西南交大现代信号处理期末作业

合集下载

2020年西南交通大学期末真题及答案信号与系统

2020年西南交通大学期末真题及答案信号与系统

《信号与系统》2005 年期末试题A 卷班级姓名学号成绩一一 30 分二二 30 分三三 26 分分四四 14 分分1 2 3 4 5 1 2 3 1 2 3一、共 5 5 小题,总分为 0 30 分1 、试判断下列式子代表的系统是否为线性系统,并说明理由(其中 y t为系统响应, 0 y 为初始条件, f t为系统输入)(8 分)201 0 2ty t y f d2 0 cos5 0 y t y t y f t2 33 3 0 y t y t f t3 2 2245 2d y t d y t d f ty t f tdt dt dt2、、试确定信号 1 cos 1000 sin 2000 x t t t 的奈奎斯特频率。

(3 分)3 、已知描述系统的方程为4 4 2y t y t y t f t ,初始条件为 0 0 2 y y 。

求(1 )系统传递算子 H p;;(2 )系统零输入响应 xy t。

(7 分)4 、已知系统的单位冲击响应 2h t t ,当系统输入为142f t t t t 时,用时域分析法求系统零状态响应 fy t。

(6 分)5 、已知 f t的波形如下图,求 F j 。

(6 分)二、共 3 3 小题,总分为 0 30 分1 、系统的微分方程为 5 62 8y t y t y t f t f t ,,激励 tf t e t ,利用复频域分析法求系统的零状态响应。

(7 分)2 、系统传递函数为 N sH sD s ,试分析下列系统是否渐近稳定。

(9 分)21 1 2D s s s s 5 3 22 4 3 2 9 D s s s s s 5 4 3 23 2 3 4 11 8 D s s s s s s 3 、作出下列系统直接实现形式的模拟框图和信号流图。

(注假定系统为零状态)(14 分)113sH ss 2423 2sH ss s 三、共 3 3 小题,总分为 6 26 分1 、系统信号流图如下图所示,求系统的传递函数 H s。

现代信号处理复习题

现代信号处理复习题

同时,信号与噪声不相关,即 E{s(t )n(t )} 0, ,试求因果 Weiner 滤波器的传递函数。 7.信号的函数表达式为:
x(t ) 0.001cos(2 100t 1 ) cos(2 50t 2 ) 0.1cos(2 150t 3 ) 0.002 cos(2 210t 4 ) (t )
2 是一零均值、方差为 w 的白噪声。证明 x ( n) 的功率谱为
Px ( f )
2 w 2 2 1 a1 a2 2a1 (1 a2 ) cos(2 f ) 2a2 cos(4 f )
6.令 s (t ) 是一平稳的随机过程,并且
1 e 2 1, 0 Rnn ( ) E{n(t )n(t )} 0, 0 Rss ( ) E{s(t ) s(t )}
现代信号处理技术及应用课程期末考核题目及要求
任课教师:电气工程学院 何正友、符玲 2016-06-14 (1)课程作业:作业共8个题目,作业中的每个题目应给出求解过程、程序和 最终结果(数据和曲线) ,不得抄袭,否则为零分。 (40分)
1. 为 何 对 于 最 大 似 然 估 计 , 对 于 大 的 N , ML 是 均 值 为 , 方 差 为
其中, 1 , 2 , 3 , 4 为不同初相角, (t ) 为高斯白噪声,采样频率 1kHz,采样时间 2.048s。 (1) 利用现代信号处理知识进行信号的谱估计; (2) 利用现代信号处理知识进行信号的频率提取; (3) 分别利用 Wiener 滤波和 Kalman 滤波进行去噪。 8.利用小波分析方法对上述信号进行频率提取和时频分析。
1 N 2 E ln f ( x1 , , xN | ) 的高斯分布。

西南交通大学信号处理期末作业

西南交通大学信号处理期末作业

欢迎共阅1、考虑两个谐波信号()x t 和()y t ,其中()cos()c x t A w t φ=+,()cos()c y t B w t =式中A 和c w 为正的常数,φ为均匀分布的随机变量,其概率密度函数为1,02()20,f φπφπ⎧≤≤⎪=⎨⎪⎩其他, 而B 是一个具有零均值和单位方差的标准高斯随机变量,即其分布函数为 (1)求()x t 的均值()x u t 、方差2()x t σ、自相关函数()x R τ和自协方差函数()x c τ。

