简单轴的模态分析
ansys简介及转轴模态分析实例

加载
Objective
可在实体模型或 FEA 模型 (节点和单元) 上加载.无 论采取何种加载方式,ANSYS求解前都将载荷转化到有 限元模型.因此, 加载到实体的载荷将自动转化到 其所 属的节点或单元上。
沿线均布的压力 沿单元边界均布的压力
在关键点处 约束
在节点处约束
实体模型
FEA 模型
在关键点加集中力
分析结论;
振型图
一阶振型
振型图
二阶振型
振型图
三阶振型
结果分析
固有频率计算值:(前四阶频率)
X方向 Y方向
结果分析
一阶固有频率随弹簧刚度变化曲线
结果分析
结果对比:
理论计算值 临界转速 (rpm) 实验测得值 ANSYS模拟值
5782 96.37
5200 86
5070 84.5
固有频率 (Hz)
转子——轴承实体模型
二 加载求解
Objective
施加约束:节点10,11为固定端(DOF=0), 轴 上所有节点(UX=0)
求解
New Analysis 新分析
Modal 模态分析 Block 分块矩阵法 Solve 求解
Current LS 当前载荷
三 结果处理
各阶振型图; 固有频率计算值;
典型分析过程
1. 创建有限元模型 1)单元属性定义(单元类型、实常数、材料属性) 2)创建或读入几何实体模型 A 1 3)有限元网格划分 2. 施加载荷进行求解 1)施加约束条件、载荷条件 Y Z X 2)定义分析选项和求解控制 3)定义载荷及载荷步选项 4)求解 solve 3. 后处理 1)查看分析结果 2)检验结果
技术
—— 固有频率 —— 振型 —— 振型参数等 模态分析是所有动力学分析类型的最基础 的内容
模态分析及意义介绍

六 模 态 分 析 总 结
五 模 态 举 例 CAE
四 模 态 试 验 举 例
三 模 态 问 题 举 例
二 整 车 模 态 分 布
一 模 态 基 础 理 论
车架前三阶模态振型:
五
图2-1 第一阶频率
模 态 举 例 CAE
图2-2 第二阶频率
图2-3 第三阶频率
五 模 态 举 例 CAE
阶次
CAE计算
一 模 态 基 础 理 论
1.3模态分析基本原理 模态分析有很多种方法,仅介绍频域法模态拟合的基本原理:
一 模 态 基 础 理 论
经离散化处理后,一个结构的动态特性可由N 阶矩阵微分方程描述:
经过拉普拉斯变换等处理,可得到频率响应函数矩阵H(ω),该矩阵 中矩阵中第i行第j列的元素
ωr、ξr 、Φr分别称为第r 阶模态频率、模态阻尼比和模态振型 。
100
0.056
4.79
3.47
0.229
0.748
0.646
Mode3
26.684 Hz
0.013
0.056
100
0.012
0.11
5.384
0.002
0.003
Mode4
36.487 Hz
2.957
4.79
0.012
100
1.377
0.003
1.179
1.786
Mode5
51.299 Hz
1.022
3.2方向盘低速抖动问题 某样车5档缓加方向盘12点Z向振动colormap图
三
2700.00 2.01 4.90
模 态 问 题 举 例
Tacho1 (T1)
ansys轴模态分析教程实例

