马尔科夫链例题整理精编版共61页

合集下载

马尔可夫链专题讲义——2025届高三数学一轮复习

马尔可夫链专题讲义——2025届高三数学一轮复习

马尔科夫链专题讲义马尔科夫链是以俄罗斯数学家安德烈·马尔科夫的名字命名,是一个数学随机模型,描述了一连串可能发生的事件,从一个状态到另外一个状态,也可以是保持当前状态的随机过程.下一个状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.高中数学中经常与条件概率,全概率公式,贝叶斯公式相结合,构造递推关系求的概率.一、马尔科夫链的性质马尔科夫链具有状态空间,无记忆性,转移概率(转移矩阵)等三个要素,马尔科夫链是从一个状态到另一个状态转化的随机过程,每个状态称为状态空间.无记忆性是而的事件均与之无关.这种特定类型的“无记忆性”称作马尔科天性.在马尔科夫链的每一步,根据概率分布,可以从个状态变频另外一个状态,也可以保持当前状态.状态的改变叫做转移,与不同状态改变相关的概率叫做转移项率.对于随机变量序列X m已知第n小时的状态X n.如果X n−1的随机变化规律与前面的各项X1,X2,⋯,X n−1的取值都没有关系,那么称随机变量序列X n具有马尔科夫性,称具有马尔科夫性的随机变量序列{X n}为马尔科夫链。

二、马尔科夫链基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即设数轴上一个点,它的位置只能位于整点处,在时刻t=0时,位于点X=i(i∈N∗)一个时刻,它将以概率α或者β(α∈(0,1),α+β=1)向左或者向右平移一个单位.若记状态X t=i表示在时刻t该点位于位置X=i(i∈N∗),那么由全概率公式可得P(X t+1=i)=P(X t=i−1)⋅P(X t+1=i∣X t=i−1)+P(X t=i+1)⋅P(X t+1=i∣X t=i+1).另一方面,由于P(X t+1=i∣X t=i−1)=β,P(X t+1=i∣X t=i+1)=α,代入上式可得P i=α⋅P i+1+β⋅P i−1.进一步,我们假设在x=0与x=m(m>0,m∈N∗)处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是P0=0,P m=1.随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a,原地不动,其概率为b,向右平移一个单位,其概率为c,那么根据全概率公式可得P i=aP i−1+bP i+cP i+1.三、应用举例1.药物试验问题例1(2019全国1卷21)为治疗某种欢病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,脱停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白贝治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈半分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列:(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1.⋯.8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p i=1,p i=ap i−1+bp i+cp i+1(i=1,2,⋯,7),其中a=P(X=−1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i−1−p i}(i=0,1,2,⋯,7)为等比数列;(iii)求p c,并根据p c的值解释这种试验方案的合理性.解:(1)由超意知,X的所有可能取值为-1.0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=a(1−β),∴X的分布列为X−10 1P(1−α)βαβ+(1−α)(1−β)α(1−β)(2)(i)由(1)知,a=(1−0.5)×0.8=0.4,b=0.5×0.8+(1−0.5)(1−0.8)=0.5,c=0.5×(1−0.8=0.1.∴p i=0.4p i−1+0.5p i+0.1p i+1,∴0.1(p i+1−p i)=0.4(p i−p i−1),∴p i+1−p i=4(p i−p i−1),又p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,⋯,7)是首项为p1,公比为4的等比数列. (ii)由(i)可得p i+1−p i=p1⋅4i,∴p8=p8−p7+p7−p6+⋯+p1−p0+p0=(p8−p7)+(p7−p6)+⋯+(p1−p0)=p1(47+46+⋯+4)=4(1−47) 1−4p1=48−4 3p1∵p8=1,∴48−43p1=1,∴p1=348−4.∴p4=(p4−p3)+(p3−p2)+(p2−p1)+(p1−p0)=p1(43+42+4+1)=1−44 1−4p1=44−13p1=44−13×348−4 =144+1=1257p4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验注:虽然当时学生未学过全概率公式,但命题人直接把p i=ap i−1+bp i+cp i+1给出,并没有让考生推导这个递推关系,实际上,这就是一个一维随机游走模型。

