体育单招数学卷及答案

合集下载

体育单招数学试题及答案大全

体育单招数学试题及答案大全

体育单招数学试题及答案大全一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 2答案:B2. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 15C. 17D. 19答案:A3. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个长方体的长、宽、高分别是4、3、2,那么它的体积是多少?A. 24B. 26C. 28D. 30答案:A6. 一个等比数列的首项是2,公比是3,那么第4项是多少?A. 72B. 81C. 108D. 144答案:A7. 一个三角形的三个内角分别是30°、60°、90°,那么这个三角形是什么三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B8. 函数y=x^2-4x+4的最小值是多少?A. 0B. 1C. 4D. 8答案:A9. 一个圆的周长是2π,那么它的直径是多少?A. 1B. 2C. 3D. 4答案:B10. 一个等差数列的首项是5,公差是-1,那么第10项是多少?A. -4B. -5C. -6D. -7答案:C二、填空题(每题3分,共30分)11. 一个等差数列的首项是7,公差是-2,那么第10项是________。

答案:-512. 函数y=x^3-3x^2+2的导数是________。

答案:3x^2-6x13. 一个长方体的长、宽、高分别是5、4、3,那么它的表面积是________。

答案:9414. 一个圆的半径是4,那么它的周长是________。

答案:8π15. 一个三角形的三个内角分别是45°、45°、90°,那么这个三角形是________。

体育单招测试题数学及答案

体育单招测试题数学及答案

体育单招测试题数学及答案一、选择题(每题2分,共20分)1. 下列哪个数是整数?A. 3.14B. -2C. 0.5D. π2. 已知函数 f(x) = 2x - 1,求 f(3) 的值。

A. 5B. 4C. 3D. 23. 一个圆的半径是 5 厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π4. 如果一个三角形的两边长分别是 3 和 4,且这两边夹角为 60 度,那么这个三角形的面积是多少?A. 3√3B. 4√3C. 6√3D. 8√35. 等差数列 3, 7, 11, ... 的第 10 项是多少?B. 41C. 47D. 516. 一个直角三角形的两条直角边分别为 6 厘米和 8 厘米,斜边的长度是多少?A. 10 厘米B. 12 厘米C. 14 厘米D. 16 厘米7. 已知集合 A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}8. 一个数的平方根是 2,这个数是多少?A. 4B. -4C. 8D. -89. 一个数的立方根是 2,这个数是多少?A. 2B. 4C. 8D. 1610. 已知等比数列 2, 6, 18, ... 的公比是 3,求第 5 项。

B. 108C. 162D. 324二、填空题(每题2分,共10分)11. 一个数的相反数是 -5,这个数是 _______。

12. 若 a + b = 10,且 a - b = 2,则a × b = _______。

13. 一个数的绝对值是 7,这个数可以是 _______ 或 _______。

14. 已知一个等差数列的首项是 5,公差是 3,求第 6 项。

15. 已知一个等比数列的首项是 2,公比是 2,求第 4 项。

三、解答题(每题10分,共20分)16. 求函数 y = x^2 - 4x + 4 的顶点坐标。

体育单招数学卷及答案

体育单招数学卷及答案

全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数 学一、选择题:本大题共10小题,每小题5分,共50分。

