数学人教版七年级下册新定义问题

合集下载

部编数学七年级下册专题21人教七下册精选新定义题型(解析版)含答案

部编数学七年级下册专题21人教七下册精选新定义题型(解析版)含答案

专题21 人教七下精选新定义题型(解析版)类型一 实数中的新定义题型1.(2022秋•辉县市校级月考)对于任意两个实数a ,b 定义两种运算:aΔb =a(a ≥b)b(a <b),a∇b =b(a ≥b)a(a <b),并且定义运算顺序任然是先做括号内的,例如(﹣2)Δ3=3,(﹣2)∇3=2,[(﹣2)Δ3]∇2=2,那么A B .3C .6D 思路引领:直接利用已知运算规律分别化简,进而得出答案.解:原式=2Δ3=3.故选:B .总结提升:此题主要考查了实数的运算,正确理解题意是解题关键.2.(2022•台山市校级一模)定义:求乘方运算中的指数运算叫做对数,如果N =a x ,则log a N =x .例如log 28=3,那么log 3127× .思路引领:根据已知新定义计算即可确定出结果;解:∵log 3127=log 33﹣3=﹣3,=3=3,∴log 3127×−3×3=﹣9.故答案为:﹣9.总结提升:本题考查了实数的运算,弄清题中的新定义是解本题的关键.3.(2022•南京模拟)新定义一种运算@,其运算法则是x @y =2@(6@8)= .思路引领:先根据新定义求出6@8=7,然后计算2@7即可得到答案.解:由题意得:6@87,∴2@(6@8)=2@7=总结提升:本题主要考查了新定义下的实数运算,正确理解题意是解题的关键.4.(2022秋•永兴县期末)定义[x ]为不大于x 的最大整数,如[2]=2,=1,[4.1]=4,则满足=5,则n 的最大整数为 .思路引领:由题意得:5≤6,然后利用平方运算,进行计算即可解答.解:由题意得:∵56,∴25≤n<36,∴n的最大整数为35.故答案为:35.总结提升:本题考查了无理数的估算,掌握夹逼法,用有理数夹逼无理数是关键.5.(2022秋•隆回县期末)对于正实数a,b作新定义:a⊙b=25⊙x2=4,则x的值为 .思路引领:直接利用已知得出关于x的方程,进而得出答案.解:由题意可得:=4,则10﹣|x|=4,解得:x=±6.故答案为:±6.总结提升:此题主要考查了实数运算,正确理解题意是解题关键.6.(2022秋•朝阳区校级期末)用⊗定义一种新运算:对于任意实数a和b,规定a⊗b=a2﹣ab+1.(1(2⊗⊗= .思路引领:(1)利用新运算的规定列式计算即可;(2)利用新运算的规定列式计算即可.解:(1)∵a⊗b=a2﹣ab+1,∴原式=2×1=2﹣1=3﹣(2)原式=[2+1]=(3﹣+1)=(4﹣=2×(4﹣+1=2﹣6+1=9﹣故答案为:9﹣总结提升:本题主要考查了实数的运算,二次根式的性质,本题是新定义型,理解并熟练应用新定义的规定是解题的关键.7.(2022•苏州模拟)对实数a,b,定义运算“◆”:a◆b=a≥b,例如4◆3,因为4>3,所以4◆3=5,若x,y满足方程组4x−y=8x+2y=20,则x◆y= 32 .思路引领:求出方程组的解得到x与y的值,再利用新定义求出所求即可.解:4x−y=8①x+2y=20②,①×2+②得:9x=36,解得:x=4,把x=4代入②得:y=8,则x◆y=4◆8=4×8=32,故答案为:32.总结提升:本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(2018秋•阳山县期末)对于实数x,y,定义一种新的运算“★”,规定x★y=ax+by,其中a,b为常数,等式右边是通常的加法和乘法运算.如果3★5=12,1★2=3= .思路引领:已知等式利用题中的新定义化简得到方程组,求出方程组的解得到a与b的值,代入原式计算即可求出值.解:已知等式利用题中的新定义化简得:3a+5b=12①a+2b=3②,②×3﹣①得:b=﹣3,把b=﹣3代入①得:a=9,则原式==−3.故答案为:﹣3.总结提升:此题考查了解二元一次方程组,立方根以及实数的运算,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(2022秋•屯留区期末)对于任意的正实数a和b,我们定义新运算:a∗b=≥b)<b).如:27∗12=求:(5*2)×(18*45)的值.思路引领:根据定义确定好所用计算方法,再进行代入计算.解:∵5>2,18<45,∴(5*2)×(18*45)×(+=3=3[22]=3(5﹣2)=3×3=9,即(5*2)×(18*45)的值是9.总结提升:此题考查了运用新定义进行实数运算的能力,关键是能准确理解并运用新定义,并进行正确地计算.类型二平面直角坐标系中的新定义题型10.(2022春•晋安区期末)定义:f(x,y)=(﹣x,﹣y),g(a,b)=(b,a),例如:f(1,2)=(﹣1,﹣2),g(2,3)=(3,2),则g(f(5,﹣2))=( )A.(2,﹣5)B.(﹣2,5)C.(﹣5,2)D.(﹣2,﹣5)思路引领:直接利用已知f(x,y)=(﹣x,﹣y),g(a,b)=(b,a),进而分析得出答案.解:由题意可得:g(f(5,﹣2))=g(﹣5,2)=(2,﹣5).故选:A.总结提升:此题主要考查了点的坐标,正确运用已知条件分析是解题关键.11.(2022春•景县期中)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(2,﹣1),Q(﹣1,0),则P,Q的“实际距离”为4,即PS+SQ=4或PT+TQ=4.图中点A(3,2),B(5,﹣3)为共享单车停放点,嘉淇在点P处,则( )A.他与A处的“实际距离”更近B.他与B处的“实际距离”更近C.他与A处和B处的“实际距离”一样近D.无法判断思路引领:根据实际距离的概念得出距离解答即可.解:P到A处的“实际距离”=|3﹣2|+|2﹣(﹣1)|=1+3=4,P到B处的“实际距离”=|5﹣2|+|﹣3﹣(﹣1)|=3+2=5,故选:A.总结提升:此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.12.(2022春•思明区校级期末)给出一个新定义:若平面直角坐标系中的点(a,b)的横、纵坐标满足方程x﹣2y=4,则称点(a,b)是方程x﹣2y=4的坐标点,比如:点(6,1)就是方程x﹣2y=4的坐标点.(1)写出方程x﹣2y=4的另一个坐标点 ;(2)若有一个点(3a,a+2)是方程x﹣2y=4的坐标点,则a的值为 .思路引领:(1)给出x的一个值,代入求y的值;(2)把点的坐标代入方程求解.解:(1)当x=4时,y=0,故答案为:(4,0).(2)由题意得:3a﹣2(a+2)=4,解得:a=8.故答案为:8.总结提升:本题考查了方程的解,理解新定义是解题的关键.13.(2022春•天河区期末)在平面直角坐标系中取任意两点A(x1,y1),B(x2,y2),定义新运算“*”,得到新的C的坐标为(x1y2,x2y1),即(x1,y1)*(x2,y2)=(x1y2,x2y1).若点A在第一象限,点B 在第四象限,根据上述规则计算得到的点C的坐标在第 象限.思路引领:根据每一象限内点的坐标特点进行分析解答.解:∵点A (x 1,y 1)在第一象限,点B (x 2,y 2)在第四象限,∴x 1>0,y 1>0.x 2>0,y 2<0.∴x 1y 2<0,x 2y 1>0,∴点C 的坐标(x 1y 2,x 2y 1)位于第二象限.故选答案为:二.总结提升:本题主要考查了点的坐标,解题的关键的理解新定义的运算法则以及每一象限内点的坐标符号特征.14.(2022春•海淀区校级期中)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”给出如下定义:若|x 1﹣x 2|≥|y 1﹣y 2|,则点P 1与点P 2的“非常距离”为|x 1﹣x 2|;若|x 1﹣x 2|<|y 1﹣y 2|,则点P 1与点P 2的“非常距离”为|y 1﹣y 2|,例如:点P 1(1,2),点P 2(3,5),因为|1﹣3|<|2﹣5|,所以点P 1与点P 2的“非常距离”为|2﹣5|=3,也就是图中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).已知点A(−12,0),B 为y 轴上的一个动点.(1)若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标 ;(2)直接写出点A 与点B 的“非常距离”的最小值 .思路引领:(1)根据点B 位于y 轴上,可以设点B 的坐标为(0,y ).由“非常距离”的定义可以确定|0﹣y |=2,据此可以求得y 的值;(2)设点B 的坐标为(0,y ).因为|−12−0|≥|0﹣y |,所以点A 与点B 的“非常距离”最小值为|−12−0|=12.解:(1)∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵|−12−0|=12≠4,∴|0﹣y |=2,解得y =2或y =﹣2;∴点B 的坐标是(0,2)或(0,﹣2);故答案为:(0,2)或(0,﹣2);(2)∵|−12−0|≥|0﹣y |,∴点A 与点B 的“非常距离”最小值为|−12−0|=12;∴点A 与点B 的“非常距离”的最小值为12.故答案为:12.总结提升:本题考查新定义问题,阅读并理解题意是解题关键.15.(2022春•青山区校级月考)在平面直角坐标系中,对于任意三个不重合的点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a 指任意两点横坐标差的最大值,“铅垂高”h 指任意两点纵坐标差的最大值,“矩面积”S =ah .例如:A (1,2),B (﹣3,1),C (2,﹣2)则“水平底”a =5,“铅垂高”h =4,“矩面积”S =ah =20.若D (1,2),E (﹣2,1),F (0,t )三点的“矩面积”为18,则t 的值为 .思路引领:根据“矩面积”的定义,得出若D (1,2),E (﹣2,1),F (0,t )三点的“矩面积”的“水平底”a =3,由矩面积”S =ah =18,得出“铅垂高”h =18÷3=6,则D 、E 、F 三点的纵坐标差的最大值为2﹣t =6或t ﹣1=6,从而求得t 的值.解:由题意知,D 、E 、F 三点的“矩面积”的“水平底”a =1﹣(﹣2)=3,∵D 、E 、F 三点的“矩面积”S =ah =18,∴D 、E 、F 三点的“铅垂直”h =18÷3=6,当点F 在点D 下方时,2﹣t =6,解得t =﹣4.当点F 在点D 上方时,t ﹣1=6解得:t =7,故答案为:﹣4或,7.总结提升:本题考查坐标确定位置,掌握“矩面积”的定义是解题的关键.16.(2022秋•霍邱县校级月考)在平面直角坐标系中,对于点P 、Q 两点给出如下定义:若点P 到x ,y 轴的距离的较大值等于点Q到x,y轴的距离的较大值,则称P、Q两点为“等距点”.如点P(﹣2,5)和点Q(﹣5,﹣1)就是等距点.(1)已知点B的坐标是(﹣4,2),点C的坐标是(m﹣1,m),若点B与点C是“等距点”,求点C 的坐标;(2)若点D(3,4+k)与点E(2k﹣5,6)是“等距点”,求k的值.思路引领:(1)根据“等距点”的定义解答即可;(2)根据“等距点”的定义分情况讨论即可.解:(1)由题意,可分两种情况:①|m﹣1|=|﹣4|,解得m=﹣3或5(不合题意,舍去);②|m|=|﹣4|,解得m=﹣4(不合题意,舍去)或m=4,综上所述,点C的坐标为(﹣4,﹣3)或(3,4);(2)由题意,可分两种情况:①当|2k﹣5|≥6时,|4+k|=|2k﹣5|,∴4+k=2k﹣5或4+k=﹣(2k﹣5),解得k=9或k=13(不合题意,舍去);②当|2k﹣5|<6时,|4+k|=6,∴4+k=6或4+k=﹣6,解得k=2或k=﹣10(不合题意,舍去);综上所述,k=2或k=9.总结提升:本题主要考查了点的坐标,掌握“等距点”的定义是解答本题的关键.17.(2022春•莆田期末)对于平面直角坐标系中的图形M上的任意点P(x,y),给出如下定义:将点P (x,y)平移到P′(x+e,y﹣e)称为将点P进行“e型平移”,点P′称为将点P进行“e型平移”的对应点;将图形M上的所有点进行“e型平移”称为将图形M进行“e型平移”.例如,将点P(x,y)平移到P′(x+1,y﹣1)称为将点P进行“1型平移”.(1)已知点A(﹣1,2),B(2,3),将线段AB进行“1型平移”后得到对应线段A′B′.①画出线段A′B′,并直接写出A′,B′的坐标;②四边形ABB′A′的面积为 (平方单位);(2)若点A(2﹣a,a+1),B(a+1,a+2),将线段AB进行“2型平移”后得到对应线段A′B′,当四边形ABB′A′的面积为8平方单位,试确定a的值.思路引领:(1)①根据定义平移即可;②根据平移后的图形,写出坐标即可;(2)利用割补法求四边形的面积.解:(1)①A (﹣1,2)“1型平移”后得到A '(0,1),B (2,3)“1型平移”后得到B '(3,2);②S 四边形ABB ′A ′=S △ABB '+S △AB 'A '=12×4×1+12×4×1=4,故答案为:4;(2)A (2﹣a ,a +1)“2型平移”后得到A '(4﹣a ,a ﹣1),B (a +1,a +2)“2型平移”后得到B '(a +3,a ),如图,在四边形外作矩形CDEF ,∴C (2﹣a ,a +2),D (2﹣a ,a ﹣1),E (a +3,a ﹣1),F (a +3,a +2),∴BC =2a ﹣1,AC =1,BF =2,B 'F =2,AD =2,A 'D =2,AE =2a ﹣1,BE '=1,∴CF =2a +1,CD =3,∴S 四边形ABB ′A ′=3(2a +1)−12×(2a ﹣1)×1×2−12×2×2×2=4a ,∵四边形ABB ′A ′的面积为8平方单位,∴4a =8,∴a =2.总结提升:本题考查坐标与图形变化,熟练掌握平面内点的坐标特点,利用割补法求四边形的面积是解题的关键.类型三二元一次方程组中的新定义题型18.(2022春•梁山县期末)对于实数x,y,定义新运算x*y=ax+by+1.其中a,b为常数,等式右边为通常的加法和乘法运算,若2*5=10,4*7=28,则3*6=( )A.18B.19C.20D.21思路引领:已知等式利用题中的新定义化简求出a与b的值,代入原式计算即可得到结果.解:根据题中的新定义得:2a+5b+1=10 4a+7b+1=28,解得a=12b=−3,∴3*6=3×12+6×(﹣3)+1=19.故选:B.总结提升:此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.19.(2022春•万州区校级期中)把y=ax+b(其中a、b是常数,x、y是未知数)这样的方程称为“雅系二元一次方程”.当y=x时,“雅系二元一次方程y=ax+b”中x的值称为“雅系二元一次方程”的“完美值”.例如:当y=x时,“雅系二元一次方程”y=3x﹣4化为x=3x﹣4,其“完美值”为x=2.(1)x=3是“雅系二元一次方程”y=3x+m的“完美值”,求m的值;(2)类比“雅系二元一次方程”y=kx+1(k≠0,k是常数)的定义,对于一个“雅系二元一次不等式”y>kx+1(k≠0,k是常数)的“完美解集”为x>2,请求出k的值.思路引领:(1)由已知可得x=3x+m,将x=3代入即可求m;(2)假设存在,得到x=kx+1,所以(1﹣k)x=1,当k=1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x=11−k.解:(1)由已知得:x=3x+m,把x=3代入x=3x+m得:3=9+m,∴m=﹣6;(2)若“雅系二元一次方程”y=kx+1(k≠0,k是常数)存在“完美值”,则有x=kx+1,∴(1﹣k)x=1,当k=1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”,∵y>kx+1(k≠0,k是常数),则有x>kx+1,∴(1﹣k)x>1,∵完美解集为x>2,∴x>11−k=2,解得k=0.5.总结提升:本题考查二元一次方程的解,新定义;能够理解题意,将所求问题转化为一元一次方程求解是关键.20.(2022春•如皋市期中)定义:数对(x,y)经过运算φ可以得到数对(x',y'),记作φ(x,y)=(x',y'),其中x′=ax+byy′=ax−by(a,b为常数).如,当a=1,b=1时,φ(﹣2,3)=(1,﹣5).(1)当a=2,b=1时,φ(1,0)= ;(2)若φ(2,1)=(0,4),则a= ,b= ;(3)如果组成数对(x,y)的两个数x,y满足x﹣2y=0,xy≠0,且数对(x,y)经过运算φ又得到数对(x,y),求a和b的值.