根据三角公式分解得到如下式子: 由此,可以得到如下公式所以相位的最大似然估计如下:3.离散时间的二阶AR 过程由差分方程12()(1)(2)()x n a x n a x n w n =-+-+ 描述,式中()w n 是一零均值、方差为2w σ 的白噪声。

证明()x n 的功率谱为证明:由AR 过程的功率谱公式知 其中将其带入第一个公式可得:4、信号的函数表达式为:()()()()sin(2100) 1.5sin(2300)sin(2200)x t t t A t t dn t n t πππ=++++,其中,()A t 为一随时间变化的随机过程,()dn t 为经过390-410Hz 带通滤波器后的高斯白噪声,()n t 为高斯白噪声,采样频率为1kHz ,采样时间为2.048s 。

分别利用周期图谱、ARMA 、Burg 最大熵方法估计信号功率谱,其中ARMA 方法需要讨论定阶的问题。

解:由题意知采样点数一共为:1000×2.048=2048个数据点。

()A t 为一随时间变化的随机过程,由于随机过程有很多类型,如维纳过程、正态随机过程,本文采用了均值为0,方差为1的正态随机过程来作为演示,来代替()A t ,高斯白1k k =1k k =0k =为了保证H(z)是稳定的最小相位系统,A(z)和B(z)的零点都应该在单位圆内。

假定u(n)是一个方差为2σ的白噪声序列,由随机信号通过线性系统的理论可知,输出序列X(n)的功率谱为:ARMA 阶数确定:本题目采用AIC准则确定ARMA的阶数。

西南交大现代信号处理作业

西南交大现代信号处理作业

现代信号处理作业1.(5″)证明下面定理:任何一个无偏估计子方差的下界叫作Cramer-Rao 下界 定理:令1(,,)N x x x =为一样本向量,(|)f x θ是x 的条件密度,若ˆθ是θ的一个无偏估计子,且(|)/f x θθ∂∂存在,则221ˆˆvar()()[ln (|)]E E f x θθθθθ=-≥∂∂式中ˆln (|)()()f x K θθθθθ∂=-∂。

其中()K θ是θ的某个不包含x 的正函数。

2.(10″)Wiener 滤波是信号处理中最常用和基础的波形估计工具之一,对其在自己研究领域的应用情况进行一个简单综述。

3.(5″)二阶滑动平均过程由2()()1(1)2(2),{()~(0,)}x n w n b w n b w n w n N σ=+-+-定义,式中2(0,)N σ表示正态分布,其均值为零、方差为2σ。

求x(n)的功率谱。

4.(20″)信号的函数表达式为:()sin(2100)sin(2300)()sin(2200)()()x t t t A t t dn t n t πππ=++++,其中,A(t)为一随时间变化的随机过程,dn(t)为经过390-410Hz 带通滤波器后的高斯白噪声,n(t)为高斯白噪声,采样频率为1kHz ,采样时间为2.048s 。

(1) 利用现代信号处理知识进行信号的谱估计; (2) 利用现代信号处理知识进行信号的频率提取; (3) 分别利用Wiener 滤波和Kalman 滤波进行去噪; (4) 利用Wigner-Ville 分布分析信号的时频特征。

5.(10″)附件中表sheet1 为某地2008年4月28日凌晨12点至2008年5月4日凌晨12点的电力系统负荷数据,采样时间间隔为1小时,利用ARMA 方法预测该地5月5日的电力系统负荷,并给出预测误差(5月5日的实际负荷数据如表sheet2)。

1、定理:令1(,,)N x x x =为一样本向量,(|)f x θ是x 的条件密度,若参数估计ˆθ是真实参数θ的一个无偏估计子,且(|)/f x θθ∂∂、22(|)/f x θθ∂∂存在,则ˆθ的均方误差所能达到的下界(称为Cramer-Rao 下界)等于Fisher 信息的导数,即:221ˆˆvar()()[ln (|)]E E f x θθθθθ=-≥∂∂ (1-1)不等式中等号成立的充分必要条件是:ˆln (|)()()f x K θθθθθ∂=-∂ (1-2) 其中()K θ是θ的某个正函数,与样本1(,,)N x x x =无关。

现代信号处理大作业题目 答案.

