人教版七年级下册数学第十章 复习与总结讲解学习
第十章+数据的收集、整理与描述+提升能力 2022—2023学年人教版数学七年级下册章节复习讲义

第十章数据的收集、整理、描述提升能力2022-2023学年人教版七年级下学期数学章节复习讲义第一:例题解析保护环境,让我们从垃圾分类做起.某区环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况(如图1),进行整理后,绘制了如下两幅尚不完整的统计图:根据图表解答下列问题:(1)请将图2﹣条形统计图补充完整;(2)在图3﹣扇形统计图中,求出“D”部分所对应的圆心角等于度;(3)在抽样数据中,产生的有害垃圾共有吨;(4)调查发现,在可回收物中废纸垃圾约占15,若每回收1吨废纸可再造好红外线0.85吨.假设该城市每月产生的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可再造好纸多少吨?【详解】(1)由题意可得该小区垃圾总量为:5÷10%=50(吨);∴A类垃圾有:50×54%=27(吨);B类垃圾有:50×30%=15(吨);∴C类垃圾有:50-27-15-5=3(吨);由此,补充完整条形统计图如下:(2)扇形统计图中,D类所对应的圆心角为:360°×10%=36°;(3)由(1)中计算可知,在抽样数据中,有害垃圾有3吨;(4)由题意可得,该城市每月回收的废纸可再造纸的数量为:10000×54%×15×0.85=918(吨).【分析】(1)由统计图中的信息可知D类垃圾5吨,占总数的10%,由此可计算出垃圾的总量,结合统计图中的信息即可计算出ABC各类垃圾的吨数,并将条形统计图补充完整;(2)由“D类垃圾占总数的10%”可得,扇形统计图中D类所对应的圆心角为:360°×10%=36°;(3)由(1)中的计算结果可知在抽样数据中有害垃圾的数量;(4)由题意可得:该城市每月回收的废纸可再造纸:10000×54%×15×0.85(吨).第二:考点解读本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。
第十章 数据的收集、整理与描述 课件2(数学人教版七年级下册)

有理数的减法法则:
减去一个数相当于加上这个数的相反数
即
a - b = a +(-b)
有理数的乘法
1,同号相乘,异号相乘,与零相乘
2,乘法运算率 交换率 ab=ba 结合率 (ab)c=a(bc) 分配率 a(b+c)=ab+ac
有理数的除法
3 (2) 的倒数的相反数是______。 4
(3)
(4) (5)
1 1 6
是_______的相反数。
-(-5)的相反数是______。 -[-(-9)]的相反数是________。
计算
1 (1) 3 2
(2)-|+(8)|
(3)|-4|+|3|+|0|
1 一个数的绝对值是 , 求这个数。 2
0.005002有四个有效数字5,0,0,2.
4.2000有五个有效数字4,2,0,0,0.
带单位的数以及用科学记数法表 示的数,如何说出它的精确度与 有效数字的个数 。
带单位的数有效数字的个数就是单位前的数 的有效数字的个数。 如40万,有两个有效数字4,0. 5百有一个有效数字5. 带单位的数说精确度时,要看单位前的数的 精确度的实际位数。 如40万精确到万位,3.2千精确到百位。
近似数字与有效数字
所谓近似数,就是与实际数字接近的数。 一般地,一个近似数四舍五入到哪一位,就说这个近似数 精确到哪一位。 如:127.32精确到百分位。230.0精确到十分位,32精确到个位。 有效数字的定义 四舍五入后的近似数,从左边第一个不是0的数字起,到精确到 的数位止,所有的数字,都叫做这个数的有效数字。 如:20.35有四个有效数字2,0,3,5. 0.248有三个有效数字2,4,8.
山东2020年新课标人教版七年级数学下册第十章数据的收集、整理与描述复习课(19张PPT)

其他 车费 20% 25%
B.可以直接看出总消费额
午餐 文具
C.可以直接看出各项消费额占总消费额的百分比 40% 15%
D.可以直接看出各项消费额在一周中的具体变化情况
变式3:如图是一铭一周支出情况的统计表:
项目 午餐 文具 车费 其他
费用(元) 80 30
50
40
一、基本问题 知识梳理
变式3:如图是一铭一周支出情况的统计表:
首先按各部分所占的百分比计算出对应的圆心角的度数.
36015% 54 360 40%144
36020% 72 36025% 90
其次在同一个圆中根据计算得出的圆心角的度数画出各个扇 形,并注明各部分的名称及其相应的百分比.
扇形统计图:易于显示各部分在总体中所占的百分比,显示各 组数据相对于总体的大小 .
A.为了了解某市七年级学生的视力情况,选择抽样调查
B.为了了解某公园全年的游客流量,选择全面调查
C.为了了解某1000枚炮弹的杀伤半径,选择全面调查
D.为了了解一批袋装食品是否有防腐剂,选择全面调查
适①考总应察体于全中全体个面对体调象数查的目的调较情查少况叫且:做研全究面问调题查要. 求情况真实、准确性较高 时只.抽取一部分对象进行调查,然后根据调查数据推断出全体 ②对调象查的工情作况较,方这便种、调没查有方破法坏就性叫.做抽样调查. ③当调查的结果有特别要求时,或调查的结果有特殊意义时, 如国家的人口普查,我们仍须按全面调查的方式进行. 适合于抽样调查的情况: ①具有破坏力或者是不可再生的能源等. ②调查涉及的数量大,范围广.