随机过程第四章马尔可夫链

随机过程第四章马尔可夫链

0,
p(n) ij
1, i,
jI
jI
即P(n)也为随机矩阵.
当n
1时,
p (1) ij
pij
,
P (1)
P
当n
0时,规定pi(j0)
0 , i 1 , i
j j
13
4.1 马尔可夫链与转移概率
• 定理4.1 设{Xn, nT}为马尔可夫链, 则对任意 整数n0, 0l<n和i,jI, n步转移概率 p具i(jn) 有性
Ckx 0
pxqy ,
,
k ( j i)为偶数 k ( j i)为奇数
11
4.1 马尔可夫链与转移概率
例4.4 具有吸收壁和反射壁的随机游动状态空间 {1,2,3,4}, 1为吸收壁, 4为反射壁.
解:状态转移图
状态转移矩阵
1 3
1 0 0 0
1
1
3
1 1
3
1
1
1 1 1
1 3
1 3
2
P 3
5
4.1 马尔可夫链与转移概率
= =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1 |Xn-2=in-2}
P{X1=i1|X0=i0}P{X0=i0} 马尔可夫链的统计特性完全由条件概率 P{Xn+1=in+1|Xn=in}确定。
6
4.1 马尔可夫链与转移概率
定义 称条件概率pij(n)= P{Xn+1=j|Xn=i} 为马尔 可夫链{Xn, nT}在时刻n的一步转移概率,简 称转移概率,其中i,jI.
P{X 0 i}P{X1 i1 | X 0 i} iI
P{X 2 i2 | X1 i1} P{X n in | X n1 in1}

第4章马尔可夫链1-2

第4章马尔可夫链1-2
假设马尔可夫过程 { X n , n T } 的参数集 T 是离散的 时间集 I 合,即 T {0,1, 2,} ,其相应 X n 可能取值的 全体组成的状态空间 I 是离散的状态集。
定义 1 设有随机过程{ X n , n T } ,若对于任意的整数 n T 和任意的 i0 , i1 , , in1 I ,条件概率满足
转移概率矩阵为
q 0 p 0 P 0 q 0 p
设在第k步转移中向右移了x步,向左移了y步,且 经过k步转移状态从i进入j,则
x y k x y j i
从而
k ( j i) k ( n 和 i , j I ,n 步转移概率 ij 具有下列
性质
( n) ( l ) ( n l ) (1) pij pik pkj ; k I
(2) p
( n) ij

k1I

kn1I
pik1 pk1k2 pkn1 j ;
(3) P ( n ) PP ( n1) ; (4) P ( n ) P n .
第4章 马尔可夫链
定义 2.9 设 X t , t T 为随机过程,若对任意正 整数 n 及 t1 t2 , tn , P X (t1 ) x1 , , X t n1 xn1 0 ,且其 条件分布
P X (tn ) xn | X t1 x1 ,, X t n1 xn1 P X ( t n ) xn | X t n 1 x n 1
定义 2 称条件概率
pij (n) P{ X n1 j | X n i }
为马尔可夫链 { X n , n T } 在时刻 n 的一步转移概率,其 中 i , j I ,简称为转移概率。

马尔科夫链考试例题整理

马尔科夫链考试例题整理

若 X (n) 表示质点在时刻n所处的位置,分析它的
概率特性。
1
例 2 直 线 上 的 随 机 游 动 时 的 位 置 X(t),是 无后效性的随机过程.
例3 电话交换台在t时刻前来到的呼叫数X(t), 是无后效性的随机过程.
例4 布朗运动 无记忆性
未来处于某状态的概率特性只与现在状态 有关,而与以前的状态无关,这种特性叫 无记忆性(无后效性)。
6
q p 0 0 0 ...
P1 q0
0 q
p 0
0 p
0 0
... ...
... ... ... ... ... ...
qp
0123 反 射 壁
7
例3.一个圆周上共有N格(按顺时针排列),一 个质点在该圆周上作随机游动,移动的规则是: 质点总是以概率p顺时针游动一格, 以概率
q 1 p 逆时针游动一格。试求转移概率 矩阵。 I {1, 2, ..., N }
0
0
p2
prp
1
15
(3)
从而结束比赛的概率; 从而结束比赛的概率。 所以题中所求概率为
( p rp) 0 p(1 r)
16
例2 赌徒输光问题
赌徒甲有资本a元,赌徒乙有资本b元,两人进行 赌博,每赌一局输者给赢者1元,没有和局,直 赌至两人中有一人输光为止。设在每一局中,甲
获胜的概率为p,乙获胜的概率为 q 1 p ,
2
一步转移概率矩阵的计算
引例 例1 直线上带吸收壁的随机游动(醉汉游动)
设一质点在线段[1,5 ]上随机游动,每秒钟发生
一次随机游动,移动的规则是:
1
(1)若移动前在2,3,4处,则均以概率 向左
或向右 移动一单位;

