实验四五结构静力分析与ANSYS模态分析

合集下载

ansys先静力分析后模态分析的程序

ansys先静力分析后模态分析的程序

考虑热应力的模态分析 (2007-06-18 16:49:28)标签: cae fea 模态有限元分析热应力愿与大家分享,共同进步。

当然也欢迎大家把自己的想法与我交流。

考虑预应力影响的模态分析的方法如下:1。

先进行静力分析,注意分析时打开预应力开关(PSTRES,ON)。

2。

改变分析类型,获取模态解。

(再用一次PSTRES,ON)3。

特别注意:a.静力分析中和随后的模态分析中的集中质量选项(LUMPM)必须一致。

b.进行模态分析时,应保证静力分析的保存的.emat和.esav文件存在。

c.步骤1也可以是瞬态分析,但应当在需要的时间保存.emat和.esave文件。

下面是自己做的一个小例子。

两端固结的梁,长10m,截面为0.1m*0.1m,材质为钢材。

对比降温90度前后的模态分析解。

!考虑温度预应力的模态分析FINI/CLEAR,NOSTART/prep7k,1,0,0,0k,2,10,0,0l,1,2et,1,beam4MP,EX,1,200e9MP,NUXY,1,0.3mp,alpx,1,0.000012MP,dens,1,7800R,1,0.01,8.3E-6,8.3E-6,0.1,0.1, , //定义常系数LESIZE,ALL, , ,10, , , , ,1 //定义线上的单元数LMESH,ALL //划分线生成线单元/SOLU //进入求解器单元ANTYPE,STATIC //定义分析类型PSTRES,ON //是否计入预应力lumpm,offNSEL,S,LOC,X,0D,all,all //施加约束ALLSEL,ALL //选择所有实体NSEL,S,LOC,X,10D,ALL,UYD,all,allesel,allacel,,-9.8, //定义结构线性加速度BFE,all,TEMP,1,+70, , ,ALLSEL,ALLSOLVESAVEFINI/SOLUANTYPE,MODAL //选择分析类型MODOPT,LANB,10 //模态分析选项EQSLV,SPARMXPAND,0, , ,0lumpm,offPSTRES,1MODOPT,LANB,10,0,500, ,OFF //模态分析选项和模态分析方法NSEL,S,LOC,X,0D, all,allALLSEL,ALLNSEL,S,LOC,X,10 //节点的选择D, all,allALLSEL,ALL //选择所有实体SOLVESAVE/POST1SET,LIST!不考虑温度预应力FINI/CLEAR,NOSTART/prep7k,1,0,0,0k,2,10,0,0l,1,2et,1,beam4MP,EX,1,200e9MP,NUXY,1,0.3mp,alpx,1,0.000012MP,dens,1,7800R,1,0.01,8.3E-6,8.3E-6,0.1,0.1, , //定义常系数LESIZE,ALL, , ,10, , , , ,1 //定义线上的单元数LMESH,ALL //划分线生成线单元/SOLU //进入求解器单元ANTYPE,STATIC //定义分析类型PSTRES,ON //是否计入预应力lumpm,offNSEL,S,LOC,X,0D,all,all //施加约束ALLSEL,ALL //选择所有实体NSEL,S,LOC,X,10D,ALL,UYD,all,allesel,allacel,,-9.8, //定义结构线性加速度!BFE,all,TEMP,1, +70, , ,ALLSEL,ALLSOLVESAVEFINI/SOLU //进入求解器单元ANTYPE,MODAL //分析类型MODOPT,LANB,10 //模态分析选项EQSLV,SPARMXPAND,0, , ,0lumpm,off // Use the element-dependent default mass matrix formulation (default). PSTRES,1 //是否计入预应力MODOPT,LANB,10,0,500, ,OFF //模态分析选项和模态分析方法NSEL,S,LOC,X,0D, all,all //施加约束ALLSEL,ALL //选择所有实体NSEL,S,LOC,X,10 //节点的选择D, all,all //施加约束ALLSEL,ALL //选择所有实体SOLVESAVE/POST1 //进入通用后处理器SET,LIST不考虑预应力的结果考虑预应力的结果SET TIME/FREQ SET TIME/FREQ1 5.1946 1 10.4462 5.1946 2 10.4463 14.320 3 22.8334 14.320 4 22.8335 28.088 5 38.4496 28.088 6 38.4497 46.493 7 57.9838 46.493 8 57.9839 69.639 9 81.85210 69.639 10 81.852。