费用(元) 10
30
5
40
费用(元)
折线统计图:能清楚地反
50
人教版七年级数学下册第十章《数据的应用:直方图、统计图》知识梳理、考点精讲精练、课堂小测、课后作业第

第26讲数据的应用--直方图、统计图1、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
也称次数。
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。
2、频率:频数与数据总数的比为频率。
用文字表示定义为:每个对象出现的次数与总次数的比值是频率。
3、频率:频数与数据总数的比为频率。
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n(A)称为事件A发生的频数。
比值n(A)/n称为事件A发生的频率,并记为fn(A).用文字表示定义为:每个对象出现的次数与总次数的比值是频率。
1、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数;每一组两个端点的差叫做组距。
2、列频数分布表的注意事项运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数。
3、画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组。
4、直方图的特点通过长方形的高代表对应组的频数与组距的比(因为比是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图。
特点:①清楚显示各组频数分布情况; ②易于显示各组之间频数的差别。
5、制作频数分布直方图的步骤(1)找出所有数据中的最大值和最小值,并算出它们的差。
(2)决定组距和组数。
(3)确定分点。
(4)列出频数分布表。
(5)画频数分布直方图。
1、表示数据的两种基本方法:一是统计表,通过表格可以找出数据分布的规律;二是统计图,利用统计图表示经过整理的数据,能更直观地反映数据的规律。
人教版七年级数学下册第十章数据的收集、整理与描述综合复习试题(含答案) (9)

人教版七年级数学下册第十章数据的收集、整理与描述综合复习与测试题(含答案)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为_____;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.【答案】(Ⅰ)40;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(Ⅰ)用38号人数除以其所占百分比可得总人数;(Ⅱ)根据各鞋号人数之和等于总认识求得37号的人数即可补全图形;(Ⅲ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可.【详解】(Ⅰ)本次接受随机抽样调查的学生人数为4÷10%=40,故答案为:40;(Ⅱ)37号的人数为40﹣(6+12+10+4)=8人,补全图形如下:(Ⅲ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.82.为了了解某市课改实验区学生对新教材的喜欢程度,课改调研组从该市实验区60000名学生中随机抽查了360名学生进行了问卷调查,并绘制出了如图所示的频数分布直方图.(1)根据直方图中的数据制作扇形统计图(要求在图中注明各部分的百分比).(2)根据该调查结果,估计该市实验区约有多少名学生喜欢新教材?【答案】(1)见解析;(2)21000人.【解析】【分析】根据条形统计图得出三种人数和所占的比例,求出对应的扇形的圆心角的度数.画出扇形统计图,再由该市实验区人数乘以学生喜欢的比例求得学生喜欢新教材的人数.【详解】解:(1)从条形统计图中得出喜欢的有126人,一般的有162人,不喜欢的有72人,喜欢的人数占的比例12636035%=÷=,对应的在扇形统计图中的扇形的圆心角36035%126=⨯=一般的人数占的比例16236045%=÷=,对应的在扇形统计图中的扇形的圆心角3605%162=⨯=不喜欢的人数占的比例7236020%=÷=,对应的在扇形统计图中的扇形的圆心角36020%72=⨯=(2)全市喜欢新教材的人数约为:()6000035%45%21000⨯+=(人)【点睛】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.83.某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)(1)求这1000名小学生患近视的百分比.(2)求本次抽查的中学生人数.(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.【答案】(1)这1000名小学生患近视的百分比为38%. (2)本次抽查的中学生有1000人. (3)该市中学生患“中度近视”的约有2.08万人,患“中度近视”的约有1.04万人.【解析】【分析】(1)这1000名小学生患近视的百分比=小学生近视的人数÷总人数×100﹪(2)调查中学生总人数=中学生近视的人数÷中学生患近视的百分比(3)用样本估计总体,该市中学生患“中度近视”的人数=8万×1000名中学生患中度近视的百分比;该市小学生患“中度近视”的人数=10万×1000名小学生患中度近视的百分比【详解】解:(1)∵(252+104+24)÷1000=38%,∵这1000名小学生患近视的百分比为38%.(2)∵(263+260+37)÷56%=1000(人),∵本次抽查的中学生有1000人.