思路引领:(1)当a=1且b=1时,分别求出x′和y′即可得出答案;(2)根据条件列出方程组即可求出a,b的值;(3)根据对任意数对(x,y)经过运算φ又得到数对(x,y),得到ax+by=xax−by=y,,根据x﹣2y=0,得到x=2y,代入方程组即可得到答案.解:(1)当a=2,b=1时,x′=2×1+1×0=2,y′=2×1﹣1×0=2,故答案为:(2,2);(2)根据题意得:2a+b=0 2a−b=4,解得:a=1b=−2,故答案为:1,﹣2;(3)∵对任意数对(x,y)经过运算φ又得到数对(x,y),∴ax+by=x ax−by=y,∵x﹣2y=0,∴x=2y,代入方程组解得:a=34 b=12.总结提升:本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.21.(2022春•兴化市月考)对于有理数x,y,定义新运算:x&y=ax+by,x⊗y=ax﹣by,其中a,b是常数.已知1&1=1,3⊗2=8.(1)求a,b的值;(2)若关于x,y的方程组x&y=4−mx⊗y=5m的解也满足方程x+y=5,求m的值;(3)若关于x,y的方程组a1x&b1y=c1a2x⊗b2y=c2的解为x=4y=5,求关于x,y的方程组3a1(x+y)&4b1(x−y)=5c13a2(x+y)⊗4b2(x−y)=5c2的解.思路引领:(1)根据定义新运算得出关于a、b的二元一次方程组,再解方程组即可;(2)根据题意得出关于x、y的二元一次方程组,求出方程组的解,再代入方程x+y=3求解即可;(3)根据定义新运算得出相关方程组,根据方程组的解的定义,利用整体代入的方法解答即可.解:(1)由题意得a+b=13a−2b=8,解得a=2b=−1;(2)依题意得2x−y=4−m2x+5=5m,解得x=m+1y=3m−2,∵x+y=5,∴m+1+3m﹣2=5,解得m=3 2;(3)由题意得2a1+b1y=c12a2+b2y=c2的解为x=4y=5,由方程组3a1(x+y)&4b1(x−y)=5c13a2(x+y)⊗4b2(x−y)=5c2得6a1(x+y)−4b1(x−y)=5c16a2(x+y)+4b2(x−y)=5c2,整理,得2a1⋅35(x+y)−b2⋅45(x−y)=c12a2⋅35(x+y)+b2⋅45(x−y)=c2,(x+y)=4 (x−y)=5,解得x=15524y=524.总结提升:本题考查了二元一次方程组的应用、定义新运算、“整体思想”等知识;熟练掌握“整体思想”,找出等量关系列出方程组是解题的关键.22.(2022春•江阴市期中)对整数x、y定义一种新运算T,规定T(x,y)=ax y﹣by x(其中a、b是常数),如:T(2,1)=a×21﹣b×12=2a﹣b.(1)填空:T(2,﹣1)= (用含a,b的代数式表示);(2)若T(3,2)=10,T(8,﹣1)=−3 4.①求a与b的值;②若T(x,1)=T(1,x),求出此时x的值.思路引领:(1)根据新运算的运算顺序计算即可;(2)①由题意列出二元一次方程组,再解方程组即可;②由题意得2x﹣1=2﹣x,解方程可得x的值.解:(1)由题意得,T(2,﹣1)=a×2﹣1﹣b×(﹣1)2=12a﹣b,故答案为:12a﹣b;(2)①=10a−b=−34,解得a=2,b=1答:a的值是2,b的值是1;(3)由题意得,2x﹣1=2﹣x,解得x=1.总结提升:本题考查二元一次方程组的解,熟练掌握解二元一次方程组的方法是解题关键.类型四一元一次不等式中的新定义问题23.(2022•南谯区开学)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4,如果[x12]=3,则x的取值范围是( )A.5≤x<7B.5<x<7C.5<x≤7D.5≤x≤7思路引领:根据题意可得:3≤x12<4,然后进行计算即可解答.解:由题意得:3≤x12<4,∴6≤x+1<8,∴5≤x<7,故选:A.总结提升:本题考查了解一元一次不等式组,实数大小比较,理解定义的新运算是解题的关键.24.定义一种法则“?”如下:a?b=a(a>b)b(a≤b),例如:1?2=2,若(﹣2m﹣5)?3=3,则m的取值范围是 .思路引领:根据题中新定义的运算可得出关于m的不等式﹣2m﹣5≤3;接下来求解即可得到m的取值范围.解:∵1⊕2=2,若(﹣2m﹣5)⊕3=3,∴﹣2m﹣5≤3,解得m≥﹣4.故答案为:m≥﹣4.总结提升:本题考查了不等式的解和解集,解答此题的关键是掌握不等式的解及解集的意义.25.(2022秋•临湘市期末)现定义一种新的运算:a*b=a2﹣2b,例如:3*4=32﹣2×4=1,则不等式(﹣2)*x≥0的解集为 .思路引领:直接根据题意得出不等式,进而计算得出答案.解:∵a*b=a2﹣2b,例如:3*4=32﹣2×4=1,∴不等式(﹣2)*x≥0可变形为:4﹣2x≥0,解得:x≤2.故答案为:x≤2.总结提升:此题主要考查了解一元一次不等式,正确将原式变形是解题关键.26.(2022春•舒城县校级月考)在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a−32(a+b),如1⊕5=2×1−32(1+5)=﹣7.(1)若x⊕4=0,则x= ;(2)解不等式x⊕6>3;(3)求不等式x⊕2>(﹣2)⊕(x+4)的负整数解.思路引领:(1)根据所给的运算列出关于x的方程,解方程即可;(2)根据所给的运算列出关于x的一元一次不等式,求出x的取值范围即可;(3)根据所给的运算列出关于x的一元一次不等式,求出x的取值范围即可.解:(1)∵a⊕b=2a−32(a+b),∴x⊕4=2x−32(x+4)=12x−6,∵x⊕4=0,∴12x−6=0,解得x=12,故答案为:12;(2)由x ⊕6>3,可得2x −32(x +6)>3,解得x >12.(3)∵a ⊕b =2a −32(a +b ),∴x ⊕2=2x −32(x +2)=12x−3,﹣2⊕(x +4)=2×(﹣2)−32(﹣2+x +4)=﹣4+3−32x ﹣6=−32x ﹣7∵x ⊕2>(﹣2)⊕(x +4),∴12x−3>−32x ﹣7,解得x >﹣2,∴不等式的负整数解为﹣1.总结提升:本题考查的是解一元一次方程,解一元一次不等式,根据所给的新运算列出关于x 的一元一次(方程)不等式是解答此题的关键.27.(2022秋•西湖区校级月考)我们定义:如果两个一元一次不等式有公共解(两个不等式解集的公共部分),那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)在不等式①3x ﹣5<0,②x ≥1,③x ﹣(3x ﹣1)<﹣5④3x 12>x 中,不等式x 12−1≥x 的“云不等式”是 .(填序号)(2)若a ≠﹣2,若关于x 的不等式x +2≥a 与不等式(a +2)x <a +2互为“云不等式”,求a 的取值范围.思路引领:(1)分别求出各不等式的解,再根据“云不等式”的定义即可得出结论;(2)先求出不等式x +2≥a 的取值范围,再分a +2>0和a +2<0两种情况进行讨论.解:(1)①解不等式3x ﹣5<0得,x <53;②x ≥1;③不等式的解集为:x >3;④不等式的解集为x >﹣1.解不等式x 12−1≥x 得,x ≤﹣1.∵只有不等式3x ﹣5<0的解集与不等式x 12−1≥x 有公共部分,∴不等式x12−1≥x的“云不等式”是不等式3x﹣5<0.故答案为:①;(2)不等式x+2≥a的解集为x≥a﹣2,①当a+2>0时,即a>﹣2,可得x<1,根据题意a﹣2<1,即a<3,a的取值范围为a<3;②当a+2<0时,即a<﹣2,可得x>1,此时不论a为小于﹣2的何值均符合题意.故a<3且a≠﹣2.总结提升:本题考查了解一元一次不等式,解出不等式、根据解集判断系数的取值范围是解题的关键.28.(2022春•永春县期中)一个四位数,记千位数字与个位数字之和为x,十位数字与百位数字之和为y,如果x=y,那么称这个四位数为“对称数”.(1)最大的“对称数”为 ,最小的“对称数”为 .(2)若上述定义中的x满足不等式|x+1|<4,则这样的对称数有 个.(3)一个四位的“对称数”M,它的百位数字是千位数字a的3倍,个位数字与十位数字之和为10,且个位数字b −1≤x−22b有3个整数解,求出所有满足条件的“对称数”M的值.思路引领:(1)根据题意,可以写出最小的“对称数”和最大的“对称数”;(2)根据个位数字b −1≤x−22b有3个整数解,可以求得b的值,然后根据题意,可以得到所有满足条件的“对称数”M的值.解:(1)由题意可得,最大的“对称数”是9999,最小的“对称数”为1010,故答案为:9999;1010;(2)∵|x+1|<4,1≤x≤9,x为整数,∴x=1或2,∴当x=1时,对称数有1010,1100,当x=2时,对称数有1111,1201,1021,2110,2200,2020,故定义中的x满足不等式|x+1|<4,则这样的对称数有8个,故答案为:8;(3−1≤x−22b,得b18<x≤4,∵个位数字b −1≤x−22b有3个整数解,∴1≤b18<2,解得7≤b<15,∵b为个位数字,∴b=7,8,9,∵一个四位的“对称数”M,它的百位数字是千位数字a的3倍,个位数字与十位数字之和为10,∴百位数字为3a,十位数字是10﹣b,∴a+b=3a+(10﹣b),∴a=b﹣5,∴当b=7时,a=2,此时对称数”M的值是2637,当b=8时,a=3,此时对称数”M的值是3928,当b=9时,a=4,此时百位数字3a=12不存在,舍去,由上可得,对称数”M的值是2637,3928.总结提升:本题考查由实际问题抽象出一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确题意,求出M的值.29.(2022春•如东县期中)对x,y定义一种新运算T,规定:T(x,y)=(mx+ny)(x+2y)(其中m,n 均为非零常数).例如T(1,1)=3m+2n.(1)已知T(1,﹣1)=0,T(0,2)=8.①求m,n的值;②若关于P的不等式组T(2p,2−p)>4T(4p,3−2p)≤a恰好有3个整数解,求a的取值范围.(2)当x2≠y2时,T(x,y)=T(y,x)对于任何有理数x,y都成立,请直接写出m,n满足的关系式.思路引领:(1)①构建方程组即可解决问题;②根据不等式即可解决问题;(2)利用恒等式的性质,根据关系式即可解决问题;解:(1)①由题意,得−(m−n)=0 8n=8,∴m=1 n=1;②由题意,得(2p+2−p)(2p+4−2p)>4①(4p+3−2p)(4p+6−4p)≤a②,解不等式①,得p>﹣1.解不等式②,得p≤a−18 12.∴﹣1<p≤a−18 12.∵恰好有3个整数解,∴2≤a−1812<3.∴42≤a<54.(2)由题意得:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵对任意有理数x,y都成立,∴m=2n.总结提升:本题考查一元一次不等式、二元一次方程组、恒等式等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.30.(2022春•长沙县期末)定义:对于任意实数a,b,如果满足a+b=ab,那么称a,b互为“朋友数”,点(a,b)为“朋友点”.(1)判断下列命题的真假,真命题在括号内打“√”,假命题在括号内打“×”;①1.5与3是互为“朋友数”的; ②若点(a,b)为“朋友点”,则点(b,a)也一定为“朋友点”; ③若点a与b互为相反数,则(a,b)一定不是“朋友点”; ④存在与1互为“朋友数”的实数. (2)填空:若(a,3)为“朋友点”,则a= .(3)已知P(x,y)是平面直角坐标系内的一个点,且它的横、纵坐标是关于x,y的二元一次方程组x−2y=m2−92x+y=2m2+7的解,请判断点P(x,y)是否为“朋友点”?若是,请求出m的值;若不是,请说明理由.思路引领:(1)①由1.5+3=4.5,1.5×3=4.5,可得①是真命题;②若点(a,b)为“朋友点”,则a+b=ab,有b+a=ba,可知②是真命题;③若a=b=0,则a+b=ab,故③是假命题;④设1与x互为“朋友数”,则x+1=x×1,方程无解,可知④是假命题;(2)若(a,3)为“朋友点”,则a+3=a×3,解得a=3 2;(3)由x−2y=m2−92x+y=2m2+7得:x=m2+1y=5,若P(m2+1,5)是“朋友点”,则m2+1+5=(m2+1)×5,可解得m=±12,即可得答案.解:(1)①∵1.5+3=4.5,1.5×3=4.5,∴1.5与3是互为“朋友数”的,①是真命题,故答案为:√;②若点(a,b)为“朋友点”,则a+b=ab,∴b+a=ba,∴点(b,a)也一定为“朋友点”;②是真命题,故答案为:√;③若a=b=0,则a+b=ab,∴此时(a,b)是“朋友点”,③是假命题,故答案为:×;④设1与x互为“朋友数”,则x+1=x×1,方程无解,∴不存在与1互为“朋友数”的实数,④是假命题,故答案为:×;(2)若(a,3)为“朋友点”,则a+3=a×3,解得a=3 2,故答案为:3 2;(3)当m=±12时,P(m2+1,5)是“朋友点“,理由如下:由x−2y=m2−92x+y=2m2+7得:x=m2+1y=5,∴P(m2+1,5),若P(m2+1,5)是“朋友点”,则m2+1+5=(m2+1)×5,解得m=±1 2,∴当m=±12时,P(m2+1,5)是“朋友点”题意,理解“朋友数”和“朋友点”的定义.31.(2022春•灌云县期末)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“相依方程”,例如:方程x﹣1=3的解为x=4,而不等式组x−1>1x−2<3的解集为2<x<5,不难发现x=4在2<x<5的范围内,所以方程x﹣1=3是不等式组x−1>1x−2<3的“相依方程”.(1)在方程①x﹣3=0;②3x+2=x;③2x﹣10=0中,不等式组x>2x≤5的“相依方程”是 ① ;(填序号)(2)若关于x的方程2x+k=6>x2x13−1的“相依方程”,求k的取值范围.思路引领:(1)求出不等式组的解集,以及各方程的解,判断即可;(2)求出已知不等式组的解集,根据方程为不等式组的“相依方程”,确定出k的范围即可.解:(1)方程①x﹣3=0,解得:x=3;②3x+2=x,解得:x=﹣1;③2x﹣10=0,解得:x=5,不等式组x>2x≤5,解得:2<x≤5,则方程①x﹣3=0是不等式组x>2x≤5的“相依方程”;故答案为:①;(2>x2x13−1,解得:﹣1<x≤1,方程2x+k=6,解得:x=6−k 2,代入得:﹣1<6−k2≤1,解得:4≤k<8.总结提升:此题考查了解一元一次不等式组,以及一元一次方程的解,弄清题中的新定义是解本题的关键.32.(2022春•蜀山区校级期中)阅读理解:我们把|a b c d |称为二阶行列式,规定它的运算法则为|a b c d |=ad ﹣bc ,例如:|2345|=2×5﹣3×4=﹣2.(1)填空:若|−12x−10.5x |=0,则x = 14 ,|213−x x |>0,则x 的取值范围 ;(2)若对于正整数m ,n 满足,1<|1n m 4|<3,求m +n 的值;(3)若对于两个非负数x ,y ,|x−1y 23|=|x −y 2−1|=k ,求实数k 的取值范围.思路引领:(1)根据法则得到﹣x ﹣0.5(2x ﹣1)=0、2x ﹣(3﹣x )>0,然后解得即可.(2)根据法则得到1<4﹣mn <3,解不等式求得1<mn <3,由m 、n 是正整数,则可求得m +n =3;(3)根据法则得到3(x ﹣1)﹣2y =﹣x +2y =k ,解方程组求得x ,y 的值,然后根据题意得关于k 的不等式组,解得即可.解:(1)由题意可得﹣x ﹣0.5(2x ﹣1)=0,整理可得﹣x ﹣x +0.5=0,解得x =14;由题意可得2x ﹣(3﹣x )>0,解得x >1,故答案为14,x >1;(2)由题意可得,1<4﹣mn <3,∴1<mn <3,∵m 、n 是正整数,∴m =1,n =2,或m =2,n =1,∴m +n =3;(3)由题意可得3(x ﹣1)﹣2y =﹣x +2y =k ,∴3x−2y =k +3①−x +2y =k ②,①+②得:2x =2k +3,解得:x =2k 32,将x =2k 32代入②,得:−2k 32+2y =k ,解得y=4k3 4,∵x、均为非负数,≥0≥0,解得k≥−3 4.总结提升:此题主要考查了解一元一次不等式和解一元二次方程组,关键是看懂题目所给的运算法则,根据题意列出等式或不等式.。

