尺规作图ppt课件PPT

合集下载

《尺规作图》课件PPT课件

《尺规作图》课件PPT课件
在机械装配过程中,装配图纸是指导工人如何组装机械的重要依据。使用尺规作图可以绘制出详细的装配图纸, 包括各个零件的尺寸、位置和连接方式等。
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质

尺规作图PPT教学课件

尺规作图PPT教学课件

西半球
东半球
西半球
160°E
20°W
20°W
160°E
(1)起始点: 赤道(0°纬线)
纬 (2)度量方法: 从赤道向北:北纬(N)0°~90°
度 的 度

向南:南纬(S)0°~90° 低纬度0°~30° , 中纬度30°~60° 高纬度60°~90°; 最大度数90°
(3)南北半球的分界线: 赤道(0°纬线)
(自转箭头所指方向为东,箭尾的方向是西)
仪上 连结 南北 两极
两极点 (2)所有经线长度都相等 (3)自成半圆,两条正对的
经线构地球
(5)☆☆ 经线指示南北方向
图示
0°经线:东西经度界线 180°经线:大致与日界线重合 20°W和160°E:东西半球的界线
不等长、圆、指示东西
概念
特征
地球 (1)纬线是大、小不等 的圆圈
(40°E,60°N)
(30°S,20°W)
(70°E,40°N)
第二种:极地经纬网图
a.在极地经纬网图上以极点为圆心,纬线为同心圆, 经线是由极点向四周放射出的一条条直线。
b.极点的判读方法:
(23°26′S,135°E)
①根据圆心处的字标
C
②根据地球自转方向(北逆南顺)
③根据图中标注的经度数
c.辨别南北:北逆南顺 辨别东西:顺自转方向(自西向东), 经度数增大为东经,经度数减小为西经
19.3 尺规作图
作已知线段的垂直平分线
教学目标
• 1.能够利用直尺和圆规作已知线段的 垂直平分线;已知底边及底边上的高, 能够利用直尺和圆规作出等腰三角形。 知道为什么这样做图,提高熟练地使用 直尺和圆规作图的技能。
• 2.通过探索、猜测、证明的过程,进 一步拓展学生的推理证明意识和能力。

最新华师版八上数学 13.4 尺规作图 上课课件(共44张PPT)

最新华师版八上数学 13.4 尺规作图 上课课件(共44张PPT)

1
2
1
2
课堂小结
工具→没有刻度的直尺、圆规

规 作
图 作图
1.作一条线段等于已知线段→作线段的和与差 2.作一个角等于已知角→作角的和与差
3.作三角形
华东师大版·八年级数学上册
2.尺规作图(2)
新课导入
用圆规和直尺能不能作 出正七边形、正九边形、正 十一边形、正十三边形、正 十七边形呢?
两千年来,这一直是个未解之谜.
练习
1.
如图,已知∠A,试作∠B=
1 2
∠A(不写作
法,保留作图痕迹)
A
B
2. 做出图中三角形的三个角的平分线。
内心
如何过一点 C 作已知直线 AB 的垂线呢?
C
点C与已知直线 AB 的位置关系有两种: 点C在直线 AB 上或点C在直线 AB 外.
(1)当点 C 在直线 AB 上
① 做平角ACB的平分线CD;
华东师大版·八年级数学上册
1.尺规作图(1)
新课导入
三角尺 量角器
刻度尺
圆规
探究新知
没有刻度的直尺
只能使用圆规和 没有刻度的直尺这两 种工具作几何图形的 方法叫做尺规作图.
圆规
基本的尺规作图:
作一条线段等于已知线段
作一个角等于已知角 作已知角的平分线
尺规作图时通常 保留作图痕迹.
经过一已知点作已知直线的垂线
D
B
C
思考 如图,已知直线l是线段AB的垂 直平分线,则直线l是线段AB的对称轴, 对l上的任意两点C、D,总有:
A
CA=CB,DA=DB
由此,你能发现作垂直平分线的方法吗?
l C
B D

13.4 三角形的尺规作图课件(共15张PPT)