(3)∵8×2601000=2.08(万人),∵该市中学生患“中度近视”的约有2.08万人.∵10×1041000=1.04(万人),∵该市小学生患“中度近视”的约有1.04万人.84.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示).1.请根据所给的扇形图和条形图,填写出扇形图中缺失的数据,并把条形图补充完整;2.如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?【答案】% 200【解析】(1)根据扇形统计图所给的数据,直接进行相减即可求出体育所占的百分比,再根据抽取体育的人数,即可求出抽取的总人数,再根据其他类所占的比例,即可求出答案.(2)根据学生中最喜欢体育运动的学生所占的百分比,再乘以总数即可求出答案.解:(1)根据题意得:体育所占的百分比是:1-32%-12%-16%=40%,抽取的总人数是:10÷40%=25(人),其他类的人数是:25×32%=8(人).如图所示:(2)根据题意可得:该年级中最喜欢体育运动的学生约有500×40%=200(名).答:该学校中最喜欢体育运动的学生约有200名85.春季流感爆发,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:(1)抽查了个班级,并将该条形统计图补充完整;(2)如图1中患流感人数为4名所在扇形的圆心角的度数为;(3)若该校有90个班级,请估计该校此次患流感的人数.【答案】(1)20,2名的班级有2个;(2)72°;(3)360人.【解析】试题分析:(1)根据患流感人数有6名的班级有4个,占20%,可求得抽查的班级数,用求得的班级数再减去其它班级数,即可补全条形统计图;(2)用患流感人数为4名的班级数4个除以抽查的班级数,再乘以360°即可;(3)先求出该校平均每班患流感的人数,再利用样本估计总体的思想,用这个平均数乘以90即可.试题解析:(1)根据患流感人数有6名的班级有4个,占20%,可求得抽查的班级数,抽查的班级个数为4÷20%=20(个),则患流感人数只有2名的班级个数为:20﹣(2+3+4+5+4)=2(个),补图如下:(2)用患流感人数为4名的班级数4个除以抽查的班级数,再乘以360°:×360°=72°,所以患流感人数为4名所在扇形的圆心角的度数为72°;(3)先求出该校平均每班患流感的人数,∵该校平均每班患流感的人数为(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4,∵若该校有90个班级,则此次患流感的人数为:4×90=360(人).考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.86.《中学生体质健康标准》规定学生体质健康等级标准为:90分及以上为优秀;80分~89分为良好;60分~79分为及格;59分及以下为不及格. 某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分情况如下图.(1)在抽取的学生中不及格人数所占的百分比是,它的圆心角度数为度.(2)小明按以下方法计算出抽取的学生平均得分是:()+++÷=. 根据所学的统计知识判断小明的计算是否正确,若不94847250475正确,请计算正确结果.【答案】(1)5%;18 ;(2)不正确,详见解析【解析】【分析】(1)根据各组的百分比之和为1,计算即可.(2)利用加权平均数公式计算即可.【详解】(1)不及格人数所占的百分比=1-25%-20%-50%=5%,它的圆心角=360°×5%=18°,故答案为5%,18.(2)不正确,平均分=94×20%+84×25%+72×50%+50×5%=78.3(分).【点睛】考查条形统计图,扇形统计图,加权平均数等知识,解题的关键是熟练掌握基本知识.87.萧山区垃圾分类掀起“绿色革命”为调查居民对垃圾分类的了解情况,调查小组对某小区进行抽样调查并将调查结果绘制成了统计图(如图).已知调查中“基本了解”的人数占调查人数的60%.(1)计算此次调查人数,并补全统计图;(2)若该小区有住户1000人,请估计该小区对垃圾分类“基本了解”的人数.【答案】(1)此次调查40人,补图见解析;(2)600人.【解析】【分析】(1)根据了解和不了解的所占的百分比和频数求得总人数,然后求得基本了解的频数后补充完整统计图即可;(2)用总人数乘以基本了解所占的百分比即可.【详解】(1)∵基本了解的占60%,∴了解和不了解的共占40%,∵了解和不了解的共有14+2=16人,∴调查的总人数为:16÷40%=40人,∴基本了解的有40﹣14﹣2=24人,统计图为:(2)该小区对垃圾分类“基本了解”的人数为1000×60%=600人.【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.88.阅读下列材料:改革开放以来,我国建筑业在坚持和完善公有制为主体、多种所有制经济共同发展的基本经济制度的指引下,企业所有制呈现多元化发展,极大激发了市场活力.建国初期,建筑业企业基本是清一色的国营建筑公司,而如今,建筑业企业类型涵盖了国有、集体、股份制、私营等内资企业,以及港澳台商投资企业、外商投资企业等多种所有制形式.根据2018年国家统计局发布的数据显示:2017年,建筑业企业中,国有企业2187个,占全部企业比重仅为2.5%,比1996年减少6922个,占比下降19.5个百分点;年末从业人员183.0万人,占全部企业比重3.3%,比1996年减少672.9万人,占比下降37个百分点.股份制企业32894个,占全部企业比重达到37.3%,比1996年增加31293个,占比提高33.4个百分点;年末从业人员2828万人,占全部企业比重51.1%,比1996年增加2768万人,占比提高48.2个百分点.