现代信号处理大作业题目 答案.
12(2[1cos(]1,2,3(20 n n h n W π-⎧+=⎪=⎨⎪⎩其它
式中W用来控制信道的幅度失真(W = 2~4,如取W = 2.9,3.1,3.3,3.5等,且信道受到均
值为零、方差001.02=v σ(相当于信噪比为30dB的高斯白噪声(n v的干扰。试比较基
于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线:
b2 = b2 + bd2;
end;%end of for
if accumulate_error(circle_time <= threshold| circle_time>3001 %then break;
end;%end of if
end;%end of while
plot(accumulate_error,'m';
s1 = F(a1*w2'*s2;%隐层delta值
%修改权值
wd1 = alpha .* s1*a0';
wd2 = alpha .* s2*a1';
w1 = w1 + wd1;
w2 = w2 + wd2;
bd1 = alpha .* s1;
bd2 = alpha .* s2;
b1 = b1 + bd1;
grid;
xlabel('学习次数'
ylabel('误差'
disp(['计算误差= ',num2str(accumulate_error(circle_time] ;
disp(['迭代次数= ',num2str(circle_time];

现代信号处理作业

现代信号处理作业

现代信号处理作业现代信号处理课程作业1.做⼀个⽹络检索,简述现代信号处理技术的主要特征和技术特点,并阐述信号处理在实际⼯程中的应⽤情况代信号处理技术的主要特征和技术特点:1)精度⾼:在模拟系统的电路中,元器件精度要达到10-3以上已经不容易了,⽽数字系统17位字长可以达到10-5的精度,这是很平常的?例如,基于离散傅⾥叶变换的数字式频谱分析仪,其幅值精度和频率分辨率均远远⾼于模拟频谱分析仪?2) 灵活性强:数字信号处理采⽤了专⽤或通⽤的数字系统,其性能取决于运算程序和乘法器的各系数,这些均存储在数字系统中,只要改变运算程序或系数,即可改变系统的特性参数,⽐改变模拟系统⽅便得多?3) 可以实现模拟系统很难达到的指标或特性:例如:有限长单位脉冲响应数字滤波器可以实现严格的线性相位;在数字信号处理中可以将信号存储起来,⽤延迟的⽅法实现⾮因果系统,从⽽提⾼了系统的性能指标;数据压缩⽅法可以⼤⼤地减少信息传输中的信道容量?4)可以实现多维信号处理:利⽤庞⼤的存储单元,可以存储⼆维的图像信号或多维的阵列信号,实现⼆维或多维的滤波及谱分析等?信号处理在实际⼯程中的应⽤情况:数字信号处理是利⽤计算机或专⽤计算机或专⽤处理设备,以数据形式对信号进⾏采集,变换,滤波,估值,增强,压缩,识别等处理,以得到符合⼈们需要的信号形式?数字信号处理是以众多科学为理论基础的,他所涉及的范围及其⼴泛?DSP 技术应⽤到我们的⽣活的每⼀个⾓落,从军⽤到民⽤,从航空航天到⽣产⽣活,都越来越多地使⽤DSP. DSP技术在航空⽅⾯,主要⽤于雷达和声纳信号处理;在通信⽅⾯,主要⽤于移动电话,IP电话,ADSL和HFC的信号传输;在控制⽅⾯,主要⽤于电机控制,光驱和硬盘驱动器;在测试/测量⽅⾯,主要⽤于虚拟仪器,⾃动测试系统,医疗诊断等;在电⼦娱乐⽅⾯,主要⽤于⾼清晰度电视,机顶盒,家庭影院,DVD 等应⽤;还有数字相机,⽹络相机等等都应⽤了SP技术?同时,SOC芯⽚系统,⽆线应⽤,嵌⼊式DSP都是未来DSP的发展⽅向和趋势?可以说,没有DSP就没有对互联⽹的访问,也不会有多媒体,也没有⽆线通信?因此DSP仍将是整个半导体⼯业的技术驱动⼒?现在,DSP应⽤领域不断拓宽,其涵盖⾯包括宽带Internet接⼊业务,下⼀代⽆线通信系统的发展,数字消费电⼦市场,汽车电⼦市场的发展等诸多多⽅⾯?现代数字信号处理器是执⾏⾼速数字信号系统的IC电路,它恰好适合多媒体信息化社会需求,迅速发展壮⼤?