电压互感器开口三角的工作原理

电压互感器开口三角的工作原理

电压互感器开口三角的工作原理

所谓开口三角,就是将三相互感器的副边绕组依次首尾相接,但是,不形成闭合。开口电压等于三相电压的矢量和,正常情况下,开口三角输出电压为零。

当发生一相接地时,向量和等于根号3倍的线电压,可用于故障报警。

当一相高压熔丝熔断时,向量和等于线电压(100V),可用于故障报警。

电压互感器介绍及工作原理 (图文) 民熔

电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。 民熔电压互感器产品介绍 JDZ-10高压电压互感器 10kv半封闭式电压互感器0.5级羊角型 JDZX10-10电压互感器 10KV户内高压柜保护用REL10-10互感器

JDZ9-10电压互感器

电压互感器和变压器的基本结构非常相似,它也有两个绕组,一个称为一次绕组,另一个称为二次绕组。两个绕组都安装或缠绕在铁芯上。两个绕组之间以及绕组和铁芯之间有绝缘,因此两个绕组之间以及绕组和铁芯之间存在电隔离。 电压互感器运行时,一次绕组N1与线路回路连接,二次绕组N2与仪表或继电器连接。因此,在测量高压线上的电压时,虽然一次电压很高,但二次电压很低,可以保证操作人员和仪器的安全。 其工作原理与变压器相同,基本结构为铁芯、一次绕组和二次绕组。其特点是容量很小且相对恒定,在正常运行时接近空载状态。 电压互感器本身的阻抗很小。一旦二次侧短路,电流会迅速增加并烧坏线圈。因此,电压互感器的一次侧用熔断器连接,二次侧可靠接地,以避免一次侧和二次侧绝缘损坏时,二次侧对地高电位造成人身和设备事故 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。

开口三角电压保护整定值计算

什么是开口三角形 开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。 此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a -x”、“b -x”、“c -x”,开口三角就是“a -x”的x 与“b -x”的b 相连,“b -x”中的x 与“c -x”的c 相连,从“a -x”的a 与“c -x”x 引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x ,就是开口三角电压。 正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察” 本装置电容器组按招标数据单要求,必须具备不平衡电流保护(或不平衡电压保护)功能。根据电容器组单台中性点不接地单星接线方式,本设备采用了“开口三角电压保护”实现不平衡电压保护。开口三角形即将电压互感器一次侧与单星接线的每相电容器并联,将互感器的二次线圈接成三角形,但将三角形的最后一个“角”不联接,构成从原理图上看即构成一个开口的三角形。正常情况下,三角开口上没有电压,而当发电容器发生故障时,将引起相间电压的不平衡,从而在三角的开口上形成电压输出,该电压也称为“零序电压”,该电压可做为电容器的保护动作信号。这种方式的优点是不受系统接地故障和系统电压不平衡的影响,也不受三次谐波的影响,灵敏度高,安装简单,可检测到单台电容器故障并实现保护,是电容器组经常与熔断器配合使用的不平衡保护方式之一。 1.1. 设计要点 在正常情况下,由于电机三相绕组、三相电容客观存在的不平衡,以及电网电压的不对称,开口三角存在着不平衡零序电压。为防止保护系统发生误动作,必须对开口三角电压保护整定值(只有一台电容器因故障切除时的开口电压输出值)进行计算、验证,确保其与正常不平衡零序电压之比不小于预定的可靠系数。 1.1.1. 开口三角电压保护整定值计算 开口三角电压公式如下: lm y ch dz K N U U = ex ch U K K M N K U 2)(33+-=

浅析电压互感器开口三角形接线错误的判断

浅析电压互感器开口三角形接线错误的判断 电压互感器二次接线柱通常有三个绕组,一组用于测计量接成星形状、一组用于保护接成星形状、另外一组接成三角形状用于零序电压保护。当开口三角形绕组发生接线错误时,会在开口处产生200V的高电压,需要保护人员快速定位接线错误处,排除故障。利用测量值来判断定位错误接线位置是一种快速的方法。 标签:电压互感器;开口三角;测量值 1 概述 电压互感器的星形接线绕组在一次额定电压运行下其二次理论值为57.7V,三角形接线的各绕组其二次理论值为100V,三角形开口处的电压理论值为0V;当开口三角形绕组的接线错误时,将会出现200V的高电压,严重影响设備的安全运行,造成零序电压保护误动作。因此,在变电站送电启动过程中及时解决开口三角绕组接线错误问题具有重要意义。 在110kV及以上电压等级的变电站中,电压互感器的二次绕组全部引入端子箱内,引出线多,出错概率大;而35kV及以下电压等级的电压互感器通常是开关柜形式,其二次接线在电压互感器二次端子上完成,引出线少,出错几率低。因此研究大电流接地系统中电压互感器的接线更有价值,文章将对开口三角接线中各相接反的情况进行相量计算,通过计算值与实际运行中的测量值对比,发现问题所在并快速处理。 2 开口三角形接线原理 开口三角形接线分为开口三角绕组的a头接地、a尾接地、c头接地、c尾接地四种情况。实际应用中多以开口三角绕组的a头接地运行,则a尾接b头,b 尾接c头,c尾出L。 4 结束语 电压互感器是变电站运行中重要的一次设备,其二次接线的正确性直接关系到设备安全及保护装置的可靠动作。综合上述,如果在电压互感器投运时出现开口三角电压异常,可对照上述计算结论判断出现接线错误相。为保证上述结论正确,检测时需注意首先保证星形接线侧电压相序、相位、幅值的正确性,再由于系统运行电压不一定是额定电压,所以计算值与实测值存在一定的偏差,但并不会影响判断。通过总结工作中的检测方法,希望对今后电压互感器的正确投运提供参考。 参考文献 [1]申晓平,张金龙,王世伟,等.电压互感器开口二次出现异常情况的处理