私营企业49645个,占全部企业比重达到56.4%,比1996年增加49110个,占比提高55.1个百分点;年末从业人员2340万人,占全部企业比重42.3%,比1996年增加2331万人,占比提高41.9个百分点.外商投资企业218个,占全部企业比重达到0.2%,比1996年减少170个,占比下降0.7个百分点;年末从业人员8万人,占全部企业比重0.1%,比1996年减少1万人,占比下降0.3个百分点.根据以上材料回答下列问题:(1)1996年私营企业有______个,占全部企业比重为______.(2)请你选择统计表或统计图,将1996年和2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重表示出来.(3)请你根据以上统计表或统计图,给出一个合理的结论并说明理由.【答案】(1)535;1.3%;(2)见解析;(3)见解析【解析】【分析】(1)根据2017年私营企业49645个,比1996年增加49110个,可求出1996年私营企业的数量;根据2017年私营企业占全部企业比重达到56.4%,比1996年占比提高55.1个百分点可得出结果;(2)根据2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重,以及与1996年对应关系,求出1996年各种企业所占比重,可制成统计表即可;(3)根据占比变化情况,提出合理的结论即可.【详解】解:(1)根据题意得,1996年私营企业为:49645-49110=535(个),1996年私营企业占全部企业比重为:56.4%-55.1%=1.3%;故答案为:535;1.3%;(2)答案不唯一,如利用统计表表示如下:建筑企业中1996年和2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重情况统计表(3)答案不唯一,合理即可,如:改革开放以来,股份制企业、私营企业发展迅速,占比增长很快,而国有企业和外商投资企业则占比下降,发展出现负增长.说明国家积极鼓励和发展股份制企业、私营企业,政策向股份制企业和私营企业倾斜.【点睛】本题考查了用统计图或统计表反映一组数据的发展趋势,并从中得出合理化的意见和建议,达到搜集和整理数据的目的.89.2015年是中国人民抗日战争暨世界反法西斯胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”、B类表示“比较了解”、C类表示“基本了解”、D类表示“不太了解”,调查的数据经整理后形成下列尚未完成的条形统计图(如图①)和扇形统计图(如图①):(1)在这次抽样调查中,一共抽查了名学生;(2)请把图①中的条形统计图补充完整;(3)图①的扇形统计图中D类部分所对应扇形的圆心角的度数为°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?【答案】(1)200;(2)详见解析;(3)36;(4)900.【解析】【分析】(1)利用A类的人数除以A类人数所占的百分比即可得这次调查的总人数;(2)用总人数乘C类人数所占的百分比即可求得C类的人数,在条形统计图上画出即可;(3)用D类的人数除以总人数再乘以360°即可得D类部分所对应扇形的圆心角的度数;(4)利用对二战历史“非常了解”和“比较了解”的学生人数除以这次抽查的人数,先计算出对二战历史“非常了解”和“比较了解”的学生所占的比例,再用总人数乘以这个比例即可得校初中学生中对二战历史“非常了解”和“比较了解”的学生的人数.【详解】解:(1)30÷15%=200,故答案为:200;(2)200×30%=60如图所示:(3)20÷200=0.1=10%,360°×10%=36°,故答案为:36;(4)30901500900200+⨯= 答:该校初中学生中对二战历史“非常了解”和“比较了解”的学生估计有900名.【点睛】此题考查了扇形统计图和频数(率)分布表,关键是正确从扇形统计图和表中得到所用的信息.90.为参加学校举办的演讲比赛,每班选拔一名学生参赛.八年级(2)班有甲、乙、丙三名候选人参加班内预赛,对他们的稿件质量成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表和图①:(1)请将表和图①中的空缺部分补充完整;(2)选拔的最后一个程序是由本班的50名同学进行投票,三名候选人的得票情况如图②(没有弃权票,每名学生只能推荐一人),请计算每人的得票数;(3)若每票计1分,班委会将稿件质量、口试、得票三项测试得分按4:3:3的比例确定最后成绩,请计算三名学生的最后成绩,并根据成绩判断谁能当选.【答案】(1)如图所示:(2)甲20票、乙20票、丙10票;(3)甲67分、乙68分、丙64.5分,乙当选.【解析】试题分析:(1)仔细分析统计表及统计图中的数据即可得到结果;(2)根据扇形统计图的特征即可求得结果;(3)分别根据加权平均数的计算方法求得三名学生的最后成绩,再比较即可作出判断.(1)如图所示:(2)由题意得甲票、乙票、丙票;(3)由题意得甲的最后成绩分乙的最后成绩分丙的最后成绩分∵∵乙能当选.考点:统计的应用点评:本题是统计的基础应用题,重要考查学生对统计知识的熟练掌握程度,在中考中比较常见.。
七年级数学下册第十章数据的收集整理与描述考点总结(带答案)