2021最新七年级数学新定义题型精选试题解析初一

2021最新七年级数学新定义题型精选试题解析初一

2021最新七年级数学新定义题型精选试题解析初一1.在平面直角坐标系中,点A的坐标为(1,2),B的坐标为(1,b)。

定义如下:若ABC是以AB为腰的等腰直角三角形,就称点C为线段AB的“伴随顶点”。

(1) 若b=5,点C是第一象限的点,则线段AB的伴随顶点C的坐标是(5,1)。

(2) 若ABC的面积等于8时,求线段AB的伴随顶点C的坐标。

设C的坐标为(x,y),则根据勾股定理可得$(x-1)^2+(y-b)^2=1$,又因为ABC是等腰直角三角形,所以C的坐标到AB中点的距离等于AB的一半,即$\sqrt{(x-1)^2+(y-b)^2}=\frac{\sqrt{2}}{2}\sqrt{(1-b)^2+1}$。

将两式联立可解得C的坐标为$\left(1+\frac{2}{\sqrt{5}},\frac{2}{\sqrt{5}}\right)$。

2.规定在平面直角坐标系中,任意不重合的两点的折线距离为$d(M,N)=|x_1-x_2|+|y_1-y_2|$。

已知点P(3,-4),若点Q的坐标为(t,2),且$d(P,Q)=10$,则$t$的值为5.3.在平面直角坐标系中,对任意的点P(x,y),定义P的绝对坐标$P=x+y$,任取点B(x2,y2),A′(x1,y2),B′(x2,y1),若此时A+B≤A′+B′成立,则称点A,B相关。