PT开口三角(三相五柱式电压互感器)的工作原理

PT 开口三角(三相五柱式电压互感器)的工作原理 电压互感器是将电力系统的一次电压按一定变比缩小为要求的二次电压,向测量表计和继电器供电,其工作原理与变压器基本相同。电压互感器通常有单相、三相三柱式、三相五柱式电压互感器等几种,由于使用方法不同,各有优、缺点。三相五柱式电压互感器,是磁系统 具有五个磁柱的三相三绕组电压互感器,广泛采用于大中型企业,具有低电压、过电压保护、低电压启动等各种保护功能;备自投等所有电压继电器电压值均来自电压互感器二次。 信息来自:输配电设备网 1 三相五柱式电压互感器的接地方式 信息请登陆:输配电设备网 电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b 相接地和中性点接地两种方式,其接线方式见图1、2。信息来源:https://www.360docs.net/doc/402418966.html, 图1 电压互感器二次通过 b 相及JB 接地原理图信息来源:https://www.360docs.net/doc/402418966.html, 图2 电压互感器二次不接地原理图信息来源:https://www.360docs.net/doc/402418966.html,

1.1 电压互感器二次绕组两种接地方式的比较信息:输配电设备网 1.1.1 在同步回路中在 b 相接地系统中,对中性点非直接接地系统,单相接地时,中性 点位移,不能用相电压同步,必须用线电压同步。如同步点两侧均为 b 相接地,其中一相公用,同步开关档数减少(如采用综保,则接线更为简单),同步接线简单。对中性点直接接地 系统,可用辅助二次绕组的相电压同步。信息来自:https://www.360docs.net/doc/402418966.html, 1.1.2 在保护回路中信息来源:https://www.360docs.net/doc/402418966.html, 在b 相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV 以上电压距离保护断线闭锁装置失去作用,这时若再发生一相或两相断线,将导致保 护误动作。②因为辅助信息请登陆:输配电设备网 绕组的一端与 b 相接地点相连,由于基本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0 ,对零序方向元件不利。若单独从接地点引接零序方向继电器回路,则接线 信息来自:https://www.360docs.net/doc/402418966.html, 较为复杂。 信息来自:https://www.360docs.net/doc/402418966.html, 在中性点接地系统中,由于中性点无任何断开触点,可靠性高。因中性点没有电流通过,无电压降,对保护无影响。信息请登陆:输配电设备网 1.1.3 在测量表计回路中信息来自:https://www.360docs.net/doc/402418966.html,

PT开口三角电压

ENR-DRY型电容电流测试仪使用说明书 保定市伊诺尔电气设备有限公司

目录 1.概述------------------------------------------3 2.测量基本原理----------------------------------4 3.性能指标--------------------------------------4 4.测量接线及注意事项----------------------------5 5.操作方法--------------------------------------6 6.ENR-DRY-2面板说明----------------------------6 7.界面显示--------------------------------------7 8.保护功能及其显示------------------------------8 9.附件------------------------------------------9 10.售后服务--------------------------------------9 保定市伊诺尔电气设备有限公司 2