如今,世界电⼦器件市场上,各种各样的DSP器件已相当丰富?⼤⼤⼩⼩封装形式的DSP器件,已⼴泛⽤于各种产品的⽣产领域,⽽且DSP的应⽤领域仍在不断的扩⼤,发展速度异常?2?简述信号的频率分析技术及其应⽤,阐述实现精细频率分析的实现⽅法?考虑到数字信号分析中,虽然提⾼信号的采样频率可以改善信号分析的频率分辨率,但是提⾼信号的采样频率通常需要付出额外的硬件代价,往往受制于可实现性与成本问题⽽难以实现?因此,就需要使⽤频谱细化技术在尽可能低的采样频率下提⾼数字信号分析的频率分辨率的措施?频谱细化的基本思路是对信号频谱中的某⼀频段进⾏局部放⼤,也即在某⼀频率附近局部增加谱线密度,实现选带频段分析?频谱细化技术在⽣产实践和科学研究中获得了⽇益⼴泛的应⽤?例如,齿轮箱的故障诊断要求准确分辨齿轮各阶啮合振动的主频和边频等,其频谱图上的频率间隔很细,但频率分布⼜较宽,为了识别谱图的细微结构,就必须对信号进⾏细化分析;直升机?坦克?巡航导弹的声⾳具有显著的⾮平稳性,为了得到准确的时延量,信号的取样不能太长,⽽FFT计算的频谱存在栅栏效应?因此必须采⽤有效的⽅法对频谱进⾏细化,这样才能保证⾜够的相关计算精度;在⽆线电通信信号和其他的实际⼯程信号的分析中,为了获取更⾼的测量精度和实时检测能⼒,需要对信号频谱进⾏细化分析,以提供有⽤信息?因此对频谱细化技术的研究受到普遍重视,也是当前信号处理技术研究中的⼀个⼗分活跃的课题?常见的经典⽅法有:复调制细化法?Chirp-Z变换?FFT+FT细化法?DFT补零法等很多⽅法?复调制细化法:⼜称为选带频率细化选带频谱分析,是20世纪70年代发展起来的?其传统的分析步骤为:移频(复调制)低通滤波器重抽样--FFT及谱分析频率成分调整,因其物理概念⾮常明确,所以⼀直沿⽤⾄今?FFT+FT细化法:该⽅法的原理本质是将连续傅⾥叶变换经过将积分化成求和?时域离散化和时域截断为有限长三个步骤变换得到时间离散?频率连续的特殊傅⾥叶变换形式?FFT+FT连续细化分析傅⾥叶变换法先⽤FFT做全景谱,再对指定的⼀个频率区间进⾏细化计算:先确定频率分辨率,再确定计算频率序列,最后⽤FT连续谱分析⽅法进⾏实部和虚部计算,合成幅值谱和相位谱? Chirp-Z变换:最早提出于1969年,CZT是⼀种在Z平⾯上沿着螺旋线轨道计算有限时宽的Z变换⽅法?基本原理是在折叠频率范围内任意选择起始频率和频率分辨率在这有限带宽⾥对样本信号进⾏Z变换这与频谱校正⽅法中的FFT + FT 连续细化分析傅⾥叶变换法的基本原理是⼀样的?3、通过⽹络检索,对弱信号检测技术进⾏调研,分析⼀下现代弱信号检测的⽅法微弱信号检测(WeakSignalDetection)是⼀门新兴的技术学科,应⽤范围遍及光?电?磁?声?热?⽣物?⼒学?地质?环保?医学?激光?材料等领域?其仪器已成为现代科学研究中不可缺少的设备?微弱信号检测技术是采⽤电⼦学?信息论?计算机及物理学的⽅法,分析噪声产⽣的原因和规律,研究被测信号的特点与相关性,检测被噪声淹没的微弱有⽤信号?微弱信号检测的⽬的是从强噪声中提取有⽤信号,或⽤⼀些新技术和新⽅法来提⾼检测系统输出信号的信躁⽐?信号处理系统的信躁⽐改善等于输⼊(⽩)躁声带宽与系统的躁声等效带宽之⽐?因此,减少系统的躁声等效宽度便可以提⾼系统的输出信躁⽐?对于信躁⽐⼩于1的被躁声淹没的信号,只要信号处理系统的躁声等效带宽做得很⼩,就可以将信号(或信号携带的信息)从躁声中提取出来,这就是通常的微弱信号检测的指导思想之⼀?现代弱信号检测的⽅法和原理窄带滤波法: 使⽤窄带滤波器,滤掉宽带躁声只让窄带宽信号通过(仅有极少量窄带躁声通过)?窄带滤波法能减少躁声对有⽤信号的影响?滤除掉通频带以外躁声,提⾼信号的信躁⽐?但是,由于⼀般滤波器的中⼼频率不稳定,不能满⾜更⾼的滤除躁声的要求?双路消躁声法:由于信号与躁声性能完全不同,信号⼀般为⼀些变化规律已知的量,⽽躁声是⼀些随机量满⾜统计规律?当随机性的躁声从两路到达加法器时,极性正好相反,经过加法器相加后把躁声消掉?