(1) 分别判断下面各组中两点是相关点的是:①A(-2,1),B(3,2);②C(4,-3),D(2,4)。

(2) (i) 对于点P(x,y),其中$-6\leq x,y\leq 6$,其中$x,y$是整数,则所有满足条件的P点有169个;(ii) 求所有满足(i)条件的所有点中与点E(3,3)相关的点的个数为13个;(iii) 对于满足(i)条件的所有点中取出n个点,满足在这n个点中任意选择A,B两点,点A,B都相关,求$n$的最大值为25.4.规定,在平面直角坐标系中,将一个图形先关于$y$轴对称,再向下平移2个单位记为1次“R变换”。

人教版七年级下册数学《平面直角坐标系》研讨说课教学复习课件

人教版七年级下册数学《平面直角坐标系》研讨说课教学复习课件
如图,正方形ABCD 的边长为6. (2)另建立一个平面直角坐标系,此时正方形的顶点A,B ,C,D 的坐标又分别是什么?
(-3,6) (3,6)
(-3,0) (3,0)
建系的技巧
由上得知,建立的平面直角坐标系不同,则各点的坐标也 不同.你认为怎样建立直角坐标系才比较适当? 可以容易确定图形上点的方式, 就是恰当的建系方式. 例如以正方形的两条边所 在的直线为坐标轴, 建立平面直角坐标系.
知识回顾
数轴上的点可以用一个实数表示,这个实数叫做这个点的坐标. 例如点A的坐标为_-_4___,点B的坐标为_2___. 反之,已知数轴上点的坐标,这个点的位置就确定了.你能再 数轴上找到-3表示的点么?
知识回顾
在数轴上已知点能说出它的坐标,由坐标能在数轴上找到对 应点的位置.那么数轴上的点与坐标有怎样的关系? 数轴上的点与坐标是“一一对应”的.也就是说,在数轴上 每一个点都可以用一个坐标来表示,任何一个坐标都可以在 数轴上找到唯一确定的点.
(-,-)
(+,-)
G(-5,-4)
E (5,-4)
D (-7,-5)
H (3,-5)
各个象限点坐标的符号特点
点的位置 在第一象限 在第二象限 在第三象限 在第四象限
点的坐标的符号特点 (+,+) (-,+) (-,-) (+,-)
例题 请你根据下列各点的坐标判定它们分别在第几象限或在什
么坐标轴上? A(-5,2)
y
5
第二象限 4 3 Ⅱ2
第一象限 Ⅰ
1O
-4 -3 -2 -1
Ⅲ -1 -2
第三象限 -3
1234 x Ⅳ
第四象限
-4
点的位置 横坐标符 号

2020年北京市七年级下期末数学备考之新定义解析版

2020年北京市七年级下期末数学备考之新定义解析版

(2)∵M=x2+4xy+5y2﹣12y+k=(x+2y)2+(y﹣6)2+k﹣36 ∴k=36 时,M 是完美数, 故答案为:36. 二.解答题(共 19 小题) 2.(1)阅读下列材料并填空:
对于二元一次方程组
,我们可以将 x,y 的系数和相应的常数项排成一个数

,求得的一次方程组的解
,用数表可表示为
∴①
或②

由①得,Βιβλιοθήκη ∵n+2=5≠1,n+4=7≠1,
故①不合题意;
由②得

∵n+2=﹣1=m,

符合题意,
故 m=﹣1,n=﹣3,
第 2页(共 16页)
∵关于 x 的不等式组
,恰好有 2019 个整数解,
∴2012<a≤2013. 4.在平面直角坐标系 xOy 中,对于给定的两点 P,Q,若存在点 M,使得△MPQ 的面积等
2020 年北京市七年级下期末数学备考之新定义
参考答案与试题解析
一.填空题(共 1 小题) 1.若一个整数能表示成 a2+b2(a,b 是整数)的形式,则称这个数为“完美数”.
例如,因为 5=22+12,所以 5 是一个“完美数”. (1)请你再写一个大于 10 且小于 20 的“完美数” 13 ; (2)已知 M 是一个“完美数”,且 M=x2+4xy+5y2﹣12y+k(x,y 是两个任意整数,k 是 常数),则 k 的值为 36 . 【解答】解:(1)∵13=22+32 ∴13 是完美数 故答案为:13;
.用数表可以
简化表达解一次方程组的过程如下,请补全其中的空白:

七年级数学 新定义

七年级数学 新定义

2对于二元一次方程组⎨我们可以将x,y的系数和相应的常数项排成一个x+3y=36,数表⎧x=a,1336⎪⎭01b⎪⎭,求得的一次方程组的解⎨用数表可表示为y=b⎧T(4p,3-2p)≤a-2七年级新定义1.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(-1,6)的“2属派生点”P′的坐标为;(2)若点P的“3属派生点”P′的坐标为(6,),则点P的坐标;(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段P P′的长度为线段OP长度的2倍,求K的值。

2.(1)阅读下列材料并填空:⎧4x+3y=54,⎩⎛4354⎫⎛10a⎫⎝⎩⎝表达解一次方程组的过程如下,请补全其中的空白:.用数表可以简化从而得到该方程组的解为⎨x=⎩y=,.3.对x,y定义一种新运算T,规定:T(x,y)=(mx+ny)(x+2y)(其中m,n均为非零常数).例如:T(1,1)=3m+3n.(1)已知T(1,1)=0,T(0,2)=8.①求m,n的值;⎧T(2p,-p)>4,②若关于p的不等式组⎨恰好有3个整数解,求a的取值范围;⎩(2)当x2≠y2时,T(x,y)=T(y,x)对任意有理数x,y都成立,请直接写出m,n满足的关系式.4.一般情况下a b a+b+=不成立,但有些数可以使得它成立,例如:a=b=0.我们363+6a b a+b称使得+=成立的一对数a,b为“相伴数对”,记为(a,b).363+6(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m-27n-[4m-2(3n-5)]的值. 45.阅读理解:善于思考的小聪在解方程组时,发现方程组①和②之间存在一定关系,他的解法如下:解:将方程②变形为:2x﹣3y﹣2y=5③.把方程①代入方程③得:3﹣2y=5,解得y=﹣1.把y=﹣1代入方程①得x=0.∴原方程组的解为.小聪的这种解法叫“整体换元”法.请用“整体换元”法完成下列问题:(1)解方程组:;①把方程①代入方程②,则方程②变为;②原方程组的解为.(2)解方程组:.- 2 3x - 1>-x + 2⎪ x - <1,(3)若方程 3 - x = 2 x , 3 + x = 2 x + ⎪ 都是关于 x 的不等式组 ⎨ 的关联6 .对于有理数 a ,b ,定义 min {a ,b }的含义为:当 a ≥b 时,min {a ,b }=b ;当 a <b时,min {a ,b }=a .例如:min {1,-2}=-2,min {-3 , 3}=-3.(1)min {-1,}=;(2)求 min{x 2+1,0};(3)已知 min{-2k +5,-1}=-1,求 k 的取值范围;(4)已知 min{ 5, 2m - 4n - m 2 - n 2 }=5.直接写出 m ,n 的值7. 如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.( 1 ) 在 方 程 ① 3 x - 1 = 0 , ② 2x + 1 = 0 , ③ x - (3x + 1) = -5 中 , 不 等 式 组3⎧- x + 2>x - 5,⎨的关联方程是 ;(填序号)⎩⎧ 1 (2)若不等式组 ⎨ 2的一个关联方程的根是整数,则这个关联方程可以 ⎪⎩1 + x >-3x + 2是;(写出一个即可)⎛ 1 ⎫ ⎧ x <2x - m , ⎝ 2 ⎭ ⎩ x - 2≤m方程,直接写出 m 的取值范围.。

新人教版七年级数学下册平行线及判定

新人教版七年级数学下册平行线及判定

③过一点可以而且只可以画一条直线与已知直线
平行。
(╳)
D 2、用符号“∥”表示图中平行四
C
边形的两组对边分别平行。
AB∥ CD,AD∥ BC。 A
B
巩固练习
下列说法正确的是( D )
A、在同一平面内,两条直线的位置关系有相交, 垂直,平行三种。
B、在同一平面内,不垂直的两直线必平行。 C、在同一平面内,不平行的两直线必垂直。 D、在同一平面内,不相交的两直线一定不垂直。
5.2 平行线及其判定 5.2.2 平行线的判定
平行线的画法
一放 二靠 三移 四画
从画图过程,三角板起到什么作用?
要判断直线a //b,你有办法了吗?
平行线的判定定理1: 两条直线被第三条直线所截, 如果同位角相等,那么两直线 平行。简单地说: 同位角相等,两直线平行。 如图: ∵ ∠1=∠2(已知)
C
相交的两
Hale Waihona Puke 条直线。 abB
直线AB平行
AB D
CD 于直线CD
a b 直线a平行
于直线b
平面内的两条直线除平行 外还有什么位置关系?
同一平面内的两条不重 合的直线的位置关系只有两种:
相交或平行
课内练习
1、判断下列说法是否正确,并说明理由。
①不相交的两条直线是平行线。
(╳)
②在同一平面内,两条不相交的线段是平行线。(╳)
E
A
B
4
C
7
D
F
两条直线被第三条直线所截, 如果同旁内角互补,那么这两条直线平行.
简单地说:同旁内角互补,两直线平行.
判定两条直线平行的方法
文字叙述
符号语言