1、已知集合}1|2||{<-=x x M ,}02|{2<-=x x x N ,则=N M( )A 、}20|{<<x xB 、}30|{<<x xC 、}21|{<<x xD 、}31|{<<x x 2、已知α是第四象限的角,且23)sin(-=-απ,则=+)cos(απ( )A 、21- B 、21 C 、22-D 、223、三个球的表面积之比为1:2:4,它们的体积依次为1V ,2V ,3V ,则( )A 、124V V =B 、1322V V =C 、234V V =D 、2322V V =4、已知点A (-2,0),C (2,0).ABC ∆的三个内角C B A ∠∠∠,,的对边分别为c b a ,,,且c b a ,,成等差数列,则点B 一定在一条曲线上,此曲线是 ( )A 、圆B 、椭圆C 、双曲线D 、抛物线5、数列}{n a 的通项公式为nn a n ++=11,如果}{n a 的前n 项和等于3,那么=n( )A 、8B 、9C 、15D 、166、一个两头密封的圆柱形水桶装了一些水,当水桶水平横放时,桶内的水浸了水桶横截面周长的41. 当水桶直立时,水的高度与桶的高度的比值是 ( )A 、41B 、4πC 、π141-D 、π2141-7、已知函数)1(-=x f y 是偶函数,则函数)2(x f y =图象的对称轴是 ( )A 、1=xB 、1-=xC 、21=x D 、21-=x 8、ABC ∆中A ∠,B ∠和C ∠的对边分别是a ,b 和c ,满足ba cA C 3233cos cos +-=,则C∠的大小为( )A 、3πB 、6π C 、32πD 、65π9、已知0>ω,)2,2(ππϕ-∈. 如果函数)sin(ϕω+=x y 的最小正周期是π,且其图象关于直线12π=x 对称,则取到函数最小值的自变量是 ( )A 、Z k k x ∈+-=,125ππ B 、Z k k x ∈+-=,65ππC 、Z k k x ∈+=,61ππD 、Z k k x ∈+=,121ππ10、某班分成8个小组,每小组5人. 现要从班中选出4人参加4项不同的比赛. 且要求每组至多选1人参加,则不同的选拔方法共有 ( )A 、444854A C (种)B 、154448C A C (种)C 、444845A C (种)D 、444405A C (种)二、填空题:本大题共10小题,每小题5分,共50分。

体育单招数学试题及答案

体育单招数学试题及答案

体育单招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是整数?A. 0B. 1C. 3.5D. 2答案:C2. 若a > 0且b < 0,下列哪个不等式是正确的?A. a + b > 0B. a - b > 0C. a * b > 0D. a / b > 0答案:B3. 已知x² - 5x + 6 = 0,求x的值。

A. 2B. 3C. 1, 2D. 2, 3答案:D4. 圆的半径为5,求圆的面积。

A. 25πC. 75πD. 100π答案:B5. 函数f(x) = 2x - 3,当x = 2时,f(x)的值为多少?A. -1B. 1C. 3D. 5答案:B6. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 8答案:A7. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -8答案:A8. 已知一个数列的前三项为1, 4, 7,求第四项。

B. 11C. 12D. 13答案:B9. 一个长方体的长、宽、高分别为2, 3, 4,求其体积。

A. 24B. 36C. 48D. 52答案:A10. 一个正六边形的内角是多少度?A. 120°B. 135°C. 150°D. 180°答案:B二、填空题(每题2分,共20分)1. 一个数的绝对值是其本身的数是______或______。

答案:正数;02. 一个数的相反数是其本身的数是______。

答案:03. 一个数的倒数是其本身的数是______。

答案:±14. 若a和b互为倒数,则ab=______。

答案:15. 一个数的平方等于9,这个数可以是______或______。

答案:3;-36. 一个数的立方等于-27,这个数是______。

答案:-37. 一个数的平方根是2,这个数是______。

2023年体育单招数学试卷

2023年体育单招数学试卷

2023年体育单招数学试卷一、选择题(本大题共10小题,每小题6分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合A = {xx^2-3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. A⊃neqq BD. A∩ B=varnothing2. 函数y=√(x - 1)的定义域为()A. (-∞,1]B. [1,+∞)C. (-∞, 0]D. [0,+∞)3. 若sinα=(3)/(5),α∈<=ft(0,(π)/(2)),则cosα的值为()A. (4)/(5)B. -(4)/(5)C. (3)/(4)D. -(3)/(4)4. 过点(1,2)且斜率为3的直线方程为()A. y - 2=3(x - 1)B. y+2 = 3(x + 1)C. y - 1=3(x - 2)D. y+1=3(x + 2)5. 已知向量→a=(1,2),→b=(2,m),若→a∥→b,则m的值为()A. 1B. 2C. 3D. 46. 等差数列{a_n}中,a_1=1,d = 2,则a_5的值为()A. 9B. 10C. 11D. 127. 二次函数y=x^2+2x - 3的对称轴为()A. x = - 1B. x = 1C. x=-2D. x = 28. 在ABC中,a = 3,b = 4,C = 60^∘,则c的值为()A. √(13)B. √(37)C. √(19)D. √(21)9. 若f(x)=log_2(x + 1),则f(1)的值为()A. 1B. log_22C. 0D. log_2310. 某单位有100名员工,其中45人喜欢篮球,25人喜欢足球,15人既喜欢篮球又喜欢足球,则既不喜欢篮球也不喜欢足球的人数为()A. 35B. 45C. 55D. 65二、填空题(本大题共6小题,每小题6分,共36分)11. 计算limlimits_x→1frac{x^2-1}{x - 1}=_2。