APDL: da,7,all da,8,all da,19,all da,20,all
⑪进行求解 GUI: Main/Solution/Solve/Current LS,即可弹出求解对话框,单击OK,进行求解。 警告窗口单击Yes,后出现Solution is done. ,单击Close关闭对话框,关闭求解对 话框。 APDL: /solu solve
⑫通过通用后处理器查看各自然频率 GUI: Main Menu/General Postproc/Result Summary。在弹出的对话框中列出了提取 的前10阶频率,如图所示。
APDL: /POST1 SET,LIST
⑬读取载荷步数据 GUI: Main Menu/General Postproc/Read Results/By Pick ,在弹出的对话框中选择第 四阶频率(也可以选其他的),单击Read,然后单击Close
APDL: MODOPT,LANB,10 EQSLV,SPAR MXPAND,10, , ,1 LUMPM,0 PSTRES,0
⑩施加边界条件 GUI: Main Menu/Solution/Define Loads/Apply/Structural/Displacement/On Area , 弹出拾取对话框,选择直径为120和100的两个圆柱面,单击OK,在弹出的自由 度限制对话框,选择All DOF,单击OK。
APDL语言
finish /clear,nostart /filname,spindle /title,modal analysis /prep7 et,1,185 mp,ex,1,2e11 prxy,1,0.3 dens,1,7800 cylind,40,0,0,200 cylind,60,0,600,200 cylind,100,0,600,780 cylind,75,0,1080,780 cylind,50,0,1080,1280 cylind,30,0,1400,1280 vadd,all smrt,1 mshape,1,3D mshkey,0 vmesh,all acel,0,-9.8,0 antype,2 MODOPT,LANB,10 EQSLV,SPAR MXPAND,10, , ,1 LUMPM,0 PSTRES,0 da,7,all da,8,all da,19,all da,20,all /solu solve /POST1 SET,LIST SET,,, ,,, ,4 PLNSOL, U,Y, 0,1.0 PLNSOL,S,EQV
模态分析

1. 什么是模态分析?模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。
因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
2. 模态分析有什么用处?模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:1. 评价现有结构系统的动态特性;通过结构的模态分析可以求得各阶模态参数(模态频率、模态振型以及模态阻尼),从而评价结构的动态特性是否符合要求,并校验理论计算结构的准确性。
2. 在新产品设计中进行结构动态特性的预估和优化设计;3. 诊断及预报结构系统的故障;近年来,结构故障技术发展迅速,而模态分析已成为故障诊断的一个重要方法。
利用结构模态参数的改变来诊断故障是一种有效方法。
例如,根据模态频率的变化可以判断裂纹的出现;根据振型的分析可以确定断裂的位置;根据转子支承系统阻尼的改变,可以诊断与预报转子系统的失稳等。
4. 控制结构的辐射噪声;结构噪声是由于结构振动所引起的。
结构振动时,各阶模态对噪声的“贡献”并不相同,对噪声贡献较大的几阶模态称为“优势模态”。
基于OptiStruct的某型汽车传动轴模态分析

基于OptiStruct的某型汽车传动轴模态分析尹荣栋;赵振东;陈鸿键;白田伟;臧利国【摘要】针对传动轴受到自身以及其他外部激励会引起振动和异响的问题,对传动轴进行模态分析来获取其固有特性参数.建立了考虑十字轴万向节和中间支撑的某型汽车传动轴三维模型,然后基于HyperMesh建立了传动轴的有限元仿真模型.采用RBE2单元模拟十字轴万向节,用弹簧单元模拟中间支撑,基于OptiStruct对传动轴进行了模态分析.分析结果显示可避免传动轴模态频率与发动机激励频率发生共振,并通过试验模态分析验证了仿真结果的正确性,为传动轴的设计了提供理论依据.【期刊名称】《农业装备与车辆工程》【年(卷),期】2018(056)007【总页数】5页(P6-10)【关键词】汽车;传动轴;有限元;模态分析【作者】尹荣栋;赵振东;陈鸿键;白田伟;臧利国【作者单位】211100 江苏省南京市南京工程学院汽车与轨道交通学院;211100 江苏省南京市南京工程学院汽车与轨道交通学院;211100 江苏省南京市南京东华传动轴有限公司;211100 江苏省南京市南京东华传动轴有限公司;211100 江苏省南京市南京工程学院汽车与轨道交通学院【正文语种】中文【中图分类】U463.216+.20 引言汽车传动轴是用于将发动机通过变速箱输出动力的传递到驱动桥的重要部件。
传动轴在实际工作中如果受到自身或其他外部的激励就会产生振动及噪声,这不仅会影响乘车舒适性,更严重的是会引起传动轴以及与传动轴连接的变速器和驱动桥的破坏,甚至影响安全驾驶[1-2]。
影响传动轴振动的自身因素有很多,比如材料、连接形式、结构尺寸、传动轴当量夹角以及中间支撑刚度等[3-5]。
因此,为了在传动轴的设计开发阶段就能及时发现传动轴设计可能存在的共振问题,对其进行有限元模态分析是十分必要的。
采用有限元方法具有方便更改设计方案、缩短设计周期以及降低生产成本的优点,成为传动系统设计领域的必要的设计方法[6-7]。
RV传动中曲柄轴的模态分析