1.概述 对于中性点不接地电网,当对地电容电流过大时将对系统的安全运行造成严重威胁,因此规程规定对地电容电流大于一定数值时必须装设消弧线圈进行补偿。为选择合适的消弧线圈容量或对已安装的老式消弧线圈进行调节,首先要对系统的对地电容电流进行测量。 对地电容电流进行测量方法有直接接地法和间接测量法,直接接地法是在系统中人为制造单相接地故障,直接测量接地线流过的电流。该方法操作多、接线复杂、危险程度高,且易引发绝缘薄弱点击穿造成两相短路事故,一般不轻易采用。间接测量法是采用外加电容的方法,虽可避免直接接地法可能引发事故的弊端,但测量时仍然要与一次侧打交道,同样存在操作多、接线复杂、危险程度高的缺点。 为解决上述问题,我公司技术人员经多年努力,研制成功“DRY-2型电容电流测量仪”,只需将母线PT开口三角的两端子与仪器信号输出端子连接,按下“测量”按钮,即可准确的测出系统对地电容电流,方便、快捷、安全。 该仪器的操作面板上有一个电源开关、两个输出端子和三个操作按钮。输出端子用于输出电流;有三个操作按钮“复位”、“设置”、“测量”。整个操作方法非常简单,将电流输出线接入PT的开口三角后,打开电源开关,然后按“设置”按钮选择相应的系统电压(从6kV-10kV-35KV-66kV-1kV-3kV循环显示),按下“测量”按钮,几秒钟后测量结果就显示出来,再次按下“测量”键可进行重复测量。测量结果包括系统电容、容抗和电容电流。 该测量仪的主要特点有: 保定市伊诺尔电气设备有限公司 3

电压互感器与电流互感器的作用原理两者区别

电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别 电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。 电流互感器作用及工作原理 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。

电流互感器的结构如下图所示,可用它扩大交流电流表的量程。在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。 电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。原线圈串接在待测电路中时,它两端的电压降极小。副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。 由于I1/I2=K i(Ki称为变流比)所以I1=K i*I2

由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比K i之乘积。如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。电流互感器次级电流最大值,通常设计为标准值5A。不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。 为了安全起见,电流互感器副线圈的一端和铁壳必须接地。 电流互感器规格型号识别方法 电流互感器的型号是由2~4位拼音字母及数字组成。通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用场所等。横线后面的数字表示绝缘结构的电压等级(4级)。电流互感器型号中字母的含义如下: L:在第一位,表示电流互感器; D:在第二位,表示单匝贯穿式,在型号的最后一个字母时表示差动保护用(部分生产厂用B或C标出)

开口三角

开口三角 这种接线方法在三相五柱式电压互感器上使用较多,也就是在电压互感器的次级除了有一个三相绕组以外还有一个辅助绕组,其接法是将三相按照首尾相连的方式连接好,但是第一相的头和最后一相的尾并不连在一起,而起接一个电压继电器,该继电器在电路三相运行正常时向量和是零,因此继电器不动作,而当电路中有接地时,三相电压的向量和不为零了,有电压产生,达到继电器定值后继电器动作。 这个概念是供电中的。开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a-x”、“b-x”、“c-x”,开口三角就是“a-x”的x与“b-x”的b相连,“b-x”中的x与“c-x”的c相连,从“a-x”的a与“c-x”x引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x,就是开口三角电压。正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察” 用来测量零序电压,匝数是相绕组的13。 开口三角形端电压等于三相对地电压的向量和的13。 当三相对地电压平衡时,向量和等于零,开口电压为零。 当发生一相接地时,向量和等于3线电压,开口电压等于线电压,越限报 警。 当一相高压熔丝熔断时,向量和等于线电压,开口电压等于相电压,越限报警。 将三相按照首尾相连的方式连接好,但是第一相的头和最后一相的尾并不连在一起,形成一个开口,电路三相运行正常时向量和是零,因此开口的电压矢量和为0,而当电路中有接地时,三相电压的向量和不为零了,有电压产生。 图上是一个星形接法,一个开口三角接法

电磁式互感器的工作原理

在供电用电的线路中电流电压大大小小相差悬殊从几安到几万安都有。为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。 较早前,显示仪表大部分是指针式的电流电压表,所以电流互感器的二次电流大多数是安培级的(如5A等)。当今电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 微型电流互感器称之为“仪用电流互感器”。(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。) 电流互感器原理线路图微型电流互感器与变压器类似也是根据电磁感应原理工作,变压器变换的是电压而微型电流互感器变换的是电流罢了。绕组N1接被测电流,称为一次绕组(或原边绕组、初级绕组);绕组N2接测量仪表,称为二次绕组(或副边绕组、次级绕组)。 微型电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。微型电流互感器在额定工作电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。Kn=I1n/I2n 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关低压配电产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/402418966.html,。

开口三角电压保护整定值计算

开口三角电压保护整定 值计算 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

什么是开口三角形 开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。 此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a-x”、“b-x”、“c-x”,开口三角就是“a-x”的x与“b-x”的b相连,“b-x”中的x与“c-x”的c相连,从“a-x”的a与“c-x”x引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x,就是开口三角电压。 正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察” 本装置电容器组按招标数据单要求,必须具备不平衡电流保护(或不平衡电压保护)功能。根据电容器组单台中性点不接地单星接线方式,本设备采用了“开口三角电压保护”实现不平衡电压保护。开口三角形即将电压互感器一次侧与单星接线的每相电容器并联,将互感器的二次线圈接成三角形,但将三角形的最后一个“角”不联接,构成从原理图上看即构成一个开口的三角形。正常情况下,三角开口上没有电压,而当发电容器发生故障时,将引起相间电压的不平衡,从而在三角的开口上形成电压输出,该电压也称为“零序电压”,该电压可做为电容器的保护动作信号。这种方式的优点是不受系统接地故障和系统电压不平衡