体育对口单招数学试卷(答案) (4)

体育对口单招数学试卷(答案) (4)

体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题6分,共60分)1.复数32ii -+的虚部为()A.i B.-i C.1D.-12.设集合{|2011},{|01}M x x N x x =<=<<,则下列关系中正确的是()A.M N R = B.{|01}M N x x =<< C.N N∈D.M N φ= 3.已知平面向量a,b 满足||1,||2,a b ==a 与b 的夹角为60︒,则“m=1”是“()a mb a -⊥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.从221x y m n -=(其中,{1,2,3}m n ∈-)所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为()A.12B.47C.23D.345、数列{}n a 是递增的整数数列,且13a ,123100n a a a a +++⋯+=,则n 的最大值为()A.9B.10C.11D.126、已知集合A ={}1,3,B ={}2,3,则A B 等于()A.∅B.{}1,2,3C.{}1,2D.{}37.设,“”是“”的()A.充分非必要条件 B.必要充分条件C.充要条件D.既充分又必要条件8.函数)0(tan )(>=ωωx x f 图象的相邻两支截直线4π=y 所得线段长为4π,则)4(πf 的值是()(A)0(B)1(C)-1(D)9.已知n m ,是夹角为o60的单位向量,则n m a +=2和n m b 23+-=的夹角是()(A)o30(B)o60(C)o90(D)o12010.已知锐角ABC ∆的面积为,4,3BC CA ==,则角C 的大小为()A.75°B.60°C.45°D.30°11、“1=x ”是“0122=+-x x ”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件12、“2)1(+=n n a n ”是“0)2(log 21<+x ”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件13、设b a ,为正实数,则“1>>b a ”是“0log log 22>>b a ”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件14.设复数1z bi =+()b R ∈且||2z =,则复数的虚部为()A.i±B.C.1±D.15.若,,,,a b c d R ∈且,a b c d >>,则下列结论正确的是()A.22ac bc>B.ac bd>C.11a b<D.a c b d +>+16、设b a ,是实数,则“0>+b a ”是“0>ab ”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件17、已知x x x f 2)(2+=,则)2(f 与)21(f 的积为()A、5B、3C、10D、818、“ααcos sin =”是“02cos =α”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件19、函数)32(log )(22-+=x x x f 的定义域是()A、[]1,3-B、()1,3-C、(][)+∞-∞-,13, D、()()+∞-∞-,13, 20、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是()A、c b a <<B、b c a <<C、ca b <<D、ac b <<二、填空题:(本题共5小题,每小题6分,共30分)1、f(x)=+(m-4)x+2为偶函数,那么实数m 的值为____2、f(x)=-+mx 在(一∞,1]上是增函数,么m 的取值范围是___3.计算dxex)1(03-⎰=______4.右图所示的伪代码输出的结果S 为______5.与圆22(4)x y +-=2相切,且在两坐标轴上截距相等的直线共有_______条。

体育单招数学试题及答案2024

体育单招数学试题及答案2024

体育单招数学试题及答案2024一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = sin(x)D. f(x) = cos(x)答案:C2. 已知等差数列的首项为a1=2,公差为d=3,求第10项a10的值。