七年级数学下册第十章数据的收集整理与描述考点总结单选题1、某市有3000名初一学生参加期末考试,为了了解这些学生的数学成绩,从中抽取200名学生的数学成绩进行统计分析.在这个问题中,下列说法:①这3000名初一学生的数学成绩的全体是总体;②每个初一学生的数学成绩是个体;③200名初一学生的数学成绩是总体的一个样本;其中说法正确的是()A.3个B.2个C.1个D.0个答案:A分析:根据总体、个体、样本、样本容量的定义,总体是我们把所要考查的对象的全体,个体是把组成总体的每一个考查对象,样本是从总体中取出的一部分个体叫做这个总体的一个样本;样本容量是一个样本包括的个体数量,样本容量没有单位,判断即可.解:①这3000名初一学生的数学成绩的全体是总体,说法正确;②每个初一学生的数学成绩是个体,说法正确;③200名初一学生的数学成绩是总体的一个样本,说法正确;所以其中说法正确的是3个.故选:A.小提示:本题考查了总体、个体、样本、样本容量的定义,熟练掌握相关定义是解本题的关键.2、如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有()A.45人B.75人C.120人D.300人答案:C分析:根据大学生的人数与所占的百分比求出总人数为300人,再用初中生所占的百分比乘以总人数即可得到答案.解:总人数=60÷20%=300(人);300×40%=120(人),故选:C.小提示:本题主要考查了根据扇形统计图求总人数和单项的人数,关键在于公式的灵活运用.3、为了解某市七年级15000名学生的体重情况,从中抽取了500名学生进行测量,这500名学生的体重是()A.总体B.个体C.总体的一个样本D.样本容量答案:C分析:总体是指考查的对象的全体;个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.解:A、总体是七年级15000名学生的体重情况,这500名学生的体重是样本,故A错误;B、个体是七年级每一名学生的体重,故B错误;C、这500名学生的体重是总体的一个样本,故C正确;D、样本容量是500,故D错误;故选:C.小提示:解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4、如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°答案:B分析:过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以∠ABE+∠CDE)”,再依据四边形内角和为360°结合角的计算即可得出及角平分线的定义可得“∠FBE+∠EDF=12结论.如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=61°,∴∠ABE+∠CDE=299°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=1(∠ABE+∠CDE)=149.5°,2∵四边形的BFDE的内角和为360°,∴∠BFD=360°-149.5°-61°=149.5°.故选B.小提示:本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360°,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.5、下列调查中,适合采用全面调查(普查)方式的是()A.调查北京冬奥会开幕式的收视率B.调查某批玉米种子的发芽率C.调查昆仑学校的空气质量情况D.调查疫情期间某超市人员的健康码答案:D分析:根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,抽样调查得到的调查结果比较近似进行解答.解:A.调查北京冬奥会开幕式的收视率,适合抽样调查,故选项A不符合题意;B.调查某批玉米种子的发芽率,适合抽样调查,故选项B不符合题意;C.调查昆仑学校的空气质量情况,适合抽样调查,故选项C不符合题意;D.调查疫情期间某超市人员的健康码,适合全面调查,故选项D符合题意;故选:D.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %答案:C分析:观察直方图,根据直方图中提供的数据逐项进行分析即可得.观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4×100%=8 %,故D选项错误,50故选C.小提示:本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.7、从某公司3000名职工随机抽取30名职工,每个职工周阅读时间(单位:min)依次为.1800D.2100答案:A分析:依据抽取的样本中周阅读时间超过一个半小时的职工人数所占的百分比,即可估计该公司所有职工中,周阅读时间超过一个半小时的职工人数.=1200(人),解:由题可得,3000×10+230∴该公司所有职工中,周阅读时间超过一个半小时的职工人数约为1200人,故选A.小提示:本题主要考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,对总体的估计也就越精确.8、平顶山某校有3000名学生,随机抽取了300名学生进行睡眠质量调查,下列说法错误的是()A.总体是该校3000名学生的睡眠质量B.个体是每一个学生C.样本是抽取的300名学生的睡眠质量D.样本容量是300答案:B分析:根据题意可得3000名学生的睡眠质量情况,从中抽取了300名学生进行睡眠质量调查,这个问题中的总体是3000名学生的睡眠质量情况,样本是抽取的300名学生睡眠质量情况,个体是每一个学生的睡眠质量情况,样本容量是300,注意样本容量不能加任何单位.解:A.总体是该校3000名学生的睡眠质量,故此选项正确,不合题意;B.个体是每名学生的睡眠质量,故此选项错误,符合题意;C.样本是抽取的300名学生的睡眠质量,故此选项正确,不合题意;D.样本容量是300,故此选项正确,不合题意;故选:B.