基于ANSYS环境下结构的模态分析

基于ANSYS环境下结构的模态分析

LI pi ng
( olg f ae o sra c dC v n ier g In r n oi A r utrl ies y Hu h t 0 0 1 ) C l eo trC nevn ya iiE gnei ,n e g l g i l a Unvri , h o 1 0 8 e W n l n Mo a c u t
t em .
Ke r s v b a i n; m o a n l ss ANS y wo d : i r to d l ay i ; a YS
振 动现 象是机 械及建筑结 构系统经常遇 到的问题 之一 。对于 大部分 结构 系统来 说 , 不希 望有 振动 的 都 发生 , 振动会造成 结构 的共振或结构疲 劳而破坏 。然 而 , 由于结构本 身具 有某种 程 度 的刚性 , 以其 固有振 所 动频率 及振 型是结 构必须 了解 的特性 之一 。进 而避免外力 频率 和结构 的 固有 频率 相 同或接 近 , 以防止共振 现 象 。 同 时 , 于 其 它 动 态 系 统 的分 析 , 如 : 响应 分 析 、 态 动 力 学 分 析 、 谱 分 析 等 也 需 要 先 进 行 模 态 对 例 谐 瞬 频 分析 。所 以 , 模态分 析就是用于确定 设计 中结构 的振 动特性 或机 械 的振 动特性 ( 固有 频 率和振 型 ) 即 。它 也 是 更 详 细 动 力 学 分 析 的起 点 。
() 1
维普资讯
8 6
内 蒙 古 农 业 大 学 学 报
20 0 2正
式 中 M 是 结 构 的 总 体 质 量 矩 阵 ; 是 结 构 的总 体 阻 尼 矩 阵 ; 是 结 构 的 总 体 刚 度 矩 阵 ; 是 作 用 在 结 构 上 的 C K - 厂 载 荷 向量 ; q是 结 构 的节 点 位 移 。 , K 和 _ M C, 厂的计 算 可 参 阅 文献 [ ]~ 4 , 处 不 再 赘 述 。 1 ]此

ANSYS-模态分析 介绍

ANSYS-模态分析 介绍

模态分析总论
• 运动学基本方程: }+ [C]{u }+ [K ]{u} = {F(t )} [M ]{ u • 假定自由振动并忽略阻尼:
}+ [K ]{u} = {0} [M ]{ u
2
Training Manual
DYNAMICS 11.0
• 假定谐波形式响应 (u = U sin( ωt ) )
其它分析选项
• 集中质量矩阵:
– –
Training Manual
DYNAMICS 11.0
主要用于细长梁或薄壳,或者波传播问题; 对 PowerDynamics 法,自动选择集中质量矩阵。 用于计算具有预应力结构的模态(以后讨论)。 阻尼仅在选用阻尼模态提取法时使用; 可以使用阻尼比α阻尼和β阻尼; 对BEAM4 和 PIPE16 单元,允许使用陀螺阻尼。
Training Manual
第二章 模态分析
模态分析总论
Training Manual
DYNAMICS 11.0
• 模态分析用来确定结构的振动特性的一种技术:
– 固有频率 – 振型 – 模态参与因子(结构振型在给定方向的参与程度)
• 是其他动力学分析的起点和基础.
模态分析总论
• 模态分析工程应用
DYNAMICS 11.0
子空间法
Training Manual
DYNAMICS 11.0
• 子空间法 :比较适合于提取类似中型到大型 模型的较少的振型 (<40)
– 需要相对较少的内存; – 实体单元和壳单元应当具有较好的单元形状,要对 任何关于单元形状的警告信息予以注意; – 在具有刚体振型时可能会出现收敛问题; – 建议在具有约束方程时不要用此方法。