13.4 三角形的尺规作图课件(共15张PPT)
作图略.作出符合要求的三角形,关键是根据条件确定三角形的三个顶点的位置.解题时候要根据实际情况判断是否存在多个符合题设条件的△ABC.
归纳小结
只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图.
同学们再见!
授课老师:
时间:2024年9月15日
尺规作图所用的作图工具是指( ).A.刻度尺和圆规B.不带刻度的直尺和圆规C.刻度尺D.圆规
随堂练习
B
2.如图是作△ABC的作图痕迹,则此作图的已知条件是( ).A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角
C
3.已知:如图,线段a,b,∠α,求作:△ABC,使得BC=a,AC=b,∠ACB=∠α,






a
b
c
2.如图所示,已知∠α,求作∠AOB,使∠AOB=∠α.
α
新知引入
什么是尺规作图?
只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图.
这种作图方法不必用具体数值,只按给定图形进行再作图,这也是它与画图的区别所在.
用尺规作三角形
13.4 三角形的尺规作图
第十三章 全等三角形
学习目标
1.经历尺规作图实践操作的过程,训练和提高学生尺规作图的技能,能根据已知条件作三角形.2.在实际操作过程中,逐步规范作图语言,能依据规范作图语言作出相应的图形.
学习重难点
会尺规作图.
难点
重点
能根据已知条件作三角形.
问题导入
1.如图,已知线段a,b.求作:线段c,使线段c的长度为线段a,b长度的和.
由三角形全等判定可以知道,每一种判定两个三角形全等的条件(SSS,SAS,ASA,AAS),都只能作出唯一的三角形.

尺规作图 (共18张PPT)

尺规作图 (共18张PPT)

考知三边作三角形
5.已知:如图,线段a,b,c. 求作:△ABC,使AB = c,AC = b,BC = a. 作法: ⑴作线段AB = c; ⑵以A为圆心b为半径作弧, 以B为圆心a为半径作弧与 前弧相交于C; ⑶连接AC,BC。 则△ABC就是所求作的三角形。
考点梳理
考点六 已知两边及夹角作三角形
6.已知:如图,线段m,n, ∠ . 求作:△ABC,使∠A=∠ ,AB=m,AC=n. 作法: ⑴作∠A=∠ ; ⑵在AB上截取AB=m ,AC=n; ⑶连接BC。 则△ABC就是所求作的三角形。 。
考点梳理
考点七 已知两角及夹边作三角形
7.已知:如图,∠ ,∠ ,线段m . 求作:△ABC,使∠A=∠ ,∠B=∠ ,AB=m. 作法: 作线段AB=m; 在AB的同旁 作∠A=∠ ,作∠B=∠ , ∠A与∠B的另一边相交于C。 则△ABC就是所求作的图形。
2019年中考数学第一阶段复习 ---尺规作图
考点梳理
考点一 作一条线段等于已知线段 1.已知:如图,线段a . 求作:线段AB,使AB = a . 作法: (1)作射线AP; (2)在射线AP上截取AB=a . 则线段AB就是所求作的图形。
考点梳理
考点二 作已知角的角平分线
考点梳理
考点三 作一个角等于已知角
D P B E F C
3.(2018·济宁)在一次数学活动课中,某数学 小组探究求环形花坛(如图所示)面积的方法,现 有以下工具;①卷尺;②直棒EF;③T型尺(CD所 在的直线垂直平分线段AB).
意图(保留画图痕迹,不写画法); (2)如图2,小华说:“我只用一根直棒和一个卷 尺就可以求出环形花坛的面积,具体做法如下: 将直棒放置到与小圆相切,用卷尺量出此时直棒与 大圆两交点M,N之间的距离,就可求出环形花坛 的面积”如果测得MN=10m,请你求出这个环形花 坛的面积.

浙教版八年级数学上册1.6《尺规作图》课件(共12张PPT)

浙教版八年级数学上册1.6《尺规作图》课件(共12张PPT)
谢谢观赏
You made my day!
我们,还在路上……
则△ABC就是所要求作的三角形.
根据作图语言完成作图
小试身手
已知:线段m .
m
求作:以m为边长的等边三角形.
试根据下面的作图语言成作图:
(1)作线段AB=a ; (2)分别以A、B为圆心,a长为半径画弧,两弧
在射线AX 同侧相交于C ; (3)连接AC、BC ;
则△ ABC 就是所要求作的等边三角形.
1.6 尺规作图
探究新知
我们已经会作一条线段等于已知线段、作一个 角的角平分线,你能说说以前是怎么作的?
在几何作图中,我们把用没有刻度的直尺 和圆规作图,简称尺规作图.
探究例题
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (1)以点O 为圆心,任意长为半径画弧,分别交OA,
(3)以点C′为圆心,CD 长为半径画弧,与第2 步中 所画的弧交于点D′;
B
D
D′
O
C
A O′
C′
A′
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
B D
B′ D′
O
C
A O′
C′
A′
例题二
已知线段AB ,用直尺和圆规作线段AB的垂直平分线.
课堂练习
1. 如图,画出∠B的平分线,BC边上的高,AB边 上的中线(画图工具不限).
A
B
C
2. 如图,请在△ABC所在的平面内找一点P,使 点P到AB,BC的距离相等,并且到点A,C的距 离也相等.

