7.4 //s20. 蹦床运动要求运动员在一张绷紧的弹性网上蹦起、腾空并做空中动作.为了测量运 动员跃起的高度,训练时可在弹性网上安装压力传感器,利用传感器记录弹性网的压力,并 在计算机上作出压力一时间图象,假设作出的图象如图所示.设运动员在空屮运动时可视为 质点,则运动员跃起的最大高度为(g 取10m/s 2)()x x x x!C. 5.0 mD. 7.2 m请阅读下列材料,回答21〜23小题.2016年10月19日凌晨,神舟十一号飞船与天宫二号实施自动交会对接,形成天宫二号与神舟十一号组合体后,我国景海鹏和陈冬两名航天员进驻天宫二号,开展空间科学实验.天宫二号与神舟十一号的交会对接、组合体运行和飞船返回,都是在距地面393公里的轨道高度开展.这次任务是最接近未来我国空间站轨道要求的一次载人飞行任务,也是目前我国空间应用项目最多的一次载人飞行任务.21.下列说法符合史实的是()A.牛顿发现了行星的运动规律B.开普勒发现了万有引力定律C.卡文迪许第一次在实验室里测出了万有引力常量D.牛顿发现了海王星和冥王星22.绕地球做匀速圆周运动的天宫二号内,物体处于完全失重状态,则物体()A.不受地球引力作用B.所受地球引力提供向心力C.加速度为零D.向心力为零23.若天宫二号绕地球运行的圆形轨道半径增大,则飞船的()A.线速度大小不变B.线速度增大C.周期不变D.周期增大二、填空题:把答案填在横线上(本部分2小题,其中24小题4分,25小题6分,共10 分).24—A.(本题供选修1一1的考生作答)一只白炽灯泡在玻璃泡外表有“220V60W”的字样,则这只灯泡正常工作时的电流强度为A,电阻为Q.24-B.(本题供选修3-1的考生作答)许多人造卫星都用太阳能电池供电.某太阳能电池不接负载吋的电压是600 M V,短路电流是30UA,则该太阳能电池的内阻为Q,当外申.賂接上40Q电阻时,电路中的电流强度为u A.25.在“探究加速度与力、质量的关系”的实验中,某学习小组在实验室组装了如图所示的装置外,还备有下列器材:打点计时器所用的学生电源、导线、复写纸、天平、细沙.他们称量滑块的质量为M、沙和小桶的总质量为m.当滑块连接上纸带,用细线通过滑轮挂上空的小桶时,滑块处于静止状态.耍完成该实验,则:(1)_____________________________ 还缺少的实验器材是.(2)实验时为保证滑块受到的合力与沙、小桶的总重力大小基本相等,沙和小桶的总质量应满足的实验条件是________________ ;实验时为保证细线拉力等于滑块所受的合外力,首先要做的步骤是____________三、计算或论述题:解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位(本部分3小题,其中26小题6分,27小题7分,28小题8分,共21分).A.1.8 mB.3.6 m小桶26.工地施工需要把一质量为500 kg钢材从一平层上降落到地面,用一绳吊着钢材先以0.5m/s匀速降落,当钢材距地面高h时,又以大小为lm/s?的加速度匀减速运动,钢材落地时速度刚好为零.求:(1)钢材匀减速运动时所受的合外力;(2)钢材做匀减速运动的时间t;(3)匀减速运动的距离h.27.如图所示的演示实验,假设从某时刻t=0开始,质量为0.1kg的红蜡块在玻璃管内每Is上升的距离都是30cm,从t=0开始,初速度为零的玻璃管向右匀加速平移,每Is通过的水平位移依次是5cm、15cm、25cm、35cm.在图表中,y表示蜡块竖直方向的位移,x表示蜡块随玻璃管通过的水平位移,t=()时蜡块位于坐标原点,坐标纸上每小格表示10cm.则:(1)在图中标岀I等于Is、2s、3s、4s时蜡块的位置,并用平滑的曲线描绘蜡块的轨迹;(2)红蜡块在上升过程中受到玻璃管的弹力是多大?(3)红蜡块4s末的速度是多少?y28.如图所示,有一可绕竖直屮心轴转动的水平圆盘,上而放置劲度系数为k=46N/m的弹簧,弹簧的一端固定于轴0点,另一端连接质量为m=lkg的小物块A,物块与圆盘间的动摩擦因数为p=0.2,开始吋弹簧未发生形变,长度为l()=0.5m,若最大静摩擦力与滑动摩擦力大小相等(g = 10m/s1 2 3),物块A始终与圆盘一起转动,贝IJ:错误!