ANSYS模态分析教程及实例讲解解析

ANSYS模态分析教程及实例讲解解析

ANSYS模态分析教程及实例讲解解析ANSYS是一个广泛应用于工程领域的有限元分析软件,可以用于各种结构的模态分析,包括机械结构、建筑结构、航空航天结构等。

模态分析是通过计算结构的固有频率和振动模态,用于评估结构的动力特性和振动响应。

以下是一个ANSYS模态分析的教程及实例讲解解析。

一、教程:ANSYS模态分析步骤步骤1:建立模型首先,需要使用设计软件绘制或导入一个几何模型。

然后,在ANSYS中选择适当的单元类型和材料属性,并创建适当的网格。

确保模型的几何形状和尺寸准确无误。

步骤2:约束条件在进行模态分析之前,需要定义适当的约束条件。

这些条件包括固定支持的边界条件、约束点的约束类型、约束方向等。

约束条件的选择应该与实际情况相符。

步骤3:施加载荷根据实际情况,在模型上施加适当的载荷。

这些载荷可以是静态载荷、动态载荷或谐振载荷,具体取决于所要分析的问题。

步骤4:设置分析类型在ANSYS中,可以选择多种不同的分析类型,包括静态分析、模态分析、动态响应分析等。

在进行模态分析时,需要选择模态分析类型,并设置相应的参数。

步骤5:运行分析设置好分析类型和参数后,可以运行分析。

ANSYS将计算结构的固有频率和振动模态。

运行时间取决于模型的大小和复杂性。

步骤6:结果分析完成分析后,可以查看和分析计算结果。

ANSYS将生成包括固有频率、振动模态形态、振动模态形状等在内的结果信息。

可以使用不同的后处理技术,如模态形态分析、频谱分析等,对结果进行更详细的分析。

二、实例讲解:ANSYS模态分析以下是一个机械结构的ANSYS模态分析的实例讲解:实例:机械结构的模态分析1.建立模型:使用设计软件绘制机械结构模型,并导入ANSYS。