小提示:本题主要考查了总体、个体、样本、样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.9、从A地到B地有驾车、公交、地铁三种出行方式,为了选择适合的出行方式,对6:00—10:00时段这三种出行方式不同时刻出发所用时长(从A地到B地)进行调查、记录与整理,数据如图所示.根据统计图提供的信息,下列推断合理的是()A.若7:00前出发,地铁是最快的出行方式B.若选择公交出行且需要30分钟以内到达,则7:00之前出发均可C.驾车出行所用时长受出发时刻影响较小D.在此时段里,地铁出行的所用时长都在30分钟至40分钟之间答案:D分析:根据折线统计图中的信息进行判定即可得出答案.解:A.根据统计图可得,7:00出行,公交快,故A选项说法不正确,不符合题意;B.根据统计图可得,若选择公交出行且需要30分钟以内到达,则6:00之前出发均可,故B选项说法不正确,不符合题意;C.根据统计图可得,地铁出行所用时长受出发时刻影响较小,故C选项说法不正确,不符合题意;D.在此时段里,地铁出行的所用时长都在30分钟至40分钟之间,故D选间说法正确,符合题意.故选:D.小提示:本题主要考查了折线统计图,根据题目要求读懂折线统计图中的信息进行求解是解决本题的关键.10、如图是某种学生快餐的营养成分统计图,若脂肪有30g,则蛋白质有()A.135gB.130gC.125gD.120g答案:A分析:脂肪有30g占总质量的10%,可知总质量为300g,再根据蛋白质所占比例即可求解.由题意可得,30÷10%×45%=300×0.45=135g,即快餐中蛋白质有135克,故选:A.小提示:本题考查了扇形统计图的知识点,数量掌握扇形统计图并正确计算是解答本题的关键.填空题11、下列调查中必须用抽样调查方式来收集数据的有________.①检查一大批灯泡的使用寿命;②调查某大城市居民家庭的收入情况;③了解全班同学的身高情况;④了解NBA各球队在2015-2016赛季的比赛结果.答案:①②分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:①检查一大批灯泡的使用寿命采用抽样调查方式;②调查某大城市居民家庭的收入情况采用抽样调查方式;③了解全班同学的身高情况采用全面调查方式;④了解NBA各球队在2015-2016赛季的比赛结果采用全面调查方式,故答案是:①②.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12、经调查,我区高中学生上学所用的交通方式中,选择“电瓶车”、“自行车”、“其他”的比例为5:2:5,若该校学生有600人,则选择“电瓶车”的学生人数是___________.答案:250人分析:用总人数600乘以选择“电瓶车”的比例即可.=250人,解:选择“电瓶车”的学生人数是600×55+2+5所以答案是:250人.小提示:此题考查了利用总体中部分的比例求总体中的数量,正确理解题意是解题的关键.13、为了解本校六年级学生数学成绩的分布情况,从中抽取400名学生的数学成绩进行统计分析,在这个调查中,样本是______.答案:抽取400名学生的数学成绩分析:根据样本的定义解答.解:为了解本校六年级学生数学成绩的分布情况,从中抽取400名学生的数学成绩进行统计分析,在这个调查中,样本是抽取400名学生的数学成绩,所以答案是:抽取400名学生的数学成绩.小提示:此题考查了样本的定义:抽取的部分的调查对象是样本,熟记定义是解题的关键.14、某教育网站正在就问题“中小学生对上课拖堂现象的反应”进行在线调查,你认为调查结果________普遍代表性.答案:不具有分析:样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.利用样本的代表性和广泛性即可作出判断.解:在某教育网站正在就问题“中小学生对上课拖堂现象的反应”进行在线调查,范围和人群太集中,不具有代表性.所以答案是:不具有小提示:本题考查了调查的对象的选择,要读懂题意,分清调查的内容所对应的调查对象是什么是解题的关键.注意所选取的对象要具有代表性.15、某校为了了解某个年级的学习情况,在这个年级抽取了50名学生,对某学科进行测试,将所得成绩(成绩均为整数)整理后,列出表格:(2)本次测试这50名学生成绩的及格率是________;(60分以上为及格,包括60分)(3)这个年级此学科的学习情况如何?请在下列三个选项中,选一个填在题后的横线上________.A.好 B.一般 C.不好答案:(1)21;(2) 96% ;(3)A试题分析:(1)根据总人数=频数÷频率计算;(2)得出60分以上的频率和除以总即为本次测试这50名学生成绩的及格率=96%;(3)由及格率很高,故由频数分布表可以看出该年级此学科的成绩较好.试题解析:(1)由题意可知:测试90分以上(包括90分)的人数为50×0.42=21人;=96%;(2)本次测试这50名学生成绩的及格率是0.04+0.16+0.34+0.421(3)由频数分布表可以看出该年级此学科的及格率比较高,优秀人数比较多,成绩较好.故选A.解答题16、某校将举办的“壮乡三月三”民族运动会中共有四个项目:A跳长绳,B抛绣球,C拔河,D跳竹竿舞.该校学生会围绕“你最喜欢的项目是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:舞请结合统计图表,回答下列问题:(1)填空:a=;(2)本次调查的学生总人数是多少?(3)请将条形统计图补充完整;(4)李红同学准备从抛绣球和跳竹竿舞两个项目中选择一项参加,但她拿不定主意,请你结合调查统计结果给她一些合理化建议进行选择.