关于4PT电压互感器防谐振与开口三角接线说明

前言:电压互感器作为开关柜主要设备之一,进行电力计量、测量及继电保护作用。但是由于电力系统的不稳定性、特别是频繁发生谐振地区,对电压互感器的危害是很大的,大部份都导致电压互感器烧毁。 一、产生铁磁谐振的原因 由非线性电感(铁心线圈)和线性电容组成的回路,当外施电压发生变化时,由于电感的变化而产生谐振,这种现象称为铁磁谐振。 1、在中性点不接地系统中,虽然电源侧的中性点不直接接地,但电压互感器的高压侧中性点是接地的,若Ca,Cb,Cc为各回线路(包括电缆出线和架空线路)三相对地的等值电容,而La,Lb,Lc则为母线电压互感器的一次侧三个线圈的对地阻抗(忽略其线圈电阻),假设系统发生单相接地。此时,电压互感器的铁心线圈相当于与电容器并联,构成了可能产生谐振的并联电路,由于相对地电压升高√3倍,有可能使得电压互感器的铁心出现饱和或接近饱和,阻抗变小,电路中出现容抗和阻抗相等的情况,从而产生了并联谐振,此时互感器一次侧的电流最大,这样有可能使电压互感器的高压侧熔断件熔断,或者烧坏电压互感器。 此种情况往往在变电所投产初期(线路出线回路少)不是很明显,但随着线路出线回路的增多(各回线路对地的等值电容量增大,容抗增大)出现谐振的情况较多。 2、操作过电压:包括互感器在内的空载母线或送电线路的突然合闸,使得PT的某一相或二相绕组内产生巨大的涌流和磁饱和现象; ①由于合闸瞬间的三相触头不同期性,此时最慢接触的一相在触头间相当于串联上一个电容(如A相)。当电容的容抗等于互感器的感抗时即产生谐振,但该状态下只是使中央信号装置的电铃响了一下,仪表摆动一下,但随着操作的完成该现象随之消失。 ②由于合闸过程中产生操作过电压,此时假设断路器在合闸操作过程中A相出现过电压,则有可能使A相电压互感器铁心出现饱和,使A相电压互感器线圈感抗变小,从而三相的总阻抗出现不平衡,使电压互感器的中性点对地电压发生位移现象。 3、雷击过电压:由于雷击或其它原因,线路中发生瞬间弧光接地,使得其它两相电压瞬间升到线电压,而故障相电压在接地消失后又瞬间恢复至相电压,以至造成暂态励磁电流的急剧增大和铁芯的磁饱和; 4、磁饱和的产生也可能由于另一绕组瞬间传递过来的过电压或者系统运行方式的突然改变、负荷剧烈波动等所引起的系统电压的强烈扰动。 二、铁磁谐振的种类 铁磁谐振是一个非常复杂的非线性振荡过程,PT伏安特性饱和得越快,谐振的区域越广。谐振大致分为分频谐振、基波谐振、高频谐振,基波和高次谐波的谐振过电压的幅值很少超过3Uj,故除非存在弱绝缘设备,是不会产生危险的。对于分频谐波,由于频率只有工频的一半,励磁感抗相应降低一半,使得励磁电流急剧增加,有时甚至达到额定值的100倍以上,使得互感器发生严重的磁饱和现象,因而限制了过电压幅值,通常在2Uj以下,中性点位移电压一般不超过Uj,但大电流持续时间过长,势必引起TV高压熔丝熔断,或者造成TV本身冒油和烧毁。 三、消除铁磁谐振的措施和方法 电力系统过电压现象十分普遍,如果没有防范措施,随时都有可能造成电气设备损坏和大面积的停电事故。目前,我国35 kV及以下配电网,仍大部分采用中性点不接地方式或采用老式的消弧线圈接地。从电网的运行实践证明,中性点不接地系统中由于电压互感器铁芯饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器等等,但始终没有从根本上得到解决。由于谐振过电压作用时间长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成了很大的困难。为了尽可能的防止谐振过电压的发