2.约束条件:根据实际情况,将结构的一些部分设置为固定支持的边界条件。

3.施加载荷:根据实际应用,施加恰当的静态载荷。

4.设置分析类型:在ANSYS中选择模态分析类型,并设置相应的参数,如求解方法、迭代次数等。

ANSYS入门——模态分析步骤与实例详解

ANSYS入门——模态分析步骤与实例详解

ANSYS入门——模态分析步骤与实例详解模态分析是ANSYS中的一项重要功能,它用于分析结构的模态特性,如固有频率、模态形态、振型等。

下面将详细介绍ANSYS中模态分析的步骤与实例。

1.准备工作:在进行模态分析前,首先需要完成模型的几何建模、模型的网格划分、边界条件的设定和材料属性的定义等准备工作。

2.设置分析类型:在ANSYS中,可以使用分析类型工具条或命令行指令设置分析类型。

对于模态分析,可以选择"Modal"。

选中“Modal”选项后,会弹出新窗口,用于设置分析的参数。

可以设置计算的模态数目、输出结果的范围、频率的单位等。

3.定义约束条件:在模态分析中,需要定义结构的约束条件,以模拟实际情况。

常见的约束条件有固定支撑、自由边界、对称几何等。

可以使用ANSYS中的约束条件工具条或命令行指令进行定义。

4.定义激励条件:在模态分析中,可以定义激励条件,以模拟结构在特定频率下的振动情况。

常见的激励条件有振动源、压力载荷、重力载荷等。

可以使用ANSYS中的激励条件工具条或命令行指令进行定义。

5.执行分析:完成上述设置后,点击分析工具条中的“运行”按钮,开始执行模态分析。

ANSYS会根据所设定的参数进行计算,并输出相应的结果。

6.结果展示与分析:模态分析完成后,可以查看分析结果并进行进一步的分析。

ANSYS会输出各模态下的固有频率、模态振型、模态质量、模态参与度等信息。

接下来,我们以一个简单的悬臂梁的模态分析为例进行详解。

1.准备工作:在ANSYS中绘制悬臂梁的几何模型,并进行网格划分。

设定材料属性、加载条件和边界条件。

2.设置分析类型:在ANSYS主界面上选择“Workbench”,然后点击“Ana lysis Systems”工具条中的“Modal”选项。

3.定义约束条件:设置悬臂端点的约束条件为固定支撑。

可以使用ANSYS中的“Fixed Support”工具进行设置。

4.定义激励条件:在此示例中,我们只进行自由振动分析,不设置激励条件。

ansys模态分析报告及详细过程

ansys模态分析报告及详细过程

压电变换器的自振频率分析及详细过程1.模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。

ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。

2.模态分析操作过程一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。

(1).建模模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。

(2).施加载荷和求解包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。

指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。

指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND.定义主自由度,仅缩减法使用。

ANSYS模态分析教程及实例讲解

ANSYS模态分析教程及实例讲解

结构动态特性的改善方法
增加结构阻尼
通过增加结构阻尼,可以有效地吸收和消耗振动能量,减小结构 的振动幅值和响应时间。
优化结构布局
通过合理地布置结构的质量、刚度和阻尼分布,可以改善结构的动 态特性,提高结构的稳定性和安全性。
加强关键部位
对于关键部位,应加强其刚度和稳定性,以减小其对整体结构的振 动影响。
ansys模态分析教程及实例讲解
目 录
• 引言 • ANSYS模态分析基础 • ANSYS模态分析实例 • 模态分析结果解读 • 模态分析的优化设计 • 总结与展望
01 引言
ห้องสมุดไป่ตู้
目的和背景
01
了解模态分析在工程领域的应用 价值,如预测结构的振动特性、 优化设计等。
02
掌握ANSYS软件进行模态分析的 基本原理和方法。
挑战
未来模态分析面临的挑战主要包括处理大规模复杂结构 、模拟真实环境下的动力学行为以及提高分析的实时性 。随着结构尺寸和复杂性的增加,如何高效地处理大规 模有限元模型和计算海量数据成为亟待解决的问题。同 时,为了更准确地模拟实际工况下的结构动力学行为, 需要发展更加逼真的边界条件和载荷条件设置方法。此 外,提高模态分析的实时性对于一些实时监测和反馈控 制的应用场景也具有重要的意义。
模态分析基于振动理论,将复杂结构系统分解为若干个独立的模态,每个模态具有 特定的固有频率和振型。
模态分析可以帮助工程师了解结构的动态行为,预测结构的振动响应,优化结构设 计。
模态分析的步骤
建立模型
施加约束
求解
结果分析
根据实际结构建立有限 元模型,包括几何形状、 材料属性、连接方式等。
根据实际工况,对模型 施加约束条件,如固定