答案:(1)10%(2)100人(3)见解析(4)建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大分析:(1)用1分别减去A、C、D类的百分比即可得到a的值;(2)用A类学生数除以它所占的百分比即可得到总人数;(3)用35%乘以总人数得到B类人数,再补全条形统计图画树状图;(4)根据选择两个项目的人数得出答案.(1)解:a=1﹣35%﹣25%﹣30%=10%,所以答案是:10%;(2)解:25÷25%=100(人),答:本次调查的学生总人数是100人;(3)解:B类学生人数:100×35%=35,补全条形统计图如图,(4)解:建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大.小提示:本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.17、2021年秋季教育部明确提出,要减轻义务教育阶段学生的作业负担,学生的校外培训负担.依据政策要求,初中书面作业平均完成时间不超过90分钟,学生每天的完成作业时长不能超过2小时.某中学为了积极推进教育部的新政策实施,对本校学生的作业情况进行了抽样调查,统计结果如图所示:(1)这次抽样共调查了名学生,并补全条形统计图.(2)计算扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数.(3)若该中学共有学生3000人,请据此估计该校学生的作业时间不少于2小时的学生人数.答案:(1)500;补全条形统计图见解析(2)扇形统计图中表示作业时长为2.5小时对应的扇形圆心角度数57.6°(3)估计该校学生的作业时间不少于2小时的学生人数为1320人分析:(1)用完成作业时间是2小时的学生人数除以相应的比例即可得到调查总数,然后用总数乘以1.5小时人数所在的比例;(2)作业时长为2.5小时对应的扇形圆心角度数等于80×360°=57.6°;500(3)不少于2小时的学生人数为总数乘以不少于2小时的学生所占比例.(1)140÷28%=500;500×36%=180(人),(2)作业时长为2.5小时对应的扇形圆心角度数为80×360°=57.6°;500=1320 (人)(3)3000×140+80500小提示:本题考查了条形统计图和扇形统计图的知识,从图中获取正确的信息是本题的解题关键.18、某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有________人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是________;(4)如果该校初二年级的总人数是450人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.答案:(1)50(2)见解析(3)72°(4)该校初二年级跳绳成绩为“优秀”的人数为90人分析:(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;(2)利用(1) 中所求,结合条形统计图得出优秀的人数,进而求出答案;(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;(4)利用样本估计总体进而利用“优秀”所占比例求出即可.(1)解:由扇形统计图和条形统计图可得:参加这次跳绳测试的共有:20÷40%=50(人);所以答案是:50;(2)由(1)的优秀的人数为:50-3-7-10-20=10,如图所示:;(3)×360°=72°,“中等”部分所对应的圆心角的度数是:1050所以答案是:72°;(4)该校初二年级跳绳成绩为“优秀”的人数为:450×10=90(人).50答:该校初二年级跳绳成绩为“优秀”的人数为90人.小提示:此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.。
人教版七年级数学下第十章-数据的收集与整理归类总结

第十章数据的收集与整理【知识梳理】一、调查与收集数据想知道“喜欢哪种动物的同学最多”,要通过调查来收据数据.其过程主要有如下步骤:1、明确调查问题——喜欢哪种动物的同学最多;2、明确调查对象——全班每个同学;3、选择调查方法——采用问卷调查;4、展开调查——每位同学将自己最喜欢的动物写在调查问卷上,收集每位同学最喜欢的动物,进行编号;5、整理数据——用“划记法”记录数据;6、得出结论——划记最多的动物,即为同学们喜欢的最多的动物;7、描述数据——统计表是描述数据最常用的方式,为了更直观地获取信息,还可以用条形统计图和扇形统计图来描述数据.二、调查方式的有关概念统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种方式.实际上最常用的调查方式是抽样调查.1、全面调查:在“喜欢哪种动物的同学最多”调查活动中,全班同学都是考察对象。