部编数学七年级下册专题9.8不等式(组)的新定义问题大题专练(重难点培优30题)【拔尖特训】2023

部编数学七年级下册专题9.8不等式(组)的新定义问题大题专练(重难点培优30题)【拔尖特训】2023

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【人教版】专题9.8不等式(组)的新定义问题大题专练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022春•庐阳区校级期中)对于任意实数m、n,定义一种新运算:m*n=m﹣3n+7,等式右边是通常的加减运算,例如:2*3=2﹣3×3+7=0.(1)(8*2)的平方根为 ±3 ;(2)若关于x的不等式组3t<2*x<7解集中恰有3个整数解,求t的取值范围.【分析】(1)原式利用题中的新定义化简,求出平方根即可;(2)已知不等式利用题中的新定义化简,根据解集中恰有3个整数解,确定出t的范围即可.【解答】解:(1)根据题中的新定义得:8*2=8﹣3×2+7=8﹣6+7=9,则9的平方根是±3;故答案为:±3;(2)根据题中的新定义化简得:3t<2﹣3x+7<7,解得:23<x<﹣t+3,∵该不等式的解集有3个整数解,∴该整数解为1,2,3,∴3<﹣t+3≤4,解得:﹣1≤t<0.2.(2021春•嘉鱼县期末)定义一种新运算“a△b”:当a≥b时,a△b=a+2b;当a<b时,a△b=a﹣2b.例如:3△(﹣4)=3+2×(﹣4)=﹣5,1△2=1﹣2×2=﹣3.(1)填空:(﹣4)△3= ﹣10 ;(直接写结果)(2)若(3m﹣4)△(m+6)=(3m﹣4)+2(m+6),求m的取值范围;(3)已知(3x﹣7)△(3﹣2x)<﹣6,求x的取值范围.【分析】(1)根据新定义计算可得;(2)根据新定义结合已知条件知3m﹣4≥m+6,解之可得;(3)由题意可得3x−7≥3−2x3x−7+2(3−2x)<−6或3x−7<3−2x3x−7−2(3−2x)<−6,分别求解可得.【解答】解:(1)(﹣4)*3=﹣4﹣2×3=﹣10,故答案为:﹣10;(2)∵(3m﹣4)△(m+6)=(3m﹣4)+2(m+6),∴3m﹣4≥m+6,解得:m≥5;(3)由题意知,3x−7≥3−2x3x−7+2(3−2x)<−6或3x−7<3−2x3x−7−2(3−2x)<−6,解得:x>5或x<1.3.阅读下面材料:对于实数p,q,我们定义符号max{p,q}的意义为:当p≤q时,max{p,q}=q;当p>q时,max{p,q}=p,如:max{2.﹣1}=2;max{3,3}=3.根据上面的材料回答下列问题:(1)max{﹣1,3}= 3 ;(2)当max{3x−12,2x13}=2x13时,求x的取值范围.【分析】(1)根据定义即可求得;(2)根据题意得出3x−12≤2x13,解不等式即可求得结论.【解答】解:(1)max{﹣1,3}=3,故答案为3;(2)由定义得,3x−12≤2x13,9x﹣3≤4x+2,5x≤5,x≤1,故的取值范围是x≤1.4.(2020春•朝阳区校级期中)请你根据右框内所给的内容,完成下列各小题.(1)若m⊕n=1,m⊕2n=﹣2,分别求出m和n的值;(2)若m满足m⊕2≤0,且3m⊕(﹣8)>0,求m的取值范围.我们定义一个关于有理数a,b的新运算,规定:a⊕b=4a﹣3b.例如:5⊕6=4×5﹣3×6=2.【分析】(1)根据新定义列出关于m、n的方程组,解之可得;(2)根据新定义列出关于m、n的不等式组,解之可得.【解答】解:(1)根据题意,得:4m−3n=14m−6n=−2,解得:m=1 n=1;(2)根据题意,得:4m−6≤012m+24>0,解得:﹣2<m≤3 2.故m的取值范围是﹣2<m≤3 2.5.(2022春•如皋市期末)对于任意实数m,n,定义一种新运算:m◎n=m+n﹣5,其中,等式右边是通常的加减运算.如:2◎3=2+3﹣5=0.若关于x的不等式组t<2◎x<7恰有3个整数解,求t的取值范围.【分析】已知不等式利用题中的新定义化简,根据解集中恰有3个整数解,确定出t的范围即可.【解答】解:由题意得:t<2+x﹣5<7.即t<x﹣3<7,∴t+3<x<10,∵该不等式组恰有3个整数解,即整数解x=7,8,9,∴6≤t+3<7,解得3≤t<4.故t的取值范围是3≤t<4.6.(2022春•新郑市期末)对于任意实数x,y定义一种新运算“#”:x#y=xy+x﹣y.例如,3#5=3×5+3﹣5=13.(1)解不等式:3#x<4;(2)若m<2#x<9,且该不等式组的解集中恰有两个整数解,请直接写出m的取值范围.【分析】(1)根据新定义列出不等式3x+3﹣x<4,解之即可;(2)由新定义得出2x+2−x>m①2x+2−x<9②,解之得出x>m﹣2且x<7,结合不等式组的整数解个数得出4≤m﹣2<5,解之即可.【解答】解:(1)∵3#x<4,∴3x+3﹣x<4,解得x<0.5;(2)∵m<2#x<9,∴2x+2−x>m①2x+2−x<9②,解不等式①,得:x>m﹣2,解不等式②,得:x<7,∵不等式组有2个整数解,∴4≤m﹣2<5,∴6≤m<7.7.(2018春•房山区期中)定义:对于任何有理数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣π]= ﹣4 ;(2)如果[x−12]=﹣5,求满足条件的所有整数x;(3)直接写出方程6x﹣3[x]+7=0的解 x=−83或x=−196 .【分析】(1)由定义直接得出即可;(2)根据题意得出﹣5≤x−12<−4,求出x的取值范围,从而得出满足条件的所有正整数的解;(3)整理得出[x]=76x3,方程右边式子为整数,表示出x只能为负数,得出x﹣1<76x3<x,求出x的取值范围,确定出方程的解即可.【解答】解:(1)由题可得,[﹣π]=﹣4;故答案为:﹣4;(2)﹣5≤x−12<−4,解得﹣9≤x<﹣7整数解为﹣9,﹣8;(3)由6x﹣3[x]+7=0,得[x]=76x 3,所以76x3为整数,则(7+6x)为3的倍数,即x=3n−76(n为整数),又x﹣1<76x3<x,解得−206<x<−146;易知n=﹣3时,3n﹣7=﹣16符合要求,n=﹣4时,3n﹣7=﹣19符合要求,所以x=−83或x=−196.故答案为:x=−83或x=−196.8.(2022春•唐县期末)规定min(m,n)表示m,n中较小的数(m,n均为实数),例如:min{3,﹣1}=﹣1,min=(1)min{﹣2,﹣3}= ﹣3 ;(2)若min{3x﹣1,2}=2,求x的取值范围;【分析】(1)根据题中的新定义确定出所求即可;(2)根据题中的新定义得到3x﹣1与2的大小,求出x的范围即可.【解答】解:(1)根据题中的新定义得:min{﹣2,﹣3}=﹣3;故答案为:﹣3;(2)∵min{3x﹣1,2}=2,∴3x﹣1≥2,解得:x≥1.9.(2022春•大观区校级期中)在实数范围内定义一种新运算“⊕”其运算规则为:a⊕b=2a−32(a+b),如1⊕5=2×1−32(1+5)=﹣7.(1)若x⊕4=0,则x= 12 .(2)若关于x的方程x⊕m=﹣2⊕(x+4)的解为非负数,求m的取值范围.【分析】(1)根据所给的运算列出关于x的方程,解方程即可.(2)根据所给的运算列出关于x的一元一次方程,解方程后得到关于m的不等式,求出m的取值范围即可.【解答】解:(1)∵a⊕b=2a−32(a+b),∴x⊕4=2x−32(x+4)=12x﹣6,∵x⊕4=0,∴12x﹣6=0,解得x=12,故答案为:12;(2)∵a⊕b=2a−32(a+b),∴x⊕m=2x−32(x+m)=12x−32m,﹣2⊕(x+4)=2×(﹣2)−32(﹣2+x+4)=﹣4+3−32x﹣6=−32x﹣7,∴12x−32m=−32x﹣7,解得x=34m−72,∵关于x的方程(x⊕m)=[﹣2⊕(x+4)]的解为非负数,∴34m−72≥0,∴m≥14 3,∴m的取值范围为m≥14 3.10.(2022春•三水区校级期中)定义一种新运算“a※b”:当a≥b时,a※b=2a+b;当a<b时,a※b=2a ﹣b.例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24.(1)填空;(﹣3)※2= ﹣8 ;(2x2+2x+2)※(x2﹣4)= 5x2+4x ;(2)若(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),则x的取值范围为 x≥7 .(3)已知(2x﹣6)※(9﹣3x)<7,求x的取值范围.【分析】(1)根据新运算公式计算可得;(2)结合新运算公式知3x﹣4≥2x+3,解之可得;(3)分两种情况得到关于x的不等式组,分别求解可得.【解答】解:(1)(﹣3)※2=2×(﹣3)﹣2=﹣8;∵(2x2+2x+2)﹣(x2﹣4)=x2+2x+6=(x+1)2+5>0,∴(2x2+2x+2)※(x2﹣4)=2(2x2+2x+2)+(x2﹣4)=5x2+4x;故答案为:﹣8,5x2+4x;(2)∵(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),∴3x﹣4≥2x+3,解得:x≥7,故答案为:x≥7.(3)当2x﹣6≥9﹣3x时,则2(2x﹣6)+(9﹣3x)<7,解得3≤x<10;当2x﹣6<9﹣3x时,则2(2x﹣6)﹣(9﹣3x)<7,解得x<3;综上,x的取值范围为:x<10.11.(2018•余姚市模拟)请你阅读如图框内老师的新定义运算规定,然后解答下列各小题.(1)若x⊕y=1,x⊕2y=﹣2,分别求出x和y的值;(2)若x满足x⊕2≤0,且3x⊕(﹣8)>0,求x的取值范围.【分析】(1)根据定义新运算得到二元一次方程组,再解方程组即可求解;(2)根据定义新运算得到一元一次不等式组,再解不等式组即可求解.【解答】解:(1)根据题意得4x−3y=14x−3×2y=−2,解得x=1 y=1;(2)根据题意得4x−3×2≤04×3x−3×(−8)>0,解得﹣2<x≤3 2.故x的取值范围是﹣2<x≤3 2.12.(2022•南京模拟)定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a﹣2b.例如:3*(﹣4)=3+(﹣8)=﹣5,(﹣6)*12=﹣6﹣24=﹣30.(1)填空:(﹣4)*3= ﹣10 .(2)若(3x﹣4)*(x+6)=(3x﹣4)+2(x+6),则x的取值范围为 x≥5 ;(3)已知(3x﹣7)*(3﹣2x)<﹣6,求x的取值范围;(4)计算(2x2+4x+8)*(x2+4x﹣2).【分析】(1)根据新定义计算可得;(2)结合新定义知3x﹣4≥x+6,解之可得;(3)由题意可得3x−7≥3−2x3x−7+2(3−2x)<−6或3x−7<3−2x3x−7−2(3−2x)<−6,分别求解可得;(4)先利用作差法判断出2x2+4x+8>x2+4x﹣2,再根据新定义计算(2x2+4x+8)*(x2+4x﹣2)即可求解.【解答】解:(1)(﹣4)*3=﹣4﹣2×3=﹣8﹣6=﹣10.故答案为:﹣10;(2)∵(3x﹣4)*(x+6)=(3x﹣4)+2(x+6),∴3x﹣4≥x+6,解得:x≥5.故答案为:x≥5;(3)由题意知3x−7≥3−2x3x−7+2(3−2x)<−6或3x−7<3−2x3x−7−2(3−2x)<−6,解得:x>5或x<1.故x的取值范围是x>5或x<1;(4)∵2x2+4x+8﹣(x2+4x﹣2)=2x2+4x+8﹣x2﹣4x+2=x2+10>0;∴2x2+4x+8>x2+4x﹣2,原式=2x2+4x+8+2(x2+4x﹣2)=2x2+4x+8+2x2+8x﹣4=4x2+12x+4.13.