A. 25B. 29C. 31D. 35答案:B3. 圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B4. 已知三角形ABC的三边长分别为a=3,b=4,c=5,判断三角形的形状。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形答案:B5. 函数f(x) = 2x - 3在区间[1,4]上的最大值和最小值分别是多少?A. 最大值:5,最小值:-1B. 最大值:5,最小值:-1C. 最大值:7,最小值:-1D. 最大值:7,最小值:-5答案:C6. 已知一个正方体的体积为27,求其边长。

A. 3B. 6C. 9D. 27答案:A7. 将一个圆分成4个相等的扇形,每个扇形的圆心角是多少度?A. 30°B. 45°C. 90°D. 360°答案:C8. 已知等比数列的首项为a1=2,公比为q=2,求第5项a5的值。

A. 32B. 64C. 128D. 256答案:A9. 抛物线y = x^2 - 4x + 4的顶点坐标是什么?A. (2,0)B. (2,2)C. (2,4)D. (0,4)答案:A10. 已知向量a = (3, 4)和向量b = (-1, 2),求向量a与向量b的点积。

A. 10B. 8C. 6D. 2答案:B二、填空题(每题3分,共15分)1. 若sinθ = 0.5,则cosθ的值为________。

答案:±√3/22. 一个直角三角形的两条直角边分别为3和4,其斜边的长度为________。

2024全国普通高校运动训练民族传统体育专业单招统一招生考试数学模拟试卷7含答案

2024全国普通高校运动训练民族传统体育专业单招统一招生考试数学模拟试卷7含答案

2024全国普通高校运动训练民族传统体育专业单招统一招生考试数学模拟试卷7本卷共15小题,满分:150分,测试时长:90分钟.一、单选题(每小题8分,共8小题,共64分)1.设集合{}03A x x =<≤,{}1,0,1,2,3B =-,则A B = ()A .{}1,2,3B .{}1,1,2,3-C .{}0,1,2D .{}1,0,1,2-2.函数()f x =的定义域为()A .[)1,-+∞B .[)2,+∞C .[)()1,22,-+∞ D .()(),22,-∞+∞ 3.若a ,b 为实数,则“1ab >”是“1b a >”的()A .充分但非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件4.cos12π=()A B C .D .5.已知向量,a b 满足2π1,2,,3a b a b ==<>= ,则()a ab ⋅+= ()A .-2B .-1C .0D .26.)62的展开式中2x 的系数为()A .15B .15-C .60D .60-7.已知两圆2210x y +=和()()221320x y -+-=相交于A ,B 两点,则AB =()A .B .CD .8.如图在四面体ABCD 中,M ,N ,P ,Q ,E 分别是AB ,BC ,CD ,AD ,AC 的中点,则下列说法中不正确的是()A .M ,N ,P ,Q 四点共面B .QME CBD ∠=∠C .BCD MEQ △∽△D .四边形MNPQ 为梯形二、填空题(每小题8分,共4小题,共32分)9.不等式102x x -≥+的解集是_________.10.函数3()2f x x x =-在点(1,(1))f 处的切线方程为___________.11.某产品正品率为78,次品率为18,现对该产品进行测试,若第X 次首次测到正品,则()3P X ==______.12.已知直线m 、n ,平面α、β,给出下列命题:①若m α⊥,n β⊥,且m n ⊥,则αβ⊥;②若//m α,//n β,且//m n ,则//αβ;③若αβ⊥,//m α,n β⊥,则m n ⊥;④若//,,//,m n n m ααββ⊂⊄,则//m β;其中正确的命题序号是___________三、解答题(每小题18分,共3大题,共54分)13.在等差数列{}n a 中,n S 为其前n 项的和,已知1322a a +=,545S =.(1)求n a ;(2)求数列n S 的最大值.14.已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为红球的概率;(2)求取出的4个球中恰有1个红球的概率.15.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点为12,F F ,右焦点到左顶点的距离是6,且离心率等于2.(1)求双曲线C 的标准方程;(2)过1F 作斜率为k 的直线l 分别交双曲线的两条渐近线于第二象限的A 点和第一象限的B 点,若1AF AB =,求k的值答案一、单选题1.设集合{}03A x x =<≤,{}1,0,1,2,3B =-,则A B = ()A .