收 稿 日期 :0 01—0 2 1 — 1 0
作者 简介 : 何卫东 (9 7一)男 , 16 , 教授 , 士 , 博 主要从事现代机械传动力设计理论与方法 的研究
E malh dn @ dt.d .n ・ i w og j eu c . : u
第 2期
何 卫东 , : V传 动 中曲柄轴 的模 态分析 等 R
出 曲柄 轴在 工作 过程 中 的动态特 性 .
定义单 元类 型 为 Sl 9 od2十节 点 四面 体单 元 , i 弹性 模量 E = 0 P 26G a泊松 比为 03 密度为 780 ., 5 k/ 。对 曲柄轴进行 网格划分 , 生 183个 节 gm . 共产 77 点 ,19 160个单元 , 曲柄 轴施 加 约束 , 右 轴端 处 对 左 分别装 有支撑轴 承与左右行 星架联 接 , 加此两 个 施 位置径 向( U 即 X与 u Y方 向) 的约束 , 又根 据实 际 接触并不 是整个轴段 都接触 , 以只添加 轴段 处 J所 12接触面积 的约束 , / 施加约束 后如 图 4 在进行模 .
第3 2卷 第 2期 2 1 年 4月 01
大
连
交 通
大
学
学 报
V 1 3 No 2 0. 2 .
AD . r 20l l
J OUR NAL OF D I JA0T G UNI RS T AL AN I 0N VE I Y
文 章 编 号 :6 3 99 (0 1 0 .0 8 0 17 — 5 0 2 1 )2 0 2 . 5
1 5 77、 78 48、 6. 451 6 8 4. 7、 4 0 3. 1 . 42 3、 . 3、 4 4 8 7. 65、
高速动车组车轴的模态分析与优化设计

高速动车组车轴的模态分析与优化设计车轴是高速动车组重要的承载部件之一,对列车的安全性、平稳性和乘坐舒适度有着重要的影响。
为了满足运行速度的要求,提高车辆的稳定性和行驶平顺性,对车轴进行模态分析与优化设计是必不可少的。
模态分析是通过对车轴进行有限元建模,并对其进行振动特性的计算和分析。
具体的步骤包括有限元建模、求解特征值、振型分析和模态参数计算。
通过模态分析可以得到车轴在不同频率下的振动模态和振型,进而可以评估车轴的结构强度和稳定性。
同时,还可以确定车轮与轨道之间的共振关系,避免共振引起的不稳定运动和振动。
优化设计是指在满足车轴强度和稳定性要求的前提下,通过优化车轴的结构参数和材料性能,使车轴的质量降低、自振频率提高、动态特性改善。
具体的优化设计包括减少材料密度、增加截面强度、改善材料的疲劳性能等。
通过优化设计可以提高车轴的稳定性和寿命,减少动车组在高速运行过程中的振动和噪声。
在进行车轴的模态分析与优化设计时,需要考虑以下几个关键问题:首先,选择合适的有限元建模方法和模型精度。
有限元模型应该能够准确描述车轴的几何形状和材料特性,并能够有效地计算车轴的振动特性。
模型的精度对于振动特性和优化结果的准确性具有重要影响。
其次,要考虑车轴的边界条件和荷载情况。
在模态分析中,边界条件通常包括车轮与轴颈接触的约束和轨道对车轮的约束。
荷载情况包括列车的加速度、制动力、曲线力等。
边界条件和荷载情况对车轴的振动特性有着明显的影响,需要进行合理的设定和计算。
再次,要综合考虑车轴的强度和稳定性要求。
车轴在运行中所承受的载荷很大,必须能够满足一定的强度和刚度要求。
同时,要保证车轴的稳定性,避免振动过大和失稳引起的事故。
在进行优化设计时,要权衡车轴的强度和稳定性,保证两者的兼顾。
最后,要考虑车轴的制造和维修工艺。
车轴作为高速动车组的重要组成部分,其制造工艺和维修工艺对于车轴的质量和寿命具有重要影响。
在进行优化设计时,要考虑工艺的可行性,确保设计方案可以被有效地制造和维修。
齿轮传动轴的动态特性测试与模态分析