(2020•张家界)阅读下面的材料:对于实数a,b,我们定义符号min{a,b}的意义为:当a<b时,min{a,b}=a;当a≥b时,min{a,b}=b,如:min{4,﹣2}=﹣2,min{5,5}=5.根据上面的材料回答下列问题:(1)min{﹣1,3}= ﹣1 ;(2)当min{2x−32,x23}=x23时,求x的取值范围.【分析】(1)比较大小,即可得出答案;(2)根据题意判断出2x−32≥x23,解不等式即可判断x的取值范围.【解答】解:(1)由题意得min{﹣1,3}=﹣1;故答案为:﹣1;(2)由题意得:2x−32≥x233(2x﹣3)≥2(x+2)6x﹣9≥2x+44x≥13x≥13 4,∴x的取值范围为x≥13 4.14.(2021春•罗湖区校级期末)已知关于x、y的方程组x−y=11−mx+y=7−3m.(1)当m=2时,请解关于x、y的方程组x−y=11−mx+y=7−3m;(2)若关于x、y的方程组x−y=11−mx+y=7−3m中,x为非负数、y为负数,①试求m的取值范围;②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.【分析】(1)把m=2代入原方程组,再利用加减法解方程组即可;(2)①把m看作常数,解方程组,根据x为非负数、y为负数,列不等式组解出即可;②根据不等式3mx+2x>3m+2的解为x<1,求出m的取值范围,综合①即可解答.【解答】解:(1)把m=2代入方程组x−y=11−mx+y=7−3m中得:x−y=9①x+y=1②,①+②得:2x=10,x=5,①﹣②得:﹣2y=8,y=﹣4,∴方程组的解为:x=5y=−4;(2)①x−y=11−m①x+y=7−3m②,①+②得:2x=18﹣4m,x=9﹣2m,①﹣②得:﹣2y=4+2m,y=﹣2﹣m,∵x为非负数、y为负数,∴9−2m≥0−2−m<0,解得:﹣2<m≤92;②3mx+2x>3m+2,(3m+2)x>3m+2,∵不等式3mx+2x>3m+2的解为x<1,∴3m+2<0,∴m<−2 3,由①得:﹣2<m≤9 2,∴﹣2<m<−2 3,∵m整数,∴m=﹣1;即当m=﹣1时,不等式3mx+2x>3m+2的解为x<1.15.(2020春•海淀区校级期末)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0;②23x+1=0;③x﹣(3x+1)=﹣5中,不等式组−x+2>x−53x−1>−x+2关联方程是 ③ (填序号).(2)若不等式组x−12<11+x>−3x+2的一个关联方程的根是整数,则这个关联方程可以是 2x﹣2=0 (写出一个即可).(3)若方程9﹣x=2x,3+x=2(x+12)都是关于x的不等式组x<2x−mx−2≤m的关联方程,试求出m的取值范围.【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为1的方程即可;(3)先求出方程的解和不等式组的解集,即可得出答案.【解答】解:(1)①解方程3x﹣1=0得:x=1 3,②解方程23x+1=0得:x=−32,③解方程x﹣(3x+1)=﹣5得:x=2,解不等式组−x+2>x−53x−1>−x+2得:34<x<72,所以不等式组−x+2>x−53x−1>−x+2的关联方程是③,故答案为:③;(2)解不等式x−12<1得:x<1.5,解不等式1+x>﹣3x+2得:x>0.25,则不等式组的解集为0.25<x<1.5,∴其整数解为1,则该不等式组的关联方程为2x﹣2=0.故答案为:2x﹣2=0.(3)解方程9﹣x=2x得x=3,解方程3+x=2(x+12)得x=2,解不等式组x<2x−mx−2≤m得m<x≤m+2,∵方程9﹣x=2x,3+x=2(x+12)都是关于x的不等式组x<2x−mx−2≤m的关联方程,∴1≤m <2.16.(2019春•宜宾期末)定义:对于任何有理数m ,符号[m ]表示不大于m 的最大整数.例如:[4.5]=4,[8]=8,[﹣3.2]=﹣4.(1)填空:[π]= 3 ,[﹣2.1]+5= 2 ;(2)如果[5−2x 3]=﹣4,求满足条件的x 的取值范围;(3)求方程4x ﹣3[x ]+5=0的整数解.【分析】(1)根据题目所给信息求解;(2)根据题意得出:﹣4≤5−2x 3<−3,求出x 的取值范围;(3)整理方程得[x ]=4x 53,根据定义得出x ﹣1<4x 53≤x ,解不等式组求得x 的取值范围,即可求得整数x 为﹣7,﹣6,﹣5,由[x ]是整数,则满足4x 53为整数,即可求得x =﹣5.【解答】解:(1)由题意得:[π]=3,[﹣2.1]+5=﹣3+5=2,故答案为3,2;(2)根据题意得:﹣4≤5−2x 3<−3,解得:7<x ≤172,则满足条件的x 的取值范围为7<x ≤172;(3)整理得:[x ]=4x 53,∴x ﹣1<4x 53≤x 解得不等式组的解集为:﹣8<x ≤﹣5,∴整数x 为﹣7,﹣6,﹣5,∵[x ]是整数,∴4x 53为整数,∴x =﹣5,∴方程的整数解为x =﹣5.17.(2020春•西城区校级期中)阅读理解:我们把对非负实数x “四舍五入”到个位的值记为《x 》,即当n为非负整数时,若n −12≤x <n +12,则《x 》=n .例如:《0.67》=1,《2.49》=2,….请解决下列问题:(1)》= 1 ;(2)若《2x ﹣1》=5,则实数x 的取值范围是 114≤x <134 ;(3)①《2x 》=2《x 》;②当m 为非负整数时,《m +2x 》=m +《2x 》;③满足《x 》=32x 的非负实数x 只有两个,其中结论正确的是 ②③ .(填序号)【分析】(1)根据题意判断即可;(2)我们可以根据题意所述利用不等式解答;(3)根据题意可以判断题目中各个结论是否正确,从而可以解答本题.【解答】解:(1)1.(2)若《2x ﹣1》=5,则5−12≤2x ﹣1<5+12,解得114≤x <134.(3)《2x 》=2《x 》,例如当x =0.3时,《2x 》=1,2《x 》=0,故①错误;当m 为非负整数时,不影响“四舍五入”,故《m +2x 》=m +《2x 》,故②正确;《x 》=32x ,则32x −12≤x <32x +12,解得﹣1<x ≤1,∵32x 为非负整数,∴x =0或23,故③正确.故答案为:1;114≤x <134;②③.18.(2022春•定远县期末)阅读材料:如果x 是一个有理数,我们把不超过x 的最大整数记作[x ].例如,[3.2]=3,[5]=5,[﹣2.1]=﹣3,那么,x =[x ]+a ,其中0≤a <1.例如,3.2=[3.2]+0.2,5=[5]+0,﹣2.1=[﹣2.1]+0.9.请你解决下列问题:(1)[4.8]= 4 ,[﹣6.5]= ﹣7 ;(2)如果[x ]=5,那么x 的取值范围是 5≤x <6 ;(3)如果[5x ﹣2]=3x +1,那么x 的值是 53 ;(4)如果x =[x ]+a ,其中0≤a <1,且4a =[x ]+1,求x 的值.【分析】(1)根据新定义直接求解;(2)根据[x ]表示不超过x 的最大整数的定义即可求解;(3)根据[x ]表示不超过x 的最大整数的定义得:3x +1≤5x ﹣2<3x +2,且3x +1是整数,计算可得结论;(4)根据4a =[x ]+1,表示a ,再根据a 的范围建立不等式x 值.【解答】解:(1)[4.8]=4,[﹣6.5]=﹣7.故答案为:4,﹣7.(2)如果[x ]=5.那么x 的取值范围是5≤x <6.故答案为:5≤x <6.(3)如果[5x ﹣2]=3x +1,那么3x +1≤5x ﹣2<3x +2.解得:32≤x <2,∵3x +1是整数.∴x =53.故答案为:53.(4)∵x =[x ]+a ,其中0≤a <1,∴[x ]=x ﹣a ,∵4a =[x ]+1,∴a =[x]14.∵0≤a <1,∴0≤[x]14<1,∴﹣1≤[x ]<3,∴[x ]=﹣1,0,1,2.当[x ]=﹣1时,a =0,x =﹣1;当[x ]=0时,a =14,x =14;当[x ]=1时,a =12,x =112;当[x ]=2时,a =34,x =234;∴x =﹣1或14或112或234.19.(2021春•镇江期末)对非负实数x“四舍五入”到个位的值记为<x>.即当n为非负整数时,若n−1 2≤x<n+12,则<x>=n.如:<3.2>=3,<3.5>=4,<3.8>=4.根据以上材料,解决下列问题:(1)填空:<3.45>= 3 ;(2)若<2x+1>=3,求x满足的条件;(3)下面两个命题:①如果x≥0,m为非负整数,那么<x+m>=m+<x>;②如果x≥0,k为非负整数,那么<kx>=k<x>;请判断在这两个命题中属于假命题的是 ② ,并举反例说明;(4)满足<x>=23x+1的所有非负实数x的值为 32或3 .【分析】(1)根据定义即可求解;(2)根据定义列出不等式即可求解;(3)通过举反例即可判断;(4)根据定义列出不等式即可求解.【解答】解:(1)∵3−12<3.45<3+12,∴<3.45>=3,故答案为:3;(2)∵<2x+1>=3,∴52≤2x+1<72,解得:34≤x<54;(3)②是假命题;反例为:x=1.4,k=2,<kx>=<2.8>=3,而k<x>=2×<1.4>=2×1=2,<kx>≠k<x>;故答案为:②;(4)设23x+1=m,m为整数,则x=3m−32,∴[x]=[3m−32]=m,∴m−12≤3m−32<m+12,∴2≤m<4,∵m为整数,∴m=2,或m=3,∴x=32或x=3.20.(2020春•崇川区校级期末)若x为实数,定义:[x]表示不大于x的最大整数.(1)例如[1.6]=1,[π]= 3 ,[﹣2.82]= ﹣3 .(请填空)(2)[x]+1是大于x的最小整数,对于任意的实数x都满足不等式[x]≤x<[x]+1,利用这个不等式,求出满足[x]=2x﹣1的所有解.【分析】(1)根据[x]表示不大于x的最大整数即可求解;(2)根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:(1)[π]=3,[﹣2.82]=﹣3.故答案为:3,﹣3.(2)∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,21.(2018春•开州区期末)设x是实数,现在我们用{x}表示不小于x的最小整数,如{3.2}=4,{﹣2.6}=﹣2,{4}=4,{﹣5}=5.在此规定下任一实数都能写出如下形式:x={x}﹣b,其中0≤b<1.(1)直接写出{x}与x,x+1的大小关系是 x≤{x}<x+1 (由小到大);(2)根据(1)中的关系式解决下列问题:①求满足{3x+11}=6的x的取值范围;②解方程:{3.5x+2}=2x−1 4.【分析】(1)x={x}﹣b,其中0≤b<1,b={x}﹣x,即0≤{x}﹣x<1,即可判断三者的大小关系,(2)根据(1)中的关系得到关于x的一元一次不等式组,解之即可,②根据(1)中的关系得到关于x的一元一次不等式组,且2x−14为整数,即可求解.【解答】解:(1)∵x={x}﹣b,其中0≤b<1,∴b={x}﹣x,即0≤{x}﹣x<1,∴x≤{x}<x+1,故答案为:x≤{x}<x+1,(2)①∵{3x+11}=6,∴3x+11≤6<(3x+11)+1,解得:﹣2<x≤−5 3,即满足{3x+11}=6的x的取值范围为:﹣2<x≤−5 3,②∵{3.5x+2}=2x−1 4,∴3.5x+2≤2x−14<(3.5x+2)+1,且2x−14为整数,解不等式组得:−136<x≤−32,∴−5512<2x−14≤−314,整数2x−14为﹣4,解得:x=−15 8,即原方程的解为:x=−15 8.22.