{}1,2,3B .{}1,1,2,3-C .{}0,1,2D .{}1,0,1,2-【答案】A2.函数()f x =的定义域为()A .[)1,-+∞B .[)2,+∞C .[)()1,22,-+∞ D .()(),22,-∞+∞ 【答案】C3.若a ,b 为实数,则“1ab >”是“1b a >”的()A .充分但非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】D4.cos12π=()A .4B .4C .4D .4【答案】A5.已知向量,a b 满足2π1,2,,3a b a b ==<>= ,则()a a b ⋅+= ()A .-2B .-1C .0D .2【答案】C6.)62的展开式中2x 的系数为()A .15B .15-C .60D .60-【答案】C 7.已知两圆2210x y +=和()()221320x y -+-=相交于A ,B 两点,则AB =()A .B .CD .【答案】D 8.如图在四面体ABCD 中,M ,N ,P ,Q ,E 分别是AB ,BC ,CD ,AD ,AC 的中点,则下列说法中不正确的是()A .M ,N ,P ,Q 四点共面B .QME CBD ∠=∠C .BCD MEQ△∽△D .四边形MNPQ 为梯形【答案】D 二、填空题9.不等式102x x -≥+的解集是_________.【答案】()[),21,-∞-+∞ 10.函数3()2f x x x =-在点(1,(1))f 处的切线方程为___________.【答案】20x y --=11.某产品正品率为78,次品率为18,现对该产品进行测试,若第X 次首次测到正品,则()3P X ==______.【答案】751212.已知直线m 、n ,平面α、β,给出下列命题:①若m α⊥,n β⊥,且m n ⊥,则αβ⊥;②若//m α,//n β,且//m n ,则//αβ;③若αβ⊥,//m α,n β⊥,则m n ⊥;④若//,,//,m n n m ααββ⊂⊄,则//m β;其中正确的命题序号是___________【答案】①④三、解答题13.在等差数列{}n a 中,n S 为其前n 项的和,已知1322a a +=,545S =.(1)求n a ;(2)求数列n S 的最大值.【答案】(1)215n a n =-+(2)4914.已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为红球的概率;(2)求取出的4个球中恰有1个红球的概率.15.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点为12,F F ,右焦点到左顶点的距离是6,且离心率等于2.(1)求双曲线C 的标准方程;(2)过1F 作斜率为k 的直线l 分别交双曲线的两条渐近线于第二象限的A 点和第一象限的B 点,若1AF AB =,求k 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国普通高等学校运动训练、民族传统
体育专业单独统一招生考试
数 学
一、选择题:本大题共10小题,每小题5分,共50分。

1、已知集合}1|2||{<-=x x M ,}02|{2<-=x x x N ,则=N M ( ) A 、}20|{<<x x B 、}30|{<<x x C 、}21|{<<x x D 、}31|{<<x x
2、已知α是第四象限的角,且2
3
)sin(-
=-απ,则=+)cos(απ ( ) A 、21- B 、2
1
C 、22-
D 、22
3、三个球的表面积之比为1:2:4,它们的体积依次为1V ,2V ,3V ,则 ( ) A 、124V V = B 、1322V V = C 、234V V = D 、2322V V =
4、已知点A (-2,0),C (2,0). ABC ∆的三个内角C B A ∠∠∠,,的对边分别为c b a ,,,且c b a ,,成等差数列,则点B 一定在一条曲线上,此曲线是 ( ) A 、圆 B 、椭圆 C 、双曲线 D 、抛物线
5、数列}{n a 的通项公式为n
n a n ++=
11
,如果}{n a 的前n 项和等于3,那么=n
( ) A 、8 B 、9 C 、15 D 、16 6、一个两头密封的圆柱形水桶装了一些水,当水桶水平横放时,桶内的水浸了水桶横截面周长的
4
1
. 当水桶直立时,水的高度与桶的高度的比值是 ( )
A 、41
B 、4π
C 、π141-
D 、π
2141-
7、已知函数)1(-=x f y 是偶函数,则函数)2(x f y =图象的对称轴是 ( ) A 、1=x B 、1-=x C 、21=
x D 、2
1
-=x 8、ABC ∆中A ∠,B ∠和C ∠的对边分别是a ,b 和c ,满足
b
a c
A C 3233cos cos +-=,则C ∠的大小为 ( )
A 、
3π B 、6π C 、32π D 、6