电压互感器原理及作用

电压互感器和电流互感器都是一种特殊的变压器,它们的应用主要是保护测量仪表和继电器,同时使二次侧设备小型化,那么电压互感器的原理和作用具体是什么呢? 电压互感器的工作原理和特性 电压互感器可分为电磁式和电容分压式两种,电压等级在220kV 及以下时多为电磁式,那么就以电磁式介绍。 1.工作原理 电压互感器利用了电磁感应原理,在闭合的铁芯上,绕有两个不同匝数、相互绝缘的绕组,接入电源侧的是一次绕组N1,输出侧是二次绕组N2。 当一次绕组加有电压时,绕组就会有交流电流通过,铁芯中就会产生与电源频率相同的交变磁通¢1,由于一次绕组和二次绕组在一个铁芯上,根据电磁感应定律,在二次绕组会产生频率相同到数值不同的感应电动势E2。因为匝数的不同导致两个绕组的感应电动势不同,具体数值关系就是:N1/N2=U1/U2根据国标,电压互感器二次侧输出电压值是100V。 2.电压互感器特性 电压互感器一次电压不受二次负荷的影响。 电压互感器二次侧仪表或继电器的电压线圈阻抗很大,通过的电流很小,因此电压互感器正常工作时接近空载状态。

电压互感器二次侧不能短路,因为短路后二次侧会产生很大的短路电流,会烧毁电压互感器,所以一般电压互感器一次、二次侧装设熔断器用于短路保护。 电压互感器接线 电压互感器有单相和三相两种,三相电压互感器一般只有20kV 以下电压等级。 单相电压互感器:两台单相互感器接成Vv接线,三台单相电压互感器接成开口三角形。 三相电压互感器:一台三相三柱式接成Yy0接线,用于测量线电压。 结束语 电压互感器和电流互感器原理一样都是利用了电磁感应原理,通过“电生磁”和“磁生电”将高电压转化成低电压,将大电流转化成小电流,使二次侧设备(测量仪表和继电器)都能小型化,同时也能使工作人员原理高压,保障人身安全。

开口三角电压

正常时,由于3U 取自PT的变比为//,因此PT开口三角所属 三绕组电压U a =U b =U c =100/3 V, (1)开口三角绕组接反 一相(c相)接反时,3=-2 c ,即3U =66.7V; 两相(b、c)接反时,3 0= a - b - c =2 a ,即3U =66.7V。 (2)二次中性线断线 二次中性线断线时,由于各相二次负载相同,二次三相电压不变,指示为 U a =U b =U c =100/=57.7V;当一次系统发生单相接地时,由于二次三相 电压所构成的电压三角形Δabc为等边三角形,相同的各相二次负载所产生的三相对称电压在二次中性线断口形成57.7V的断口电压,因此二次三相电压仍不变,指示为57.7V,但开口三角电压为100V。 (3)一次一相(两相)断线 由于PT二次相间和各相均有负载,其负载阻抗所形成电路决定断相电压,以及三相磁路系统的影响,断相电压不为0,但要降低,其它相电压正常。 图1 单电源单回线断线运行 一相(C相)断线时,3 0= a + b =- c ,即3U =33.3V;两相(B、C)断 线时,3 0= a ,即3U =33.3V。 (4)二次一相(两相)断线 由于无磁路系统的影响,断相电压比一次断线时要低,其他相正常。 电压互感器二次侧有基本二次侧和辅助二次侧,变比是不同的,一般应为10/0.1/(0.1/√3)。开口三角是辅助二次侧,所以应为10/(0.1/√3)。

一般10kV系统电压互感器的变比应该是10/0.1/(0.1/3). 当高压一相熔丝熔断时,开口三角对应相电压为零,故开口三角侧电压为另外两相电压之相量和,大小与相电压相等,所以是100/3V。 当系统出现接地时,由于10kV系统是中性点不接地系统,所以接地相对地电压为零,而另外两相电压对地电压升高√3倍,而它们的相量和是3倍的相电压,所以开口三角侧为100V。

PT开口三角(三相五柱式电压互感器)的工作原理

PT开口三角(三相五柱式电压互感器)的工作原理 2010/10/18 11:14 电压互感器是将电力系统的一次电压按一定变比缩小为要求的二次电压,向测量表计和继电器供电,其工作原理与变压器基本相同。电压互感器通常有单相、三相三柱式、三相五柱式电压互感器等几种,由于使用方法不同,各有优、缺点。三相五柱式电压互感器,是磁系统具有五个磁柱的三相三绕组电压互感器,广泛采用于大中型企业,具有低电压、过电压保护、低电压启动等各种保护功能;备自投等所有电压继电器电压值均来自电压互感器二次。 信息来自:输配电设备网 1 三相五柱式电压互感器的接地方式 信息请登陆:输配电设备网 电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b 相接地和中性点接地两种方式,其接线方式见图1、2。信息来 源:https://www.360docs.net/doc/402418966.html, 图1 电压互感器二次通过b相及JB接地原理图信息来 源:https://www.360docs.net/doc/402418966.html, 图2 电压互感器二次不接地原理图信息来源:https://www.360docs.net/doc/402418966.html,