小高考冲刺卷(一)1・C解析:物体的重心不一定在物体上,比如质量分布均匀的圆盘挖去中间的同心圆后,重心仍然在儿何中心,但不在物体上.2.D解析:真空管是抽去空气后的状态,没有空气阻力后,羽毛下落也是自由落体.轻重物体下落快慢一样.3. A 解析:vt图象斜率代表加速度,甲代表匀速运动,乙代表匀加速运动.4.C解析:以飞翔的小鸟为参考系,周围的背景都是运动的,所以背景模糊.5.B解析:由运动的合成条件可知,匀速运动与匀速运动的合成仍为匀速直线运动.6.B解析:为了确定力的大小和方向,需要记录弹簧测力计的读数、绳子的方向,当然, 0点的位置必须固定好.7.C 解析:由F=kx,其中x为形变量可得,k=100N/m.8.A解析:平衡力一定是同一个物体所受到的,相互作用力是不同对象受到的.9.B解析:由牛顿第一定律,没有力改变物体的运动状态,物体就保持原来的运动状态, 这个问题里是匀速直线运动.10.C解析:自由落体运动和平抛运动在竖直方向上的分运动是相同的,所以下落时间是一样的,重力势能变化取决于重力做功,由W = mgh,可得重力势能变化相等.11.A 解析:rtl P=Fv,可知P不变,减小v可以增大F,以增加爬坡本领.12.A 解析:由向心加速度公式a=u)2r,带入可得.13.D 解析:重锤的作用是减少阻力对运动的影响;打点计吋器本身就是计时工具,下落时间不需要用秒表测量.14.C解析:e=1.6X10-,9C,带电体带电荷量必须是元电荷的整数倍.15.D 解析:带电小球接触,正负电荷中和部分后,电荷再等分.16.C解析:等量异种电荷相互吸引,空间电场叠加如图C所示.17.B 解析:磁感线的稀疏密集代表磁场的强弱,a点比b点密集,a点磁感应强度比b 点大.由于通电导线在磁场中的受力与导线在磁场中的摆放方式有关,垂直磁场摆放受力最大,平行磁场摆放受力最小.18.A 解析:由磁通量定义公式①=BS可得,答案A正确.19.C解析:由左手定则可知,刚刚进入磁场时,正电荷受到向上的力,负电荷进入磁场时,受到向下的力,由曲线运动的轨迹判断可得,C正确.20.C解析:根据图象,纵坐标为零的区段代表在运动员空中运动,5.4s到7.4s的过程时间1 圆盘的角速度多大时,物块A将开始滑动?2 当角速度缓慢地增加到4rad/s时,弹簧的伸长暈是多少?(弹簧伸长在弹性限度内且物块未脱离圆盘)3 在角速度从零缓慢地增加到4md/s过程屮,物块与圆盘间摩擦力大小为f,试通过计算在坐标系中作出fc?图象.为2s,则上升与下降的时间都是Is,所以最大高度为5in.21.C解析:开普勒发现了行星运动规律,牛顿发现了万有引力定律,卡文迪许第一次在实验室里测出了万有引力常量,海王星在观测到之前是根据牛顿的万有引力定律算出来的.22.B解析:完全失重并不是没有重力,卫星内物体仍然受到地球引力提供圆周运动的向心力.23.D解析:围绕同一中心天体,高轨道卫星的线速度小,周期大.24—A.寻或0.27 _ 或806.6724-B. 20 1025.(1)刻度尺(2)m M 平衡摩擦力26.解析:(1)由F合=ma可知,F合=500N.(2)由v = v()+al 可知,1=0.5s.2 2(3)由h—2:,或者h— 2 可知h=0.125m.27.解析:⑴如图所示.红蜡块在水平方向受到玻璃管的弹力,由匀变速直线运动规律S = a=0」0m/s 2 , F=ma=0・lX0・10N=0・01N ・(3) 4s 末时红蜡块的水平方向分速度为v 4=at 4=0.10X4m/s=0.40m/s4s 末时红蜡块的速度为 v^= p0.3()2+0.4()2 m/s=0.5m/s.2&解析:(1)设圆盘的角速度为a )()时,物块A 将开始滑动,此时物块的最大静摩擦力 提供向心力,则有⑵设此时弹簧的伸长量为Ax,物块受到的摩擦力和弹簧的弹力的合力提供向心力,则 有pmg+k A x=mco 2(l ()+ A x ),代入数据解得 A x=0.2m.(3)在角速度从冬缓慢地增加到2rad/s 过程中,物块与圆盘间摩擦力为静摩擦力f=m 扇1(), f 随着角速度平方的增加而增大.