(2022•南京模拟)阅读材料:我们定义一个关于有理数a,b的新运算,规定:a⊕b=4a﹣3b.例如:5⊕6=4×5﹣3×6=2.完成下列各小题.(1)若a⊕b=1,a⊕2b=﹣5,分别求出a和b的值;(2)若m满足m⊕2≤0,且3m⊕(﹣8)>0,求m的取值范围.【分析】(1)根据新运算,得到方程组,解方程组即可求解;(2)根据新运算,得到不等式组,解不等式组即可.【解答】解:(1)根据题意,得4a−3b=14a−3×2b=−5,解得:a=74 b=2,∴a和b的值分别为a=74,b=2;(2)根据题意,得4m−3×2≤04×3m−3×(−8)>0,解得:−2<m≤3 2.∴m的取值范围−2<m≤3 2.23.(2020春•长沙期末)对x、y定义一种新运算F,规定:F(x,y)=ax+by(其中a,b均为非零常数).例如:F (2,3)=2a +3b .(1)已知F (2,﹣1)=﹣1,F (3,0)=3.①求a ,b 的值.②已知关于p 的不等式组F(3−2p ,3)≥4F(2,2−3p)<−1求p 的取值范围;(2)若运算F 满足−2<F(1,2)≤4−1<F(2,1)≤5,请你求出F (k ,k )的取值范围(用含k 的代数式表示,这里k 为常数且k >0).【分析】(1)①根据F (2,﹣1)=﹣1,F (3,0)=3列出关于a 、b 的方程组,解之可得;②由F(3−2p ,3)≥4F(2,2−3p)<−1列出关于p 的不等式组,解之可得;(2)根据−2<F(1,2)≤4−1<F(2,1)≤5列出关于a 、b 的不等式组,相加得出a +b 的取值范围,再进一步求解可得.【解答】解:(1)①由题意知2a−b =−13a =3,解得a =1b =3;②由题意知3−2p +9≥42+6−9p <−1,解得1<p ≤4;(2)由题意知−2<a +2b ≤4−1<2a+b ≤5,∴﹣3<3a +3b ≤9,∴﹣1<a +b ≤3,∵F (k ,k )=ka +kb ,且﹣k <k (a +b )≤3k ,∴﹣k <F (k ,k )≤3k .24.(2021春•朝阳区校级期末)(1)阅读下面的材料并把解答过程补充完整.问题:在关于x ,y 的二元一次方程组x−y =2x +y =a 中,x >1,y <0,求a 的取值范围.分析:在关于x 、y 的二元一次方程组中,利用参数a 的代数式表示x ,y ,然后根据x >1,y <0列出关于参数a 的不等式组即可求得a 的取值范围.解:由x−y =2x +y =a 解得x =a 22y =a−22,又因为x >1,y <010解得 0<a <2 .(2)请你按照上述方法,完成下列问题:①已知x ﹣y =4,且x >3,y <1,求x +y 的取值范围;②已知a ﹣b =m ,在关于x ,y 的二元一次方程组2x−y =−1x +2y =5a−8中,x <0,y >0,请直接写出a +b 的取值范围 3﹣m <a +b <4﹣m (结果用含m 的式子表示).【分析】(1)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可;(2)①根据(1)阅读中的方法解题即可求解;②解方程组2x−y =−1x +2y =5a−8得:x =a−2y =2a−3,根据x <0,y >0可得1.5<a <2,进一步得到a +b 的取值范围.【解答】解:(11①<0②,∵解不等式①得:a >0,解不等式②得:a <2,∴不等式组的解集为0<a <2,故答案为:0<a <2;(2)①设x +y =a ,则x−y =4x +y =a ,解得:x =y =a−42,∵x >3,y <1,>3<1,解得:2<a <6,即2<x +y <6;②解方程组2x−y =−1x +2y =5a−8得:x =a−2y =2a−3,∵x <0,y >0,∴a−2<02a−3>0,解得:1.5<a <2,∵a ﹣b =m ,∴b =a ﹣m ,a +b =a +a ﹣m ,∵1.5<a<2,∴3﹣m<a+a﹣m<4﹣m,∴3﹣m<a+b<4﹣m.故答案为:3﹣m<a+b<4﹣m.25.(2021•椒江区校级开学)对于任意实数a,b,定义一种新运算:a⊕b=a﹣3b+7,等式右边是通常的加减运算,例如:3⊕5=3﹣3×5+7=﹣5.(1)7⊕4= 2 ;⊕10 .(2)若2x⊕y=12,x⊕3=2y,求xy的平方根;(3)若3m<2⊕x<7,且解集中恰有3个整数解,求m的取值范围.【分析】(1)原式利用题中的新定义化简,计算即可求出值;(2)已知等式利用题中的新定义化简,计算求出x与y的值,计算出xy的值,求出平方根即可;(3)已知不等式利用题中的新定义化简,根据解集中恰有3个整数解,确定出m的范围即可.【解答】解:(1)根据题中的新定义得:7⊕4=7﹣3×4+7=2;1)31)+7=+3+7=﹣10;故答案为:2;﹣10;(2)∵2x⊕y=12,x⊕3=2y,∴2x−3y+7=12 x−9+7=2y,解得:x=4 y=1,则xy=4,4的平方根是±2;(3)由题意得:2−3x+7<7①2−3x+7>3m②,由①得:x>2 3,由②得:x<3﹣m,∴不等式组的解集为23<x<3﹣m,∵该不等式组有3个整数解,整数解为1,2,3,∴3<3﹣m≤4,解得:﹣1≤m<0.26.(2020春•微山县期末)阅读新知现对x,y进行定义一种运算,规定f(x,y)=mx ny2(其中m,n为常数且mn≠0),等式的右边就是加、减、乘、除四则运算.例如:f(2,0)=m×2n×02=m应用新知(1)若f(1,1)=5,f(2,1)=8,求m,n的值;拓展应用(2)已知f(﹣3,0)>﹣3,f(3,0)>−92,且m+n=16,请你求出符合条件的m,n的整数值.【分析】(1)根据题中的新定义列出关于m与n的方程组,求出方程组的解即可得到a与b的值;(2)根据题中的新定义列出不等式组,求得不等式组的解,根据m+n=16确定出m、n的整数值.【解答】解:(15=8,解得:m=6 n=4;(2>−3−92,解得:﹣3<m<2,∵m、n是整数,且m+n=16,∴m=−2n=18或m=−1n=17或m=1n=15.27.(2020春•邗江区期末)定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a﹣2b.例如:3*(﹣4)=3+(﹣8)=﹣5,(﹣6)*12=﹣6﹣24=﹣30.(1)填空:(﹣4)*3= ﹣10 .(2)若(3x﹣4)*(x+6)=(3x﹣4)+2(x+6),则x的取值范围为 x≥5 .(3)计算(2x2﹣4x+7)*(x2+2x﹣2)= 4x2+3 .(4)已知(3x﹣7)*(3﹣2x)<﹣6,求x的取值范围.【分析】(1)根据公式计算可得;(2)结合公式知3x﹣4≥x+6,解之可得;(3)先利用作差法判断出2x2﹣4x+7>x2+2x﹣2,再根据公式计算(2x2﹣4x+7)*(x2+2x﹣2)即可得;(4)由题意可得3x−7≥3−2x 3x−7+2(3−2x)<−6或3x−7<3−2x 3x−7−2(3−2x)<−6,分别求解可得;【解答】解:(1)(﹣4)*3=﹣4﹣2×3=﹣10,故答案为:﹣10;(2)∵(3x ﹣4)*(x +6)=(3x ﹣4)+2(x +6),∴3x ﹣4≥x +6,解得:x ≥5,故答案为:x ≥5.(3)∵2x 2﹣4x +7﹣(x 2+2x ﹣2)=x 2﹣6x +9=(x ﹣3)2≥0;∴2x 2﹣4x +7≥x 2+2x ﹣2,原式=2x 2﹣4x +7+2(x 2+2x ﹣2)=2x 2﹣4x +7+2x 2+4x ﹣4=4x 2+3;(4)由题意知3x−7≥3−2x 3x−7+2(3−2x)<−6或3x−7<3−2x 3x−7−2(3−2x)<−6,解得:x >5或x <1;28.(2020•河北模拟)定义新运算:对于任意实数m 、n 都有m ☆n =mn ﹣3n .例如4☆2=4×2﹣3×2=8﹣6=2,请根据上述知识解决下列问题:(1)x ☆12>4,求x 取值范围;(2)若|x ☆(−14)|=3,求x 的值;(3)若方程x ☆□x =6,□中是一个常数,且此方程的一个解为x =1,求□中的常数.【分析】(1)根据已知公式得出12x −32>4,解之可得答案;(2)根据公式得出|−14x +34|=3,即可得出−14x +34=3或−14x +34=−3,解之可得答案;(3)根据公式得到□x 2﹣3•□x =6,把x =1代入得到□﹣3□=6,即可求得□=﹣3.【解答】解:(1)∵x ☆12>4,∴12x −32>4,解得:x >11;(2)∵|x ☆(−14)|=3,∴|−14x +34|=3,∴−14x +34=3或−14x +34=−3,解得:x =﹣9或x =15;(3)∵方程x ☆□x =6,∴□x 2﹣3•□x =6,∵方程的一个解为x =1,∴□﹣3□=6,∴□=﹣3.29.(2021春•海州区期末)对x ,y 定义一种新运算F ,规定:F (x ,y )=(mx +ny )(3x ﹣y )(其中m ,n 均为非零常数).例如:F (1,1)=2m +2n ,F (﹣1,0)=3m .(1)已知F (1,﹣1)=﹣8,F (1,2)=13.①求m ,n 的值;②关于a 的不等式组F(a ,3a +1)>−95F(5a ,2−3a)≥340,求a 的取值范围;(2)当x 2≠y 2时,F (x ,y )=F (y ,x )对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.【分析】(1)①根据定义的新运算F ,将F (1,﹣1)=﹣8,F (1,2)=13代入F (x ,y )=(mx +ny )(3x ﹣y ),得到关于m 、n 的二元一次方程组,求解即可;②根据题中新定义化简已知不等式组,再求出不等式组的解集即可;(2)由F (x ,y )=F (y ,x )列出关系式,整理后即可确定出m 与n 的关系式.【解答】解:(1)①根据题意得:F (1,﹣1)=(m ﹣n )(3×1+1)=﹣8,即m ﹣n =﹣2;F (1,2)=(m +2n )(3×1﹣2)=13,即m +2n =13,解得:m =3,n =5;②根据题意得:F (x ,y )=(3x +5y )(3x ﹣y ),F(a,3a+1)=(3a+15a+5)(3a﹣3a﹣1)=﹣18a﹣5,F(5a,2﹣3a)=(15a+10﹣15a)(15a﹣2+3a)=180a﹣20.由−18a−5>−95①180a−20≥340②,解不等式①得:a<5,解不等式②得:a≥2,故原不等式组的解集为2≤a<5;(2)由F(x,y)=F(y,x),得(mx+ny)(3x﹣y)=(my+nx)(3y﹣x),整理得:(x2﹣y2)(3m+n)=0,∵当x2≠y2时,F(x,y)=F(y,x)对任意有理数x,y都成立,∴3m+n=0,即n=﹣3m.30.(2021春•大连期末)对x,y定义一种新的运算P,规定:P(x,y)=mx+ny,(x≥y)nx+my,(x<y)(其中mn≠0).已知P(2,1)=7,P(﹣1,1)=﹣1.(1)求m、n的值;(2)若a>0,解不等式组P(2a,a−1)<4P(−12a−1,−13a)≤−5.【分析】(1)先根据规定的新运算列出关于m、n的方程组,再解之即可;(2)由a>0得出2a>a﹣1,−12a﹣1<−13a,根据新定义列出关于a的不等式组,解之即可.【解答】解:(1)由题意,得:2m+n=7−n+m=−1,解得m=2 n=3;(2)∵a>0,∴2a>a,∴2a>a﹣1,−12a<−13a,∴−12a﹣1<−13a,∴2×2a+3(a−1)<4①3(−12a−1)+2×(−13a)≤−5②,解不等式①,得:a<1,解不等式②,得:a≥12 13,12 13≤a<1.∴不等式组的解集为。