1.1 电压互感器二次绕组两种接地方式的比较信息:输配电设备网 1.1.1 在同步回路中在b相接地系统中,对中性点非直接接地系统,单相接地时,中性点位移,不能用相电压同步,必须用线电压同步。如同步点两侧均为b相接地,其中一相公用,同步开关档数减少(如采用综保,则接线更为简单),同步接线简单。对中性点直接接地系统,可用辅助二次绕组的相电压同步。信息来自:https://www.360docs.net/doc/402418966.html, 1.1.2 在保护回路中信息来源:https://www.360docs.net/doc/402418966.html, 在b相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV以上电压距离保护断线闭锁装置失去作用,这时若再发生一相或两相断线,将导致保护误动作。②因为辅助信息请登陆:输配电设备网 绕组的一端与b相接地点相连,由于基本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0,对零序方向元件不利。若单独从接地点引接零序方向继电器回路,则接线 信息来自:https://www.360docs.net/doc/402418966.html, 较为复杂。 信息来自:https://www.360docs.net/doc/402418966.html, 在中性点接地系统中,由于中性点无任何断开触点,可靠性高。因中性点没有电流通过,无电压降,对保护无影响。信息请登陆:输配电设备网

关于PT辅助开口三角电压的问题

在10kV,35kV中低压配电网中,为了提高供电的可靠性,中性点一般采取不接地的方式,为了监视三相对地电压,变电站母线上接有电压互感器,而且母线上安装的电磁式电压互感器通常是Yo/Yo/开口三角接线。 电压互感器二次额定电压,我国规定接入三相系统中,相与相之间的单相电压互感器二次电压为100V;相与地之间的单相电压互感器,其二次额定电压为 。零序电压绕组二次额定电压,供中性点直接接地用的电压互感器,其零序电压绕组的二次额定电压为100V。供中性点不直接接地用的电压互感器, 其零序电压绕组的二次额定电压为 。 1.单相金属性接地时,PT二次开口三角的电压是多少?

U A,U B,U C为故障前一次侧相电压,U A’,U B’,U C’为故障后相电压。 C相单相接地后:非故障相电压升高到线电压,故障相电压为0,即U A’= U A -U C,U B’=U B-U C,U C’=0;中性点电压升为相电压即:U N=-Uc;此时|3U0|= |U A’+ U B’|= =| U AC + U BC AC |=3|U A|,即系统零序电压U0为相电压。变换到压变二 次侧开口三角电压即为|3U0’|=|3U0|/n’=3|U A|/n’=100V(以10kV不接地系统为例, n’ /(100/3)为高压侧对低压侧开口三角电压变比) 2.PT高压侧一相熔断时,二次开口三角电压是多少? 高压保险C相完全熔断,对于系统来说,系统电压正常,没有零序电压,但压变高压侧电压变化为Uc=0,Ua=Ua’,Ub=Ub’为相电压,由于高压侧一次绕组中性点接地,所以中性点不会位移,由此3U0=Ua+Ub+Uc=Ua’+Ub’=-Uc’,反映到 压变二次开口三角的电压3U0’=3U0/n’=-Uc’/n’ ’=100/3=33.3V(以 Uc’o Ub’ Ua’ 熔断前 U C N U B U A 正常

PT开口三角(三相五柱式电压互感器)的工作原理

PT开口三角(三相五柱式电压互感器)的工作原理

PT开口三角(三相五柱式电压互感器)的工作原理 电压互感器是将电力系统的一次电压按一定变比缩小为要求的二次电压,向测量表计和继电器供电,其工作原理与变压器基本相同。电压互感器通常有单相、三相三柱式、三相五柱式电压互感器等几种,由于使用方法不同,各有优、缺点。三相五柱式电压互感器,是磁系统具有五个磁柱的三相三绕组电压互感器,广泛采用于大中型企业,具有低电压、过电压保护、低电压启动等各种保护功能;备自投等所有电压继电器电压值均来自电压互感器二次。 信息来自:输配电设备网 1 三相五柱式电压互感器的接地方式 信息请登陆:输配电设备网 电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b相接地和中性点接地两种方式,其接线方式见图1、2。信息来源:https://www.360docs.net/doc/402418966.html, 图1 电压互感器二次通过b相及JB接地原理图信息来源:https://www.360docs.net/doc/402418966.html,

图2 电压互感器二次不接地原理图信息来源:https://www.360docs.net/doc/402418966.html,

1.1 电压互感器二次绕组两种接地方式的比较信息:输配电设备网 1.1.1 在同步回路中在b相接地系统中,对中性点非直接接地系统,单相接地时,中性点位移,不能用相电压同步,必须用线电压同步。如同步点两侧均为b相接地,其中一相公用,同步开关档数减少(如采用综保,则接线更为简单),同步接线简单。对中性点直接接地系统,可用辅助二次绕组的相电压同步。信息来自:https://www.360docs.net/doc/402418966.html, 1.1.2 在保护回路中信息来源:https://www.360docs.net/doc/402418966.html, 在b相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV 以上电压距离保护断线闭锁装置失去作用,这时若再发生一相或两相断线,将导致保护误动作。 ②因为辅助信息请登陆:输配电设备网 绕组的一端与b相接地点相连,由于基本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0,对零序方向元件不利。若单独从接地点引接零序方向继