当co>2rad/s 时,物块与圆盘间摩擦力为滑动摩擦力,为定值,为f=|img=2N.小高考冲刺卷(二)物理 本试卷包含选择题(第1题〜第23题,共23题69分)、非选择题(第24题〜第 28题,共5题31分)共两部分.本次考试时间为75分钟.一、单项选择题:每小题只有一个选项符合题意(本部分23小题,每小题3分,共69分). • • • •1. 下列事例中,能将物体或人可以看成质点的是()①研究跳水运动员在比赛屮的空屮姿态 ②观看参加马拉松比赛的121号运动员③分析一列火车通过某路口所用的时间④跟踪我国科学考察船去南极途中A. ①③B.②③C.①④D.②④2. 梁朝傅翕非常有名的偈语:“空手把锄头,步行骑水牛;人从桥上过,桥流水不流” •试 判定“桥流水不流”句所对应的参考系是()A. 岸B.水C.树D.牛3. 关于质点的位移和路程,下列说法正确的是()A. 位移是矢量,位移的方向就是质点运动的方向B. 路程是标量,也是位移的大小C. 质点做直线运动时,路程等于其位移的大小D. 位移的数值一定不会比路程大4.做匀加速直线运动的物体,加速度是2m/s 2,它意味着( )得出 0.05 = 2at :2y/cmP mg=mcoolo^ 解得 coo=" 0.2X10 ―乔一rad/s = 2rad/s.A.物体在任Is末的速度是该秒初的两倍B.物体在任Is末的速度比该秒初的速度大2m/sC.物体在第Is末的速度为2m/sD.物体在任Is的初速度比前Is的末速度大2m/s5.如图所示,甲、乙分别表示两个运动物体的vt图象.若它们的加速度分别为"甲、a乙, 则它们的大小关系是()A.a甲va乙B.a甲=a乙C.a甲>&乙D.不能确定6.在轻质弹簧下端悬挂一质量为0.1kg的物体,当物体静止后,弹簧伸长了0.01m,取g=10m/s2.该弹簧的劲度系数为()A.lN/mB. 10N/mC. 100N/mD. 1 OOON/m7.如图所示在水平力F的作用下,重为G的物体沿竖直墙壁匀速下滑,物体与墙Z间的动摩擦因数为卩,物体所受摩擦力大小为()A.M GB.u(F+G)C.u(F-G)D.G&关于惯性的有关概念,下列说法中正确的是()A.从枪膛屮飞出的子弹,在惯力作用下飞行B.满载的卡车比空车难以停下来,是因为前者的惯性比后者大C.一个运动物体在粗糙水平路面上比光滑水平路面上难以启动,是因为在前一种情况下惯性大D.喷气式飞机起飞后越飞越快,说明它的惯性越来越大9.下面关于作用力和反作用力的说法中,正确的是()A.两物体间的作用力和反作用力一定是同性质的力B.先有作用力,后有反作用力C.只有物体处于静止状态时,物体间才存在作用力和反作用力D.只有物体接触时,物体间才存在作用力和反作用力10.以V。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届高考冲刺解答题专练
1.农作物秸秆中含有的纤维素阻碍了堆肥技术在处理有机固体废物领域的发展。
为提高堆肥品质:科研人员探究了温度对纤维素分解菌分解能力的影响,实验步骤如下:①纤维素分解菌的筛选、分离及纯化→②纤维素分解菌菌株数量测定→③纤维素酶活力测定和降解滤纸能力的检测。
请问答下列问题:
(1)步骤①中,若用稀释涂布平板法接种,则必须将菌液进行一系列的,接种所需的培养基中通常加入制成固体培养基。
已知纤维素酶的最适温度在45~65℃之间,欲从45~65℃的恒温箱中筛选出能高效分解纤维素的细菌,请写出测定纤维素酶的最适温度的实验思路:。
(2)步骤②中,在条件适宜的环境下培养细菌10d后,用(填一种实验用具)在显微镜下可计算细菌数量。
此方法中的“条件”至少包括:适宜温度、以作为唯一碳源的(填“固态”“半固态”或“液态”)培养基等。
可用台盼蓝染液鉴定视野中细菌是否死亡,原理是。
(3)步骤③中,酶活力可用培养基上菌落直径及来表示。
2.人的中脑边缘多巴胺系统是脑的“奖赏通路”,通过多巴胺兴奋此处的神经元,传递到脑的“奖赏中枢”,可使人体验到欣快感,因而多巴胺被认为是引发“奖赏”的神经递质,下图是神经系统调控多巴胺释放的机制,毒品和某些药物能干扰这种调控机制,使人产生对毒品或药物的依赖.