2019年春七年级数学下册实数第1课时实数的概念同步练习(新版)新人教版

2019年春七年级数学下册实数第1课时实数的概念同步练习(新版)新人教版

6.3 第1课时 实数的概念知识点 1 无理数的定义 1.下列说法正确的是( ) A .无限小数是无理数 B .有根号的数是无理数 C .无理数是开方开不尽的数D .无理数包括正无理数和负无理数 2.任何一个有理数都可以写成________________的形式,反过来,任何________________都是有理数.3.下列各数中:-14,3.14159,-π,π5,0,0.3,15,5.2·01·,2.121122111222…,其中无理数有________________________.知识点 2 实数的定义与分类 4.能够组成全体实数的是( ) A .自然数和负数 B .整数和分数 C .有理数和无理数D .正数和负数 5.下列说法正确的是( ) A .正实数和负实数统称实数 B .正数、零和负数统称为有理数 C .带根号的数和分数统称实数 D .无理数和有理数统称为实数6.按大小分,实数可分为________、________、________三类. 7.把下列各数分别填入相应的数集里.-13π,-2213,7,327,0.324371,0.5,39,-0.4,16,0.8080080008… 无理数集合{ …}; 有理数集合{ …}; 分数集合{ …}; 负实数集合{ …}.知识点 3 实数与数轴的关系8.和数轴上的点成一一对应关系的数是( ) A .自然数 B .有理数 C .无理数 D .实数9.如图6-3-1,数轴上的A ( )A .点AB .点BC .点CD .点D知识点 4 实数的相反数、绝对值 10.2的相反数是( )A .- 2 B. 2 C.12D .211.若m ,n 互为相反数,则式子|m -5+n |=________. 12.在数轴上表示-6的点到原点的距离为________. 13.求下列各数的相反数和绝对值.(1)-2; (2)-364; (3)π-3.14.求下列各式中的x . (1)|x |=35; (2)|x |=17.15.下列各组数中互为相反数的是( ) A .5和(-5)2B .-|-5|和-(-5)C .-5和3-125 D .-5和1516.实数a 对应的点在数轴上的位置如图6-3-2所示,则a ,-a ,1a的大小关系为( )图6-3-2A.1a <a <-a B .-a <1a<aC .a <1a <-a D.1a<-a <a17.已知a 为实数,则下列四个数中一定为非负数的是( )A .a B.3a C .|-a | D .-|-a |18.如图6-3-3,数轴上A ,B 两点表示的数分别为2和5.1,则A ,B 两点之间表示整数的点共有( )图6-3-3A .6个B .5个C .4个D .3个19.3-2的相反数是________,绝对值是________.20.有九个数:0.1427,(-0.5)3,3.1416,121,327,2.5,227,-2π,0.2020020002…,若无理数的个数为x ,整数的个数为y ,非负数的个数为z ,则x +y +z =________.21.如图6-3-4,A 是硬币圆周上一点,硬币与数轴相切于原点O (点A 与点O 重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上的点A ′重合,则点A ′对应的实数是________.图6-3-422.已知实数a ,b 在数轴上的对应点的位置如图6-3-5所示,试化简:(a -b )2-|a +b |.图6-3-523.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求12ab +c +d 5+e 2+3f 的值.24.先阅读下面的文字,再解答问题.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用2-1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.已知:10+3=x+y,其中x是整数,且0<y<1,求x-y的值.教师详解详析1.D [解析] A 项不正确,无限不循环小数是无理数.B 项不正确,有根号的数不一定是无理数,如4,38等.C 项不正确,π及类似1.010010001…(两个1之间0的个数逐次加1)的数也是无理数.2.有限小数或无限循环小数 有限小数或无限循环小数3.-π,π5,2.121122111222…4.C 5.D 6.正实数 0 负实数7.解:无理数集合{-13π,7,39,-0.4,0.8080080008…,…};有理数集合{-2213,327,0.324371,0.5,16,…};分数集合{-2213,0.324371,0.5,…};负实数集合{-13π,-2213,-0.4,…}.8.D [解析] ∵任何实数都可以用数轴上的点来表示,数轴上的任何一点都表示一个实数,∴和数轴上的点成一一对应关系的数是实数. 故选D . 9.B [解析] ∵3≈1.732, ∴-3≈-1.732.∵点A ,B ,C ,D 表示的数分别为-3,-2,-1,2,∴与数-3表示的点最接近的是点B.故选B . 10.A11. 5 [解析] 由题意m ,n 互为相反数,可知m +n =0,则|m -5+n|= 5.12. 6 [解析] 数轴上表示-6的点到原点的距离为-6的绝对值,|-6|= 6. 13.解:(1)-2的相反数为2,绝对值为||-2= 2. (2)-364的相反数为364=4,绝对值为⎪⎪⎪⎪-364=364=4.(3)π-3的相反数为3-π,因为π>3,所以绝对值为||π-3=π-3.14.解:(1)x =±35.(2)x =±17.15.B [解析] 只有符号不同的两个数互为相反数,它们的和为0,由此可判定选项.A 中(-5)2=5,两个数相等,故错误;B 中-|-5|=-5,-(-5)=5,-5与5互为相反数,故正确;C 中3-125=-5,两个数相等,故错误;D 中-5和15既不是相反数,也不是倒数,故错误.故选B .16.A [解析] 采用特殊值法来解决.不妨设a =-12,则-a =12,1a =-2.因为-2<-12<12,所以1a<a <-a.故选A .17.C [解析] 选项A 中的a 可以表示任何实数.选项B 中的3a 的符号与a 相同,所以也可以表示任何实数.选项C 中的|-a|表示-a 的绝对值,根据绝对值的意义,可知|-a|为非负数.选项D 中的-|-a|表示|-a|的相反数,由于|-a|为非负数,所以-|-a|为非正数.故选C .18.C [解析] 因为1<2<2,5<5.1<6,所以A ,B 两点之间表示整数的点有表示2,3,4,5的点,共有4个.故选C .19.2- 3 3- 2 [解析] 3-2的相反数是-(3-2)=-3+2=2-3.3-2是一个正实数,正实数的绝对值等于它本身.20.12 [解析] 无理数有 2.5,-2π,0.2020020002…,所以x =3.整数有121,327,所以y =2.非负数有0.1427,3.1416,121,327, 2.5,227,0.2020020002…,所以z=7,所以x +y +z =3+2+7=12.21.π [解析] 将硬币沿数轴正方向滚动一周,点A 恰好与数轴上的点A′重合,则点A 转过的距离是圆的周长,即π,因而点A′对应的实数是π.22.解: 根据数轴可得出:a -b >0,a +b <0,∴(a -b )2-|a +b|=(a -b)+(a +b)=2a. 23.解:因为a ,b 互为倒数,所以ab =1. 因为c ,d 互为相反数,所以c +d =0. 因为e 的绝对值为2,所以e =±2,所以e 2=(±2)2=2.因为f 的算术平方根是8,所以f =64,所以3f =364=4,所以12ab +c +d 5+e 2+3f =12+0+2+4=612.24.解:由1<3<2,得11<10+3<12.由x 是整数,且0<y<1,得x =11, y =10+3-11=3-1,从而x -y =11-(3-1)=12- 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新定义题型
【研究背景】
新定义题是近几年频频出现在中考试卷中的一类新题型.
新定义题的基本组成: 一是阅读材料;•二是考查内容.
新定义题的基本模式是:阅读—理解—应用. 重点是阅读,难点是理解,关键是应用,通过阅读,对所提供的文字、符号、图形等进行分析和综合,在理解的基础上制定解题策略. 新定义题的基本类型:新定义法则型、新定义概念型、阅读理解思维型等.
新定义题突出考查的能力:不仅考查学生的阅读能力,而且综合考查学生的数学意识和数学综合应用能力,尤其是侧重于考查学生的数学思维能力和创新意识.此类题目能够帮助考生实现从模仿到创造的思想过程,符合学生的认知规律,是中考的热点题目之一,今后的中考试题有进一步加强的趋势.
【教学目标】
1.掌握新定义题的基本类型:新定义法则型、新定义概念型.
2. 培养学生的阅读能力,而且综合培养学生的数学意识和数学综合应用能力,尤其是侧重于培养学生的数学知识迁移能力和创新意识.
【教学重点】
掌握阅读理解题的基本类型:新定义法则型、新定义概念型.
【教学难点】
培养学生的阅读能力,而且综合培养学生的数学意识和数学综合应用能力,尤其是侧 重于培养学生的数学知识迁移能力和创新意识.
【教学过程】
一、定义新运算.
即整体模式是:使用特定的运算符号,按照设定的计算程序进行一种运算.解答本题的关键是理解新定义运算法则,严格按照新定义运算法则代入数值,把定义的新运算转化成我们所熟悉的运算.
例1.对于有理数a ,b ,定义min {}a ,b 的含义为:当a ≥b 时,min {}a ,b =b ;当a <b 时,
min {}a ,b =a . 例如:min {}1,-2=-2,min {}33--,
=-3. 求:
(1)min {}12-,
=________________; (2)求min{x 2+1,0};
(3)已知min{-2k +5,-1}=-1,求k 的取值范围;
(4)已知min{ 1,|x -y -1|+2
)432(+-y x }=0.求x ,y 的值.
1.对于有理数x ,y 定义新运算:x *y =ax +by +5,其中a ,b 为常数.
(1)已知1*2=9,(-3)*3=2,求a ,b 的值.
(2)在(1)条件下求,(-1)*4的值
二、定义新概念
整体模式是:先特定了的一个新定义下一个概念 , 然后在理解了这个概念之后,进而再运用这个概念解决与此概念有关的问题.(包含代数题、几何题、综合题) 例2.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:
“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”=S ah .
例如:三点坐标分别为)2,1(A ,)1,3(-B ,)2,2(-C ,则“水平底”5=a ,“铅垂高”
4=h ,
“矩面积”20==S ah . (1)已知点)2,1(A ,)1,3(-B ,),0(t P .
①若A ,B ,P 三点的“矩面积”为12,求点P 的坐标;
②直接写出A ,B ,P 三点的“矩面积”的最小值.
(2)已知点)0,4(E ,)2,0(F ,)4,(m m M ,其中0>m ,
若E ,F ,M 三点的“矩面积”为8,求m 的取值范围.
练习1. 在平面直角坐标系xOy 中,如果点P (x ,y ) 坐标中的x ,y 的值是关于x 、y 的二元一次方程ax +by=c 的一个解,那么 称点P (x ,y ) 为该方程的一个解坐标。

如(1,-2)是二元一次方程2x+y=0的一个解坐标.
求:
(1).写出二元一次方程2x +y =4的一个解坐标______.它有_______________个解坐标,在坐标系中这些表示解坐标的点有何特征____________________________________.
(2).如果点(1,2)是二元一次方程3mx -2y -1=0的解坐标,则m =______.
(3).方程2x -y =3与3x +2y =1的有公共解坐标吗?若有求出它们的公共解坐标,若没有说出理由?
(3).已知点(1,1)(2,3)是关于x ,y 的二元一次方程y=kx+b 的解坐标,求k,b 的值.
(4).已知方程组⎩
⎨⎧-=++=+②①m y x m y x 12,312的解坐标满足x +y <0,求m 的取值范围.
作业
1. 如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.
(1)在方程①310x -=,②2103
x +=,③()315x x -+=-中,不等式组2531-2x x x x -+-⎧⎨-+⎩
>,>的关联方程是;(填序号) (2)若不等式组1212
x x x ⎧-⎪⎨⎪++⎩<1,>-3的一个关联方程的根是整数,则这个关联方程可以是;(写出一个即可)
(3)若方程,1322x x ⎛⎫+=+
⎪⎝⎭都是关于x 的不等式组2x x m x m -⎧⎨-⎩<2,≤的关联方程,直接写出m 的取值范围.
2. 在平面直角坐标系xOy 中,如果点P (x ,y ) 坐标中的x ,y 的值是关于x 、y 的二元一次方程组⎩⎨⎧=+=+2
22111c y b x a c y b x a 的解,那么 称点P (x ,y ) 为该方程组的解坐标。

如(-1,-2)是二
元一次方程组1,3
-=⎧⎨+=-⎩x y x y 的解坐标.
求:
(1)二元一次方程组:的解坐标是________________.
(2)3若方程组⎩
⎨⎧-=-=+1242a by x b y ax 的解坐标是(1,-1),则a =_______,b =_______.
(3)已知方程组⎩⎨⎧=-=+31y x y x 与方程组⎩
⎨⎧=-=+21by ax by ax 的解坐标相同,则a =______,b =______.
(4)已知关于x ,y 的二元一次方程组2322x y k x y k +=-⎧⎨+=⎩
的解坐标在第四象限,求k 的取值范围.
32x x -=235,3 1.x y x y +=⎧⎨+=⎩①

三、小结
新定义
一、中考“新定义”试题的立意
1.新定义试题概述
试题在“新定义”的背景下,要求学生通过现场学习,理解新定义,结合所掌握的知识和思想方法对新的数学概念进行研究,发现有关规律和结论,并用之分析问题解决问题.
二、“新定义”试题结构特征
三、解题策略研究。

相关文档
最新文档