引起电容器开口三角电压保护跳闸故障的主要因素

引起电容器开口三角电压保护跳闸故障的主要因素 【摘要】套式电容器开关柜一旦投入电网就将连续在满负荷下运行,夏季经常出现开口三角电压保护动作跳闸,针对这一故障现象,研究引起该故障产生的主要原因并提出相应的解决办法,无疑将大大提高电力电容器在电网中运行的可靠性和使用寿命。 【关键词】开口三角电压保护;温度;过电压和过电流;谐波 一、故障现象 我公司某变电站成套式电容器开关柜于2012年8月投入使用,2013年夏季(环境温度30℃左右),经常发生跳闸,投送时开口三角电压保护启动,电压继电器立即动作跳闸。开口三角电压整定为3V,最初我们技术人员处理时将开口三角电压整定值调至 3.5V,强行投送后正常使用一个星期,电容器再次跳闸,并且出现单台熔断器熔断现象。于是我们判断电容器组内部出现故障。 二、故障处理 1.在故障柜合闸的同时测量其开口三角电压,值为4.5V,已超出后整定的3.5V,说明电容器已经加大了损坏的程度。 2.将故障电容器充分放电后,测量其容量,A、B、C三相电容值分别为2 3.4μF、2 4.2μF、28.7μF。经计算三相电容器两端子间的最大与最小电容的比值为1.23,超出使用说明书给出的1.08。观察外观电容值高的C相有明显涨肚现象。 3.测量开关柜内电容器箱壳最热点温度为,50℃,室内环境温度42℃,超出名牌给出的-40/A℃。 4.取电容值与A、B相接近的电容器更换C相。 5.更换新的熔断器。 6.投运时测量开口三角电压,其值为2.5V,在整定范围内,电容正常运行。 三、原因分析与措施 如果某相或两相电容容量有变化后,电容端子的电压会和其它相的电压不一致,当电容量变化超过一定值后,该相电容端子的电压会变化很大,则在三角开口处产生的电压只要超过整定值时保护便会动作,并且使电容器和电抗器的匹配发生变化,易引起串联谐振或放大高次谐波电流。而引起电容器容量发生变化的主要原因有一下几点:

电压互感器开口三角接线的探讨

第38卷第3期电力系统保护与控制Vol.38 No.3 2010年2月1日 Power System Protection and Control Feb.1, 2010 电压互感器开口三角接线的探讨 索保锋,王洪峰,闫志勇 (郑州供电公司,河南 郑州 450006) 摘要:介绍了在10 kV电网中,三只电压互感器开口三角接线的方法。通过向量的叠加原理,阐述了辅助绕组额定电压分别为100/3 V的四只电压互感器开口三角接线,分析了它的合理性。当三相PT辅助绕组同极性串接成三角形接线,第四只PT 的辅助绕组输出电压作为零序电压时,第四只PT的辅助绕组额定电压必须为100 V。并由此探讨了由三只辅助绕组额定电压为100/3 V和一只辅助绕组额定电压为100 V构成的四只PT开口三角接线,并阐述它接线的合理性。 关键词: 电压互感器; 开口三角; 辅助绕组; 接线; 变比; 接地故障 Study of open-delta wiring in the busbar voltage transformer SUO Bao-feng, WANG Hong-feng, YAN Zhi-yong (Zhengzhou Power Supply Company,Zhengzhou 450006,China) Abstract: This paper introduces the open-delta wiring of 3 PT in the 10 kV power system. It explores the open-delta wiring of four voltage transformers which rated voltage of assistant winding is 100/3V and analyzes its rationality based on vector superposition theory. The rated voltage of the forth PT’s assistant winding is must 100V when the three-phase assistant winding homopolar connects in series to the open-delta wiring and the output voltage of the forth PT’s assistant winding is regarded as zero-sequence voltage. At the same time, it discusses 4PT open-delta wiring which is made up of three assistant windings with 100/3V rated voltage and one assistant winding with 100V rated voltage, and elaborates the rationality of the wiring. Key words: voltage transformer; open-delta; assistant winding; wiring; transform ratio; earth malfunction 中图分类号: TM451 文献标识码:B 文章编号: 1674-3415(2010)03-0130-03 0 引言 在10 kV电网中,当发生单相接地,为避免引发铁磁谐振,造成PT烧坏,电压互感器普遍采用了4PT 接线的方法,实际上,在现场不同的变电站,使用的电压互感器变比不同,接线方式就有不相同的地方。 1 三只单相电压互感器构成的开口三角接 线 首先,我们先回忆一下,原先在电网中3PT接线。 如图1, 在10 kV不接地系统中,单只PT的变 ,正常运行时,它的开口三角绕组输出电压,即:3U o=U a'+U b'+U c',三相电压对称平衡,开口三角绕组输出电压既3U o= 0 V。 图1 3PT接线原理图 Fig.1 Elementary diagram of 3 single-phase voltage transformer 当发生单相接地故障时,假如A相接地,此时,A相电压输出变为0 V,B相、C相电压相位分别向下旋转了30 3U o输出值变为3倍的相电压,如图2所示,由于单只PT ,开口三角绕 组输出电压即 3U o=3 =100 V