马尔科夫链考试例题整理

马尔科夫链考试例题整理

解 设0 j c 考虑质点从j出发移动一步后的情况
设 u j 为质点从 j 出发到达 0 状态先于到达 c 状态的概率。
在以概率 p 移到 j 1 的假设下,
到达 0 状态先于到达 c 状态的概率为 u j 1
同理 以 概 率 q 移 到 j 1 的 前 提 下 ,
到达 0 状态先ቤተ መጻሕፍቲ ባይዱ到达 c 状态的概率为u j 1
... 0 ... 0 ... 0 ... ... 1 0 a 1 0
10
练习题. 扔一颗色子,若前 n 次扔出的点数的最大值为 j , 就说 Xn j, 试问 Xn j, 是否为马氏链?求一步转移概率矩 阵。
I={1,2,3,4,5,6}
11
1 1 1 6 6 6 0 2 1 6 6 3 0 0 P 6 0 0 0 0 ... 0 0 ... 0
q c 1 ( p )
例3 排队问题 顾客到服务台排队等候服务,在每一个服务周期中只 要服务台前有顾客在等待,就要对排在前面的一位提 供服务,若服务台前无顾客时就不能实施服务。
设在第 n 个服务周期中到达的顾客数为一随机变量 Yn
且 诸 Yn 独 立 同 分 布 :
若 X (n) 表示质点在时刻n所处的位置,分析它的 概率特性。
1
例 2 直 线 上 的 随 机 游 动 时 的 位 置 X (t), 是 无后效性的随机过程.
例3 电话交换台在t时刻前来到的呼叫数X(t), 是无后效性的随机过程.
例4 布朗运动 无记忆性
未来处于某状态的概率特性只与现在状态 有关,而与以前的状态无关,这种特性叫 无记忆性(无后效性)。
(u u

11章马尔可夫链习题课

11章马尔可夫链习题课

切普曼-柯莫哥洛夫方程(简称C -K方程)
设{ X (n), n T1}是一齐次马氏链, 则对任意的
u,v T1,有
Pij(u v) Pik (u) pkj (v), i, j 1,2,
k 1
由C-K方程知:
马氏链的n步转移概率是一步转移概率的 n次 方,链的有限维分布可由初始分布和一步移概率完 全确定.
pN ,1 p,
p1,N q,
例5 试证Wiener过程B(t)是马尔可夫过程. 证明
p{B(t s) y | B(s) x, B(u)(0 u s)} p{B(t s) B(s) y x | B(s) x,
B(u)(0 u s)} p{B(t s) B(s) y x}
条件下,过程在时刻t t0所处状态的条件分布与 与过程在时刻t0之前所处的状态无关的特性称为 马尔可夫性或无后效性.
马尔可夫链
时间和状态都是离散的马尔可夫过程称为 马尔可夫链. 简记为: { Xn X (n), n 0,1,2,}
齐次马尔可夫链
当转移概率Pij(m,n n)只与i, j及时间间距n 有关时, 称此链是齐次的或时齐的.
转移概率、转移概率矩阵
称条件概率 Pij(m,n n) P{ Xmn a j | Xm ai }
为马氏链在时刻m处于状态ai条件下,在时刻
m n转移到状态a j的转移概率.
转移概率的特点 Pij(m,m n) 1,i 1,2,.
j 1
由转移概率组成的矩阵 P(m,m n)(Pij(m,n n))
步转移概率矩阵为
3 4
1 4
0
初始分布pi (0)
P{ X 0
i}
1, 3
P
1
1

马尔可夫链的定义及例子

马尔可夫链的定义及例子

3、转移概率
定义 i, j S, 称 P Xn1 j Xn i
的一步转移概率。
pij n 为n时刻
若i, j S, pij n pij ,即pij与n无关,称转移概率
具有平稳性.此时称{Xn,n≥0}为齐次(或时齐的)马尔 可夫链。记P=(pij),称P为{Xn,n≥0}的一步转移概率矩阵.
0
j!
j 0,1, i
pi0公式略有不同,它是服务台由有i个顾客转为空闲的
概率,即第n个顾客来到时刻到第n+1个顾客来到时刻之
间系统服务完的顾客数≥i+1。

pi0 P X n1 0 X n i P(Yn i 1) P(Yn k) k i1
et (t)k dG t ,

0 P{Yn
j Tn1 x}dG x
( x) j exdG x, j 0,1, 2,
0 j!
因此, {Xn,n≥1}是马尔可夫链。其转移概率为
P0 j P( X n1 j X n 0) P(Yn j X n 0)
P(Yn
P( X n1 in1 X n in )
所以{Xn,n≥0}是马尔可夫链,且
pij P( X n1 j X n i) P( f i,Yn1 j) P( f i,Y1 j)
二、切普曼-柯尔莫哥洛夫方程
1,随机矩阵 定义:称矩阵A=(aij)S×S为随机矩阵,若aij ≥0,且
一步转移概率矩阵

0.5009
0.0458 0.2559 0.1388 0.2134
0.0466 0.0988 0.36584 0.14264

第六章马尔可夫链07a2_91820369

第六章马尔可夫链07a2_91820369

证明从略
讲解从略关键点
讲解从略
判定定理
闭集的特性
空间分解与基本闭集的处理观察与思考
分步处理,逐一筛选
有限状态
的总结证明从略
空间结构是什么特别观察与理解
特点的处理与技巧
互通性
探索与观察
有限与无限互换的处理技巧
注意处理方式
传播性
正常返的规律性与统计模式
6.6 极限特性与平稳分布
平稳分布
定义与计算
理论证明与
处理
重复处理重复处理
总结
能想到的
例子是什么?
反证处理
构造性证明
推广
特殊情况
注意:
平均返回时间的计算1
12
3
观图
极限分布平稳分布区别与联
系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档