像这样考察全体对象的调查属于全面调查,又称为“普查”.2、抽样调查:在“调查中小学生的视力情况”调查活动中,采用了调查部分学生的方式来收集数据,根据部分学生的视力来估计整个地区学生的视力情况.这种调查称为抽样调查.这里,整个地区的中小学生的视力情况是要考察的全体对象,称为总体;所有实际被调查的小学生、初中生和高中生的视力组成一个样本.注意:(1)抽样调查只考虑总体中的一个样本,因此其优点是调查范围小,节省时间、人力、物力,但其调查结果往往不如全面调查得到的结果准确.(2)抽样调查时一般应注意:被调查的对象不能太少,被调查的对象应是随意抽取的,调查的对象应是真实的.因此,抽样调查时既要关注样本的广泛性又要关注其代表性.方法点拨:(1)全面调查是对总体中每个对象进行调查,调查范围广,数据详细;而调查样本有局限性,数据不全面;(2)当受客观条件限制,无法对所有对象进行全面调查时,往往采用抽样调查;(3)当调查具有破坏性时,不允许进行全面调查;4. ⑴总体:把所要考察对象的①叫总体.⑵个体:②考察对象叫做个体.⑶样本:从总体中所抽取的一部分③叫做总体的一个样本.⑷样本容量:样本中个体的④叫做样本容量.规律总结:①弄清考察对象是明确总体、个体、样本的关键;②总体或样本中的每一个数据表示个体,不同的个体在数值上是可以相同的,样本中有多少个体,样本容量就是多少,样本容量没有单位.三、统计图的选择——条形统计图、扇形统计图和折线统计图,它们各具特色:条形统计图能清晰地展现出每个项目的具体数目,扇形统计图能清晰地展现出各部分在总体中所占的百分比,折线统计图能清晰地展现出事物变化的情形。
七年级下数学知识点总结

七年级下数学知识点总结⼈教版七年级数学下册主要包括相交线与平⾏线、平⾯直⾓坐标系、三⾓形、⼆元⼀次⽅程组、不等式与不等式组和数据的收集、整理与表述六章内容。
下⾯⼩编给⼤家分享⼀些七年级下数学知识点,希望能够帮助⼤家,欢迎阅读!七年级下数学知识点1第⼀章相交线与平⾏线⼀、知识框架⼆、知识概念1.邻补⾓:两条直线相交所构成的四个⾓中,有公共顶点且有⼀条公共边的两个⾓是邻补⾓。
2.对顶⾓:⼀个⾓的两边分别是另⼀个叫的两边的反向延长线,像这样的两个⾓互为对顶⾓。
3.垂线:两条直线相交成直⾓时,叫做互相垂直,其中⼀条叫做另⼀条的垂线。
4.平⾏线:在同⼀平⾯内,不相交的两条直线叫做平⾏线。
5.同位⾓、内错⾓、同旁内⾓:同位⾓:∠1与∠5像这样具有相同位置关系的⼀对⾓叫做同位⾓。
内错⾓:∠2与∠6像这样的⼀对⾓叫做内错⾓。
同旁内⾓:∠2与∠5像这样的⼀对⾓叫做同旁内⾓。
6.命题:判断⼀件事情的语句叫命题。
7.平移:在平⾯内,将⼀个图形沿某个⽅向移动⼀定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每⼀点,都是由原图形中的某⼀点移动后得到的,这样的两个点叫做对应点。
9.定理与性质对顶⾓的性质:对顶⾓相等。
10垂线的性质:性质1:过⼀点有且只有⼀条直线与已知直线垂直。
性质2:连接直线外⼀点与直线上各点的所有线段中,垂线段最短。
11.平⾏公理:经过直线外⼀点有且只有⼀条直线与已知直线平⾏。
平⾏公理的推论:如果两条直线都与第三条直线平⾏,那么这两条直线也互相平⾏。
12.平⾏线的性质:性质1:两直线平⾏,同位⾓相等。
性质2:两直线平⾏,内错⾓相等。
性质3:两直线平⾏,同旁内⾓互补。
13.平⾏线的判定:判定1:同位⾓相等,两直线平⾏。
判定2:内错⾓相等,两直线平⾏。
判定3:同旁内⾓相等,两直线平⾏。
本章使学⽣了解在平⾯内不重合的两条直线相交与平⾏的两种位置关系,研究了两条直线相交时的形成的⾓的特征,两条直线互相垂直所具有的特性,两条直线平⾏的长期共存条件和它所有的特征以及有关图形平移变换的性质,利⽤平移设计⼀些优美的图案. 重点:垂线和它的性质,平⾏线的判定⽅法和它的性质,平移和它的性质,以及这些的组织运⽤. 难点:探索平⾏线的条件和特征,平⾏线条件与特征的区别,运⽤平移性质探索图形之间的平移关系,以及进⾏图案设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.条形图、扇形图、折线图和直方图在表示数 据方面各有什么特点?
条形统计图:能清楚地显示每组中的具体数目。
扇形统计图:能清楚地显示各部分在总体中 所占的百分比。 折线统计图:能清楚地显示数据的变化趋势。
直方统计图:能清楚地显示数据的分布情况。
7.你能说出画频数分布直方图的步骤和特点吗? 步骤:①计算最大与最小值的差; ②决定组距和组数; ③列频数分布表; ④以横轴表示变量取值,纵轴表示频 数,画频数分布直方图。
全面调查与抽样调查比较
调查方式
适应情景
调查对 象
优点
缺点
个数较少
费时费力
全面调查
结果有特 殊要求和特
全体
殊意义
准确
会造成不可 挽回的损失
个数较多
抽样调查
结果具有 破坏性或危
样本 (总体中 一部分)
省时省力.只能估计出 范围小 总体的情况
害性
1.总体: 所要考察对象的全体叫做总体。
2.个体: 总体中每一个考察对象叫做个体。
特点:①直方图能够显示各组频数分布情况; ②易于显示各组之间频数之间的差别。
全面调查 抽样调查
知识结构
收
整
描
分
得
集 数
制表
理 数
绘图
述 数
析 数
出 结
据
据
据
据
论
条扇 直折 形形 方线 图图 图图
1.活动中进行调查的步骤是什么?
活动中进行调查的步骤:收集数据,整 理数据,描述数据和分析数据。
2.什么பைடு நூலகம்全面调查和抽样调查?它们各有什么优 点和缺点?
考察全体对象的调查叫全面调查。 采用调查部分对象的方式来收集数据,根据 部分来估计整体的情况,叫做抽样调查。
3.样本: 从总体中所抽取的一部分个体叫做 总体的一个样本。
4.样本容量: 样本的个数。
4.为什么抽样调查可以作为了解总体的方法?
抽样调查数据之所以能用来代表和估计总体, 主要是因为抽样调查本身具有其它非全面调查所 不具备的特点:
(1)调查样本是按随机的原则抽取的,在总体 中每一个单位被抽取的机会是均等的,因此,能 够保证被抽中的单位在总体中的均匀分布,不致 出现倾向性误差,代表性强。(抽取的样本具有代表性)
(2)是以抽取的全部样本单位作为一个“代表 团”,用整个“代表团”来代表总体,而不是用 随意挑选的个别单位代表总体。(是简单随机抽样)
5.什么是简单随机抽样?简单随机抽样有什 么特点?用简单随机抽样抽出的样本是否一 定具有代表性,请举例说明。
抽取样本的过程中,总体中的每一个个 体都有相等的机会被抽到,像这样的抽样方 法是一种简单随机抽样。