只有少数强躁声才通过阀值电路⽽产⽣本底计数,根据统计规律?本底计数时间较长时为恒定值?故可以先测出它,然后从总计数中把它减得到信号计数?这种⽅法只能检测到微弱的正弦信号是否存在,⽽不能复现信号波形?同步累积法:利⽤信号的重复性,躁声的随机性,对信号进⾏重复累积(⼏次),使SNIR提⾼,但需耗费时间?锁定接收法(频域分析法) :锁定检测法是利⽤互相关原理,使输⼊待测的周期信号与频率相同的参考相关器中实现互相关,从⽽将深埋在躁声中的周期信号携带的信息检测出来?相关检测法: 相关检测技术是应⽤信号周期性和噪声随机性的特点,通过⾃相关或互相关运算,达到去除躁声检测出信号的⼀种技术?由于信号和躁声是相互独⽴的过程,根据相关函数和互相关函数的定义,信号只与信号本⾝相关与躁声不相关??取样积分法:取样积分(或信号平均)法是将待测的重复信号逐点多次取样并进⾏同步积累,从⽽达到从噪声中恢复信号波形的⽅法?取样积分也采⽤同步相关检测的原理和⽅法,实现从噪声中提取信号,但它的参考信号只在窗⼝持续期间与被测信相关,每周相关时间很短,此外它的相移也是在很慢的变化?取样积分由单点取样积分与多点取样积分两种?4.利⽤MATLAB产⽣出⼀个线性调频信号(chirp信号),采样频率=8000Hz,持续时间1s,起始频率=500Hz,终⽌频率=1300Hz,给出其时域波形图,请利⽤短时FFT分析函数对数据进⾏时间-频率分析,观测频率随时间的变化情况分析结果:00.10.20.30.40.50.60.70.80.91-1-0.50.51时间t/s幅度线性调频信号Time F r e q u e n c y 线性调频信号的STFT 频谱图50010001500200025003000350015. 研究⼀下利⽤⾃相关实现含噪声的正弦信号检测⽅法,并利⽤MATLAB 进⾏验证:答:相关函数的应⽤很⼴,例如,噪声中信号的检测?信号中隐含周期性信号的检测,信号相关性的检测等?设信号)(n f 由正弦信号) (n x 加均值为零的⽩噪声)(n s 所组成,即)()()(n s n x n f +=;那么)(n f 的⾃相关为∑∞=++++=0)]()()][()([1)(n m n s m n x n s n x N m R=)()()()(m R m R m R m R ss sx xs xx +++其中)(m R xs 和)(m R sx 分别是正弦信号)(n x 和⽩噪声)(n s 的互相关?⽩噪声是随机的,和信号)(n x 应⽆相关性,所以)(m R xs 和)(m R sx 应趋近于零?⽩噪声)(n s 的⾃相关函数)(m R ss 主要在n=0处有值,当0||>n 时,衰减很快?由于)(n x 是周期函数,那么)(m R xx 将呈周期变化,从⽽揭⽰出隐含在)(m R xx 中的周期性?由于)(n x 总为有限长,所以这些峰值将是逐渐衰减的,且)(m R xx 的最⼤延迟应⼩于数据长度?01002003004005006007008009001000-4-224含噪声时域正弦信号01002003004005006007008009001000-0.500.5⾃相关检测出的正弦信号6. 简述⼩波滤波的原理,并利⽤MATLAB 中的⼩波⼯具进⾏⼀个⼩波滤波练习,给出计算结果,并进⾏分析答 :信号去噪是信号处理领域的⼀个经典问题,传统的去噪⽅法主要是线性滤波和⾮线性滤波,例如中值滤波和Wiener 滤波等?⼩波变换具有下列良好特性:①低熵性②多分辨率特性③去相关性④选基灵活性?⼩波在信号去噪领域已经取得越来越⼴泛的应⽤?阈值去噪的⽅法是⼀种较好的⼩波去噪法?阈值去噪⽅法的思想就是对⼩波分解后的个层系数中模⼤于和⼩于某阈值的系数进⾏处理,然后对处理完的⼩波系数再进⾏反变换,重构出经过去噪的信号?01002003004005006007008009001000-11原始信号01002003004005006007008009001000-22含噪信号01002003004005006007008009001000-202去噪后的信号。