齿轮传动轴的动态特性测试与模态分析引言齿轮传动系统在机械装置中扮演着关键的角色,它通过齿轮的相互啮合传递力与运动。
在实际应用中,齿轮传动轴的动态特性对于确保传动系统的稳定性、可靠性以及寿命都起着至关重要的作用。
本文将深入探讨齿轮传动轴的动态特性测试与模态分析,以提供对传动系统性能优化的基础理论和实践指导。
一、齿轮传动轴动态特性的测试方法1. 强制激励法强制激励法是一种常用的齿轮传动轴动态测试方法,它通过对传动轴施加特定的荷载或力矩,从而观察其自由振动状态下的响应特性。
一般情况下,引入外加力或力矩后,通过合适的传感器采集传动轴的振动响应信号,并将其转化为频谱图分析,可以获得传动轴在不同激励条件下的振动模态。
2. 自由振动法自由振动法是另一种常用的齿轮传动轴动态测试方法,它在没有外界强制激励的情况下,通过对传动轴施加初速度或初位移,观察其自由振动过程中的响应特性。
测试时应尽量降低传动轴的阻尼,以减小振动信号的衰减,并采集振动响应信号进行频谱分析,进而得到传动轴的振动模态。
二、齿轮传动轴的模态分析1. 模态分析的基本原理模态分析是一种通过对某个结构或系统施加激励并测量其振动响应,来研究其特定振动模态的方法。
在齿轮传动轴的模态分析中,通过将传动轴固定在一端,施加激励并测量振动响应,可以得到传动轴的自由振动模态频率、振型和阻尼比等信息。
这些信息对于齿轮传动轴的动态特性和谐波分析等方面具有重要的意义。
2. 模态分析的步骤a. 激励源与传感器的安装:在模态分析实验中,需要选择合适的激励源,如锤击法、电磁激振器等,并通过传感器采集传动轴的振动信号。
传感器通常安装在传动轴的不同位置,以获取全面的振动模态信息。
b. 数据采集与处理:采集传感器测得的振动信号,并对其进行滤波和放大等处理。
通常使用频谱分析方法将时域信号转换为频域信号,得到传动轴不同频率上的振动响应特性。
c. 振型识别与模态提取:通过对频谱图的分析,可以识别出传动轴的振动模态,并提取出相应的模态参数,如频率、振型和阻尼比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单轴的模态分析
一根轴,半径r=0.03m,长s=1m,密度p=7800kg/m3,弹性模量E=2e11,两端简支。
(1)理论计算公式为:f = ( n^2 / s^2 ) * ( pi / 2 ) * sqrt ( E * I / ( p * A ) ) n=1,2,3,...
^表示平方,sqrt表示开方,pi是圆周率,A=pi*r^2为圆截面的面积,
I=pi*D^4/64为圆截面的惯性矩, D=2*r为直径
(2)计算前三阶结果为119.311 HZ,477.242 HZ,1073.795 HZ。
ANSYS WORKBENCH 12.1求解(很可能有不准确的地方,逐渐修正)
(一)思路:通过二维线模拟轴,线有圆形截面,半径0.03m
1.DesignModeler中的造型
1)创建两构造点(construction point),定义点的坐标。
2)通过两点创建线。
3)创建截面。
4)在线体上应用所创建的截面。
5)显示带有截面的线体。
2.Model中进行模态分析。
注意可以导入到Model中的体的类型,这里要包含Line body。
1)对两端点创建简支(simply support)约束
2)求解结果在solution中。
前三阶的固有频率为118.33,467.19,1029.7。
最后一阶与理论计
算值误差较大。
(二)思路:直接创建三维的轴。
1)对两端面创建远距离移动(Remote Displacement)约束。
两面的约束设置如下:
2)求解结果在solution中。
前三阶的固有频率为118.68,473.57,1061.5。
与理论计算值接近。