ANSYS动力学分析指南——模态分析

ANSYS动力学分析指南——模态分析

ANSYS动力学分析指南——模态分析ANSYS动力学分析是一种用于评估和优化机械结构、系统或装置的动态性能的分析方法。

其中模态分析是其中一种常见的分析类型,通过模态分析可以获取结构的固有频率、振型和模态质量等信息,从而更准确地评估结构的动态响应。

下面是一个ANSYS动力学模态分析的步骤指南:1.导入几何模型:首先,需要将几何模型导入到ANSYS中。

可以使用ANSYS自带的几何建模工具创建模型,也可以从CAD软件中导入现有模型。

在导入几何模型时,需要确保模型的几何尺寸和几何形状正确无误。

2.建立材料属性:为了进行动力学分析,在模型中必须定义材料的属性。

这包括材料的密度、弹性模量、泊松比等。

如果需要考虑材料的各向异性,还需要定义合适的各向异性参数。

3.设置边界条件:为了模拟真实工程环境下的载荷作用,需要为模型设置适当的边界条件。

这包括固支约束、加载条件和约束条件等。

在模型中的各个节点上,需要确保边界条件的正确性和合理性。

4.选择求解器类型:ANSYS提供了多种求解器类型,可以根据实际需求选择合适的求解器。

在动力学模态分析中,通常使用的是频域求解器或模型超级定法(Modal Superposition Method)求解器。

5.网格划分:在进行动力学模态分析之前,需要对模型进行网格划分。

网格划分的目的是将连续的结构离散为有限的单元,从而对模型进行数值求解。

在网格划分时,需要根据模型的复杂程度和准确性要求进行适当的划分。

6.设置求解参数:在进行动力学模态分析之前,需要设置一些求解参数。

这包括求解器的收敛准则、求解的频率范围和预期的模态数量等。

这些参数的设置可以影响到求解结果的准确性和计算效率。

7.进行模态分析:设置好求解参数后,可以进行动力学模态分析。

在分析过程中,ANSYS会通过计算结构的固有频率和振型来评估结构的动态响应。

如果需要获取更多的信息,可以通过后处理功能查看模态质量、模态阻尼和模态形状等结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、实验器材
能够安装ANSYS软件,内存在512MHz以上,硬盘有5G空间的计算机
三、实验说明
(一)基本思路
1、建模与网格化
2、静力学分析
3、对结果进行分析和比较
(二)问题描述:
由于许多压力传感器的工作原理是将受压力作用而变形的薄膜硅片中的应变转换成所需形式的电输出信号,所以我们要研究比较一下用什么样形状的膜来作为压力传感器的受力面比较好。我们比较的膜形状有三种,分别是圆形.正方形.长方形。在比较的过程中,三种形状膜的面积.,厚度和承受的压力是都是相等的。设置参数具体为:F=0.1MPa, EX=1.9e11,PRXY=0.3,DENS=2.33e3.单元尺寸为5e-006。为了选择合适的网格化类型,首先我们拿圆的结构进行一下比较,最后选择比较接近理论计算的网格化类型,通过比较,我们知道映射网格化类型比较优越,所以后面的两种类型膜结构选择了映射网格化。
图4-9
圆形薄膜2
1.先建立一个圆形薄膜:Main Menu>Preprocessor>modeling>Create>volumes>solid cylinder.弹出以个对话框如图,输入数据如图4-10,单击OK.
图4-10
2.设置单元类型:Main Menu>Preprocessor>element type>add/edit/delete,弹出一个对话框,点击add,显示library of element type对话框如图:在library of element type下拉列表框中选择structural solide项,在其右侧下拉表框中选择brick 8node 45选项,单击OK.在点击close.如图4-11.
图4-19
2..设置单元类型:Main Menu>Preprocessor>element type>add/edit/delete,弹出一个对话框,点击add,显示library of element type对话框如图:在library of element type下拉列表框中选择structural solide项,在其右侧下拉表框中选择brick 8node 45选项,单击OK.在点击close.如图4-20.
图4-7
8.求解:Main Menu>solution>solve>curentls LS一个信息提示框和对话框,浏览完毕后单击,单击对话框上的OK按钮,开始求解运算,当出现一个solution is done的信息提示框时,单击close按钮,完成求解运算。
9.保存分析结果:utility menu> as.弹出一个对话框,输入plate-resu,.单击OK按钮。
图4-16
8.求解:Main Menu>solution>solve>curentls LS一个信息提示框和对话框,浏览完毕后单击,单击对话框上的OK按钮,开始求解运算,当出现一个solution is done的信息提示框时,单击close按钮,完成求解运算。
9.保存分析结果:utility menu> as.弹出一个对话框,输入plate-resu,.单击OK按钮。
图4-18
通过上面两种网格化的比较,还有通过理论计算,映射式网格化比自由式网格化更接近理论,所以后面的网格化都采取映射式网格化。
正方形膜
1.生成正方形膜:Main Menu>Preprocessor>modeling>Create>volumes>block>by dimensions,出现对话框并填入数据如图:然后单击OK。如图4-19.
图4-14