(1)释放多巴胺的神经元中,多巴胺储存在内,当多巴胺释放后,可与神经元A 上的结合,引发“奖赏中枢”产生欣快感.
(2)多巴胺释放后,在释放它的突触前膜上有回收多巴胺的转运蛋白,该蛋白可以和甲基苯丙胺(冰毒的主要成分)结合,阻碍多巴胺的回收,使突触间隙中的多巴胺(填“增加”或“减少”);长期使用冰毒,会使神经元A上的多巴胺受体减少,当停止使用冰毒时,生理状态下的多巴胺“奖赏”效应(填“增强”或“减弱”),造成毒品依赖.多巴胺与突触后膜上的受体结合体现了细胞膜的功能.
(3)释放多巴胺的神经元还受到抑制性神经元的调控,当抑制性神经元兴奋时,其突触前膜可以释放γ﹣氨基丁酸,γ﹣氨基丁酸与突触后膜上的受体结合,使Cl﹣,从而使释放多巴胺的神经元,多巴胺的释放量.抑制性神经元细胞膜上有吗啡的受体,当人长时间过量使用吗啡时,抑制性神经元的兴奋性减弱,抑制性功能降低,最终使得,“奖赏”效应增强.停用时,造成药物依赖.
3.请分析回答下列问题:
(1)神经细胞受到有效刺激后产生兴奋,此时神经纤维膜(填“内”或“外”)电流方向与兴奋传导方向一致,兴奋在神经细胞间通过形式传递.
(2)神经中枢内,由多巴胺能神经元参与形成的突触,以多巴胺为递质,对脊髓前角运动神经元起抑制作用;由胆碱能神经元参与形成的突触,以乙酰胆碱为递质,对脊髓前角运动神经元起兴奋作用.研究认为,帕金森病患者运动神经中枢中的多巴胺能神经元损伤引起多巴胺含量,而乙酰胆碱对脊髓前角运动神经元持续性起作用,导致患者出现肌肉不自主震颤及肌肉僵直现象.
(3)研究人员认为帕金森病的发生与机体免疫有关,患者体液免疫产生的自身抗体可能导致帕金森病加重.为此研究人员进行了如下动物实验,结果见表:
(注:(1)MPTP是一种神经毒素,能够破坏多巴胺能神经元细胞导致实验小鼠出现类似帕金森病的症状.
(2)“+”表示出现抗原抗体反应,“﹣”表示无抗原抗体反应.)
①正常小鼠注射MPTP后,免疫系统的分泌产生了抗MPTP的抗体.实验显示,
该抗体能够与小鼠的发生抗原抗体反应.
②实验结果表明,注射MPTP的正常小鼠多巴胺能神经元表面蛋白(填“发生”
或“不发生”)改变;帕金森病小鼠的抗体(填“会”或“不会”)导致帕金森病加重.
(4)综上分析,帕金森病与神经调节及异常有关.
参考答案
一.解答题(共3小题)
1.梯度稀释;琼脂;取若干以纤维素为唯一碳源的刚果红培养基,在其上接种等量的纤维素分解菌,分别置于45~65℃的不同温度的恒温箱中培养,一段时间后,分别测定各培养基上菌落周围的透明圈大小;血细胞计数板;纤维素;液态;活细菌的细胞膜具有选择透过性,不能被台盼蓝染色;菌落周围透明圈大小;2.突触小泡;受体;增加;减弱;信息交流;内流;受到抑制;减少;多巴胺释放增加;3.内;化学信号(神经递质);减少;兴奋;浆细胞;多巴胺能神经元表面蛋白;不发生;会;免疫调节;。