2012-2013(2)信号与系统A期末考试试卷B答案

2012-2013(2)信号与系统A期末考试试卷B答案

班 级 学 号 姓 名8.下列各式中正确的是 ( C )(A ))()2(t t δδ= (B ))(2)2(t t δδ=;(C ))(21)2(t t δδ= (D ))2(21)(2t t δδ=9.若离散时间系统是稳定因果的,则它的系统函数的极点( C ) (A ) 全部落于单位圆外 (B )全部落于单位圆上 (C ) 全部落于单位圆内 (D ) 上述三种情况都不对 10. 已知)()()(t h t x t y *=,则(3)(4)x t h t -*-=( C )。

(A) )3(-t y (B) )4(-t y (C) )7(-t y (D) )1(-t y 二、(5分)已知)5(t f -的波形如图所示,试画出)42(+t f 的波形。

解:三、(10分)试求下图所描述离散线性时不变系统的单位取样响应()h n 。

其中线性时不变子系统的单位取样响应分别为:()()1(1)(2)h n n n n δδδ=+-+-,()()()()2212h n n n n δδδ=+---。

解法1:在时域中求解或写成解法2:在Z 域中求解,或写成四、(20分)下图(a )所示是抑制载波振幅调制的接收系统∞<<∞-=t ttt e πsin )(, ∞<<∞-=t tt s 1000cos )(。

理想的低通滤波器的传输函数如图(b )所示,0)(=ωϕ。

(1) 画出A 、B 、C 点的频谱图。

(2) 求输出信号)(t r 。

解:∞<<∞-=t ttt e πsin )( ,)]1()1([)(--+=ωωωu u E∞<<∞-=t t t s 1000cos )(,))1000()1000(()(++-=ωσωσπωS (1))()()(t s t e t r A =,)]1001()999()999()1001([21)()(21)(---++-+=*=ωωωωπu u u u w S w E w R A)()()(t s t r t r A B =,图 (b )图(a ))]2001()1999([41)]1999()2001([41)]1()1([21)()(21)(---++-++--+=*=ωωωωωωπu u u u u u w S w R w R A B(2) )(21)]1()1([21)(ωωωE u u w R C =--+==∞<<∞-=t tt t r π2sin )(五、(15分)设()f t 是频带有限的信号,其频谱如图所示,频带宽度10/m rad s ω=。

现代信号处理作业

现代信号处理作业

1.总结学过的滤波器设计方法,用matlab 仿真例子分析不同设计方法的滤波器的性能及适应场合。

答:1.1模拟低通滤波器的设计方法 1.1.1 Butterworth 滤波器设计步骤: ⑴.确定阶次N① Ωc 、Ωs 和As 求Butterworth DF 阶数N② Ωc 、Ωs 和Ω=Ωp()的衰减Ap 求Butterworth DF 阶数N③ Ωp 、Ωs 和Ω=Ωp 的衰减Ap和As 求Butterworth DF 阶数N3dB p Ω≠-/10/1022(/)101,(/)101p s A A N N p c s c ΩΩ=-ΩΩ=-则:⑵.用阶次N 确定 根据公式:在左半平面的极点即为的极点,因而1.1.2 切比雪夫低通滤波器设计步骤: ⑴.确定技术指标归一化: ⑵.根据技术指标求出滤波器阶数N 及:⑶.求出归一化系统函数 其中极点由下式求出:()a H s 1,2,2N()()a a H s H s -()a H s 2,,N p Ωp αs Ωs α/1p p p λ=ΩΩ=/s s p λ=ΩΩε0.12101δε=-p δα=或者由和S 直接查表得2.数字低通滤波器的设计步骤:〔1〕 确定数字低通滤波器的技术指标:通带截止频率pω、通带最大衰减系数pα、阻带截止频率ω、阻带最小衰减系数s α。