6.施加约束:Main Menu>solution>define loads>apply>structural>displacement>on areas.拾取圆的周围面,如图:然后单击OK.又出来一个对话框,选择ALL DOF.单击OK。如图4-15.
图4-15
7.施加载荷:Main Menu>solution>define loads>apply>structural>pressure>on Areas.出现拾取框,拾取图形上垂直与Z轴并且是穿过坐标(0,0,13.887)的面,然后单击OK。出现一个对话框,在value load presValus后面输入100000,单击OK。如图4-16.
图4-12
4.设置单元尺寸:Main Menu>Preprocessor>meshing>meshtool,弹出一个对话框,单击Global中的SET按钮,弹出Global element sizes对话框,输入size=5e-006,然后单击OK。如图4-13.
图4-13
5..采用映射式网格化生成单元:Main Menu>Preprocessor>meshing>meshtool弹出一个对话框,选择Shape后面的Hex/Wedge,Sweep.然后单击Sweep.在拾取图形,单击OK。如图4-14.
号,8:00--12:00有课
-------------------------------------------------------------------------------------
实验
一、实验目的
1、掌握静力学分析
2、验证理论分析结果
3、对不同形状膜的分析结果进行对比
10.显示节点位移云图:Main Menu>generalpostproc>plot results>contour plot>nodal solu,出现如图对话框:在contour nodal solution data对话框中选择item to be contoured>nodal solution>dof solution>displacement vector sum.然后单击OK。生成位移云图如图4-8.
四、实验内容和步骤
圆形薄膜1
1. 先建立一个圆形薄膜:Main Menu>Preprocessor>modeling>Create>volumes>solid cylinder.弹出以个对话框如图,输入数据如图4-1,单击OK.
图4-1
2.设置单元类型:Main Menu>Preprocessor>element type>add/edit/delete,弹出一个对话框,点击add,显示library of element type对话框如图:在library of element type下拉列表框中选择structural solide项,在其右侧下拉表框中选择brick 8node 45选项,单击OK.在点击close.如图4-2.
图4-8
11.显示节点应力云图:Main Menu>generalpostproc>plot results>contour plot>nodal solu,出现如图对话框:在contour nodal solution data对话框中选择item to be contoured> nodal solution>stress>von mises stress,然后单击OK。生成应力云图如图4-9.
图4-3
4.设置单元尺寸:Main Menu>Preprocessor>meshing>meshtool,弹出一个对话框,单击Global中的SET按钮,弹出Global element sizes对话框,输入size=5e-006,然后单击OK。如图4-4.
图4-4
5..采用自由式网格化生成单元:Main Menu>Preprocessor>meshing>meshtool弹出一个对话框,选择Shape后面的Tet,Free,.然后单击Mesh..在拾取图形,在单击OK。如图4-5.
图4-11
3.设置材料属性:Main Menu>Preprocessor>material props> material models,弹出一个对话框,在material models avaiable下面的对话框中双击打开structural>linear>elastic>isotropic,又弹出linear isotropic properties for material Number 1对话框,在EX后面输入1.9E11,在PRXY后面输入栏中输入0.3,在双击density,在DENS后面输入2.33e3,单击OK。然后单击material>exit,完成材料属性的设置。如图4-12.
图4-17
11.显示节点应力云图:Main Menu>generalpostproc>plot results>contour plot>nodal solu,出现如图对话框:在contour nodal solution data对话框中选择item to be contoured> nodal solution>stress>von mises stress,然后单击OK。生成应力云图如图4-18.
图4-21
4.设置单元尺寸:Main Menu>Preprocessor>meshing>meshtool,弹出一个对话框,单击Global中的SET按钮,弹出Global element sizes对话框,输入size=5e-006,然后单击OK。如图4-22.
图4-22
5..采用映射式网格化生成单元:Main Menu>Preprocessor>meshing>meshtool弹出一个对话框,选择Shape后面的Hex/Wedge,Sweep.然后单击Sweep.在拾取图形,单击OK。如图4-23.
相关文档
最新文档