9、已知0>ω,)2,2(π
πϕ-∈. 如果函数)sin(ϕω+=x y 的最小正周期是π,且其
图象关于直线12
π
=x 对称,则取到函数最小值的自变量是 ( )
A 、Z k k x ∈+-=,125ππ
B 、Z k k x ∈+-=,65
ππ
C 、Z k k x ∈+=,61ππ
D 、Z k k x ∈+=,121
ππ
10、某班分成8个小组,每小组5人. 现要从班中选出4人参加4项不同的比赛. 且要求每组至多选1人参加,则不同的选拔方法共有 ( )
A 、444854A C (种)
B 、1
54448C A C (种) C 、444845A C (种) D 、444405A C (种)
二、填空题:本大题共10小题,每小题5分,共50分。

11、已知向量)4,5(-=→
a ,)2,3(-=→
b ,则与→
→+b a 32垂直的单位向量是 .(只需写出一个符合题意的答案)
12、三棱锥ABC D -中,棱长a =====DC DA CA B C AB ,a BD 2
6
=,则二面角B AC D --的大小为 .
13、已知)2
,2(π
πα-
∈,函数))(cos()sin(R x x x y ∈-++=αα为偶函数,则=α . 14、已知11<<a ,不等式011
22
<++-x a
a x 的解集是 . 15、已知集合}0,cos sin |{π<<>=x x x x M ,}0,2cos 2sin |{π<<>=x x x x N ,则=N M .(用区间表示)
16、函数16
42
+=x x y 的最大值是 .
17、6)21(x +的展开式中所有有理项系数之和等于 .(用数字作答)
18、已知点)0,3(Q ,点P 在圆122=+y x 上运动,动点M 满足→
→=MQ PM 2
1,
则M 的轨迹是一个圆,其半径等于 .
19、已知函数))((21
)(R x e e x f x x ∈-=,则)(x f 的反函数=-)(1x f .
20、将一个圆周16等分,过其中任意3个分点作一个圆内接三角形,在这些三角形当中,锐角三角形和钝角三角形共有 个.
三、解答题:本大题共4小题,共50分。

21、已知}{n b 是一个等比数列,01>b ,公比0>q ,且有n b a n n 23
log 2+=.
(1)证明}{n a 是等差数列,并求它的首项和公差; (2)若12=b ,16
1
4=b ,求}{n a 得前n 项和n S . 当n 取何值时n S 最大?最大值等于多少?
22、已知'''C B A ABC -为正三棱柱,D 是BC 中点. (1)证明'||'ADC B A 平面;
(2)若AB AA =',求B A '与平面C C AA ''所成角的大小; (3)若a AB =,当A A '等于何值时''AC B A ⊥?证明你的结论.
23、甲、乙两人参加田径知识考核,共有有关田赛项目的4道题目和有关径赛项目的6道题目. 由甲先抽1题(抽后不放回),乙再抽1题作答. (1)求甲抽到田赛题目,且乙抽到径赛题目的概率; (2)求甲、乙两人至少有1人抽到田赛题目的概率;
(3)求甲、乙两人同时抽到田赛题目或同时抽到径赛题目的概率.
A
C
D B
A'
B'
C'
24、双曲线)0,0(122
22>>=-b a b
y a x 的中心为O ,右焦点为F ,右准线和两条渐近
线分别交于点21M M 和.
(1)证明21,,M M O 和F 四个点同在一个圆上; (2)如果||||11F M OM →

=,求双曲线的离心率; (3)如果3
21π
=
∠FM M ,4||=→
OF ,求双曲线的方程.。

相关文档
最新文档