〔2〕将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标。

巴特沃斯:切比雪夫:N ()a H p /ss p λ=ΩΩ0.12101δε=-p δα=〔3〕把模拟滤波器变换成数字滤波器,即把模拟滤波器的系数)(S H 映射成数字滤波器的系统函数)(z H 。

实现系统传递函数s 域至z 域映射有脉冲响应不变法和双线性映射两种方法。

〔〕脉冲响应不变法。

按照技术要求设计一个模拟低通滤波器,得到模拟低通滤波器的传输函数()s H a 转换成数字低通滤波器的系统函数H(z)。

设模拟滤波器的传输函数为()s H a ,相应的单位冲激响应是()t h a ,()s H a =LT[()t h a ],LT[.]代表拉氏变换,对()t h a 进展等间隔采样,采样间隔为T ,得到()nT h a ,将h(n)= ()nT h a 作为数字滤波器的单位取样响应,那么数字滤波器的系统函数H(z)便是h(n)的Z 变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
而B是一个具有零均值和单位方差的标准高斯随机变量,即其分布函数为
f B (b)
1 exp(b 2 / 2), b 2
2 (1) 求x(t)的均值 x (t ) 、方差 x (t ) 、自相关函数 Rx ( ) 和自协方差函数 Cx ( ) 。
(2) 若 与B为相互统计独立的随机变量,求x(t)和y(t)的互相关函数 Rxy ( ) 与互协方差函 数 Cxy ( ) 。 2. 一观测过程由 x(n) A Bn (n) 描述,其中 (n) 为高斯白噪声,均值为零,方差等
u(t ) U m sin(t ) ec (t t1 ) sin(t ) (t2 ) (t1 ))
间谐波+ 暂态振荡 振荡幅值: =0.3 ,相对系数: =20 ,衰减系数:c=0.05, 扰动起止时刻:t1=0.12s t2=0.136s;间歇波 mi=3.5,ai=0.2。
ˆ 和B ˆ 的估计方差的Cramer-Rao下 于 2 ,而A和B是两个待估计的未知参数。求估计子 A
界。 3. 信号的函数表达式为:x(t ) sin(2100t ) 1.5*sin(2 300t ) A(t )sin(2 200t ) dn(t ) n(t ) , 其中,A(t)为一随时间变化的随机过程,dn(t)为经过390-410Hz带通滤波器后的高斯白 噪声,n(t)为高斯白噪声,采样频率为1kHz,采样时间为2.048s。分别利用Wiener滤波 和Kalman滤波进行去噪。 4. 信号的函数表达式: x(t ) sin(2100t ) 1.5*sin(2 300t ) A(t )sin(2 200t ) dn(t ) n(t ) , 其 中,A(t)为一随时间变化的随机过程,dn(t)为经过390-410Hz带通滤波器后的高斯白噪 声,n(t)为高斯白噪声,采样频率为1kHz,采样时间为2.048s。分别利用经典功率谱和 现代功率谱进行去频率的估计。 5. 附件中表sheet1为某地2008年4月28日凌晨12点至2008年5月4日凌晨12点的电力系统负 荷数据,采样时间间隔为1小时,利用ARMA方法预测该地5月5日的电力系统负荷,并给
出预测误差(5月5日的实际负荷数据如表sheet2)。 6. 间谐波和暂态振荡信号的表达式分别如下,两者混合如下表所示,利用课程学习的方法 进行扰动的起始时刻、终止时刻、扰动幅值和扰动频率的检测。
u(t ) U m sin(t ) ai sin(mit i )
i 1
现代信号处理技术及应用课程作业
1. 考虑两个谐波信号x(t)和y(t),其中
x(t ) A cos(ct ) y(t ) B cos(ct )
式中A和 c 为正的常数; 为均匀分布的随机变量,其概率密度函数为
1 , 0 2π f
相关文档
最新文档