尺规作图 精品课件

尺规作图  精品课件
尺规作图
1.3 尺规基本几何作图
正六边形的作图 (1)
已知对角线长度 D
作法一
作法二
正六边形的作图 (2)
已知对边距离 S
作法一
作法二
正五边形的作图
已知外接圆直径 D
A
A
B KO
K OC
(a)
(b)
(c )
1. பைடு நூலகம்度
斜度和锥度
定义:斜度是指直线或平 面对另一直线或平面倾斜 的程度,一般以直角三角 形的两直角边的比值来表 示.
a)
3等分
25
25
b)
c)
圆弧连接
1. 圆弧连接的基本关系
R2=R1-R
作半径为R的圆弧 与已知直线相切
R2=R1+R
画半径为R的圆 弧与 已知圆弧 R1外切
画半径为R的圆弧 与已知圆弧R1内切
2. 圆弧连接作图举例
圆弧连接作图举例
圆弧连接作图举例
椭圆
椭圆的作图:已知长、短轴半径—四心法
E
上一页
加深的具体步骤如下:
(1) 加深图中的全部细线,一次性绘出标题栏、剖面线、尺 寸界线、尺寸线及箭头等.
(2) 加粗圆弧。圆弧与圆弧相接时应顺次进行. (3) 用丁字尺从上至下加粗水平直线,到图纸最下方后应刷
去图中的碳粉,并擦净丁字尺. (4) 用三角板与丁字尺配合,从左至右加粗垂直方向的直线,
(1) 绘图纸边界线, 图框线和标题栏 框线.
(23456) 布画图已中连检绘知间接查重线. 要 段的基准线、轴线、中心线等
以钓钩为例
15
20
40
6
R=15+32
第三阶段:加深、完成全图

1尺规作图(第2课时)PPT课件(华师大版)

1尺规作图(第2课时)PPT课件(华师大版)
1.回顾已经学过的基本作图有哪几种? 基本作图: (1)作一条线段等于已知线段; (2)作一个角等于已知角; (3)作已知角的平分线. 2.点与直线的位置关系有几种情况? (1)点在直线上;(2)点在直线外.
3.经过一已知点作已知直线的垂线有可以分为几种情况? 两种.
导入新课
用圆规和直尺能不能作 出正七边形、正九边形、正 十一边形、正十三边形、正 十七边形呢?
谢 谢~
两千年来,这一直是个未解之谜.
数学家欧几里得
讲授新课 知识点一 经过一已知点作已知直线的垂线
如何过一点 C 作已知直线 AB 的垂线呢?
C
点C与已知直线 AB 的位置关系有两种:点C在直线 AB 上或点C在直线 AB 外.
讲授新课
(1)当点 C 在直线 AB 上
① 做平角ACB的平分线CD;
② 反向延长射线CD.
当堂检测
解:连接AB,作AB的垂直平分线交直线l于O,交AB于E.∵EO是线 段AB的垂直平分线,∴点O到A,B的距离相等,∴这个公共汽车站 C应建在O点处,才能使到两个小区的路程一样长.
当堂检测
5、如图,A,B,C三点表示三个工厂,现要建一供水站,使它到 这三个工厂的距离相等,请在图中标出供水站的位置P,请给予说 明理由.
数学(华东师大版)
八年级 上册
第13章 全等三角形
13.4 尺规作图 第2课时
学习目标
1.理解和掌握用尺规作:经过一已知点作已知直线的垂线及已知 线段的垂直平分线;
2. 已知底边及底边上的高,能够利用直尺和圆规作出等腰三角 形;
3.在利用尺规作图的过程中,培养学生动手操作能力与探索精神;
温故知新
A