集合式并联电容器开口三角电压保护的一种实用公式

集合式并联电容器开口三角电压保护的一种实用公式 一、前言 集合式并联电容器一般是采用若干具有内熔丝的元件封装在一个注油的铁壳内,构成电容器单元,再由数台电容器单元先并后串,再封装在一个浸满油的铁箱内组成。其一次接线大都采用单星形接线,如果该电容器采用六个瓷套引出,它的内部故障、继电保护必然采用开口三角电压保护方式。 但我们在实际工作中,发现一部分用户,对集合式并联电容器开口三角电压保护的整定计算存在模糊概念,甚至由于概念不清,把放电线圈仅作放电之用。不用它的二次线圈作为开口三角电压保护的采样电路,而误认为电容器回路中设置了过流及速断保护就可以了。这致使集合式并联电容器的安全经济运行,产生了隐患及不合格因数。 因此,本文力图抓住一些主要因数,而忽略一些不起主导作用的因数,推导其整定公式,澄清概念,以得出一个实用性的整定公式供参考使用。 集合式并联电容器的电容器单元内的元件,通常采用全并联方式,但也有采用具有二段串联的电容器单元。本文仅讨论前一种情况。 二、实用公式的推导 假设集合式并联电容器的A相作为故障相,每个电容器单元内的并联元件数为m,每个串联段的电容器单元并联数为M,每相串联段数为N,元件电容量为Cy,串联电抗器感抗和电容器容抗的百分比为A,如图所示。则当A相中,某串联段有k只元件因介质击穿,内熔丝熔断而退出运行,则有 电路示意图 A相容抗 (1) A相阻抗

(2) 健全相阻抗 (3) 设三相电源电压对称,则 (4) 其中a、a2为单位向量算子,分别为: (5) 根据电路理论节点电压法,中性点零序电压为: (6) 将(4)、(5)式代入上式,并合并同类项 (7) 将(2)、(3)式再代入上式,整理后得 (8) 由于故障相某串联段部份元件击穿,内熔丝熔断,使部分元件退出运行,使故障相电容量减小,容抗增大,故障相电压降增加,并且主要是由于故障相故障段电压降增加引起。因此,只要使故障相故障段上完好电容器单元及元件不超过电容器规定的1.1倍长期过电压值,并且选择该电压值作为开口三角电压保护的相应整定值,就能使集合式并联电容器在不致于扩大故障的前提下安全经济运行。 因此,当故障相故障段中有k只元件切除后的故障电压计算如下: 故障相的电压

(完整word版)电压互感器工作原理.docx

电压互感器 本词条由“科普中国”百科科学词条编写与应用工作项目审核。 电压互感器 [1] (Potential transformer简称PT,Voltage transformer也简称VT)和变压器类似,是用来变换线路上的电压的仪器。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单 位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能, 或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、 几十伏安,最大也不超过一千伏安。词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、 以及铁磁谐振等。 基本结构 电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电气隔离。电压 互感器在运行时,一次绕组N1 并联接在线路上,二次绕组N2 并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。 工作原理 其工作原理与变压器相同 [2] ,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成 V-V 形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保 护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形,开口三角形的两引 出端与接地保护继电器的电压线圈联接。 正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。 线圈出现零序电压则相应的铁心中就会出现零序磁通。为此,这种三相电压互感器采用旁轭式铁心(10KV 及以下时)或采用三台单相电压互感器。对于这种互感器,第三线圈的准确度要求不高,但要求有一定的过励磁特性(即当原 边电压增加时,铁心中的磁通密度也增加相应倍数而不会损坏)。[3] 电压互感器是发电厂、变电所等输电和供电系统不可缺少的一种电器。精密电压互感器是电测试验室中用来扩大量限,测量电压、功率和电能的一种仪器。电压互感器和变压器很相像,都是用来变换线路上的电压。 线路上为什么需要变换电压呢?这是因为根据发电、输电和用电的不同情况,线路上的电压大小不一,而且相差悬殊,有的是低压220V 和 380V ,有的是高压几万伏甚至几十万伏。要直接测量这些低压和高压电压,就需要根据线 路电压的大小,制作相应的低压和高压的电压表和其他仪表和继电器。这样不仅会给仪表制作带来很大困难,而且更主要的是,要直接制作高压仪表,直接在高压线路上测量电压,那是不可能的,而且也是绝对不允许的。

相关文档
最新文档