B
C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
变式题 [2014·梅州] 如图 25-5,在 Rt△ABC 中,∠B=
90°,分别以 A,C 为圆心,大于12AC 长为半径画弧,两弧相交于 点 M,N,连结 MN,与 AC,BC 分别交于点 D,E,连结 AE.则:
(1)∠ADE=___9_0____°; (2)AE___=_____EC;(填“>”“=”或“<”) (3)当 AB=3,AC=5 时,△ABE 的周长为___7_____.
第25课时┃ 尺规作图
考点3 与圆有关的尺规作图
[浙教版教材九上 P69 例 2] 已知△ABC,用直尺和圆规作出过 点 A,B,C 的圆.
图 25-3
8
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 解:如图,⊙O 就是所求作的圆.
9
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
【归纳总结】
15
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 解:如图所示:发现:DQ=AQ 或者∠QAD=∠QDA 等.
16
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
方法点析
作图题的一般步骤:读题(阅读题中的已知与求作); 分析(分析如何根据要求作图);作法(将待作图形按基本作 图的步骤一一完成,一般不要求写作法,但要保留作图痕 迹);证明(验证作图的正确性,一般口头完成,不要求写 出来).
方法点析 利用尺规作三角形的基本条件是判定三角形全等的条件,即 已知 SSS,SAS,ASA 或 AAS 均可作出三角形.利用基本尺规作图 还可解决实际问题.
23
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
变式题 [2014·上城一模] 如图 25-7,已知 Rt△ABC 中,
∠C=90°. (1)作∠BAC 的平分线 AD 交 BC 边于点 D,以 AB 边上一点 O
杭考探究
当堂检测
第25课时┃ 尺规作图 (2)作出△ABC 的外接圆,如图所示:
∵△ABC 的外接圆的面积为 S 圆,
∴S 圆=π×(A2C)2=254a2π,S△ABC=12×3a×4a=6a2,
∴SS圆 △=2546aa22π=2245π>π.
22
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
27
考点聚焦
杭考探究
为圆心,过 A,D 两点作⊙O(不写作法,保留作图痕迹); (2)设(1)中⊙O 的半径为 r,若 AB=4,∠B=30°,求 r 的
值.
图 25-7
24
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 解:(1)如图所示:
(2)过点 O 作 OE⊥AD 于点 E,易知∠DAB=∠DAC=30°,由
图 25-2
5
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 解:如图,△ABC 就是当堂检测
第25课时┃ 尺规作图
【归纳总结】 已知三边作三角形
已知两边及其夹角作三角形
利用尺规 作三角形
已知两角及其夹边作三角形
已知两角及其中一角对边作三角 形
7
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
【归纳总结】
基本尺 规作图
作一条线段等于已知线段 作一个角等于已知角 作已知角的平分线
作已知线段的垂直平分线 过一点作已知直线的垂线
4
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
考点2 利用尺规作图作三角形
[2014·青岛] 已知线段 a,∠α.求作:△ABC,使 AB=AC =a,∠B=∠α.
杭考探究
探究一 基本作图 例 1 [2013·杭州] 如图 25-4,已知四边形 ABCD 是矩形, 用直尺和圆规作出∠A 的平分线与 BC 边的垂直平分线的交点 Q(不写作法,保留作图痕迹),连结 QD.在新图形中,你发现了 什么?请写出一条.
图 25-4
14
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 思路点津 根据要求作出相应的基本图形.
图 25-5
18
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
探究二 基本作图的应用
例 2 [2012·杭州] 如图 25-6 是数轴的一部分,其单位长 度为 a,已知△ABC 中,AB=3a,BC=4a,AC=5a.
(1)用直尺和圆规作出△ABC(要求:使点 A,C 在数轴上,保 留作图痕迹,不必写出作法);
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
2.[2014·滨江] 用直尺和圆规作一个以线段 AB 为边的菱
形,作图痕迹如图 25-8 所示,能得到四边形 ABCD 是菱形的依
据是
(B )
图 25-8
A.一组邻边相等的四边形是菱形 B.四边相等的四边形是菱形 C.对角线互相垂直的平行四边形是菱形 D.每条对角线平分一组对角的平行四边形是菱形
与圆有 关的尺 规作图
过不在同一直线上的三点作圆 作三角形的外接圆、内切圆
作圆的内接正方形和正六边形
10
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 【知识树】
11
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
12
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
13
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
第25课时 尺规作图
1
第25课时┃ 尺规作图
考点聚焦
考点1 基本尺规作图 [浙教版教材八上 P37 例 1] 已知∠AOB,求作∠A′O′B′,
使∠A′O′B′=∠AOB.
图 25-1
2
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 解:如图,∠A′O′B′就是所求的角.
3
考点聚焦
杭考探究
当堂检测
(2)记△ABC 的外接圆的面积为 S 圆,△ABC 的面积为 S△,试
说明SS圆 △>π.
图 25-6
19
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 思路点津 (1)已知三边作三角形;(2)作三角形的外接圆.
20
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图 解:(1)如图所示:
21
考点聚焦
23
43
23
2
AB=4,知 AC=2,CD= 3 ,AD= 3 ,∴AE= 3 ,EO=3,AO
=43,即 r=43.
25
考点聚焦
杭考探究
当堂检测
第25课时┃ 尺规作图
当堂检测
1.尺规作图是指
(C )
A.用直尺规范作图
B.用刻度尺和尺规作图
C.用没有刻度的直尺和圆规作图
D.直尺和圆规是作图工具
26
相关文档
最新文档