随机过程与马尔可夫链习题答案
随机过程习题集-第四章马尔可夫过程

1第四章 马尔可夫过程内容提要1. 马尔可夫过程的概念 (1)马尔可夫过程给定随机过程{}(),X t t T ∈,如果对122,∀≥∀<<<∈n n t t t T ,有11221111{()|(),(),,()}{()|()}n n n n n n n n P X t x X t x X t x X t x P X t x X t x ----<====<=则称{}(),X t t T ∈为马尔可夫过程。
称(){}:,==∈E x X t x t T 为状态空间。
参数集和状态空间都是离散的马尔可夫过程称为离散参数马氏链. 参数连续、状态空间离散的马尔可夫过程称为连续参数马氏链. (2)k 步转移概率设{}(),0,1,2,=X n n 为离散参数马氏链,称()(),(,){|},0,1=+==≥≥i j p n k P X n k j X n i n k为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率,称(),(,)((,)),P =∈i j n k p n k i j E为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率矩阵. 特别地,当1k =时,在时刻n 的一步转移概率和一步转移概率矩阵分别简记为()ij p n 和()n P . (3)初始分布、绝对分布称((0)),,==∈i p P X i i E 为离散参数马氏链{}(),0,1,2,=X n n 的初始分布,记为0P ,称()(){},,==∈j p n P X n j j E 为马尔可夫链{}0n X n ≥的绝对分布,记为P n . (4)离散参数齐次马氏链设{}(),0,1,2,=X n n 是一离散参数马氏链,如果其一步转移概率()ij p n 恒与起始时刻n 无关,记为ij p ,则称{}(),0,1,2,=X n n 为离散参数齐次马氏链。
若{}(),0,1,2,=X n n2是离散参数齐次马氏链,则其k 步转移概率记为(),i j p k ,一步转移概率矩阵和k 转移概率矩阵分别记为P 和().P k(5) 离散参数齐次马氏链的遍历性离散参数齐次马氏链{X (n ) ,n=0,1,2… },若对一切状态i ,j ,存在与i 无关的极限()()lim 0,ij j n p n i j E →+∞=π>∈则称此马氏链具有遍历性.0,1j j j Ej E ππ∈>∈=∑若且则称{},j j E π∈为离散参数齐次马氏链{X (n ) ,n=0,1,2… }的极限分布,或称为最终分布,记为{},j j E ∏=∈π(6)离散参数齐次马氏链的平稳分布离散参数齐次马氏链{X (n ) ,n=0,1,2… },若存在{v j , j ∈E } 满足条件:1)0,2)13)j jj Ej i iji Ev j E vv v p ∈∈≥∈==∑∑则称此马氏链是平稳的,称 { v j , j ∈E } 为此马氏链的平稳分布。
(解答)《随机过程》第二章习题

第二章 Markov 过程 习题解答1、 设}1,{≥n n ξ为相互独立同分布的随机变量序列,其分布为:01}0{,0}1{>-===>==p q P p P n n ξξ定义随机序列}2,{≥n X n 和}2,{≥n Y n 如下:⎪⎪⎩⎪⎪⎨⎧=========----;1,1,3;0,1,2;1,0,1;0,0,01111n nn n n n n nn X ξξξξξξξξ ⎩⎨⎧===-;,1;0,0,01其它n n n Y ξξ试问随机序列}2,{≥n X n 和}2,{≥n Y n 是否为马氏链?如果是的话,请写出其一步转移概率矩阵并研究各个状态的性质。
不是的话,请说明理由。
解:(1)显然,随机序列}2,{≥n X n 的状态空间为}3,2,1,0{=S 。
任意取S i i i j i n ∈-132,,,,, ,由于当i X n =给定时,即1,-n n ξξ的值给定时,就可以确定1+n X 的概率特性,即我们有:}{},,,,{12233111i X j X P i X i X i X i X j X P n n n n n n ========+--+因此}2,{≥n X n 是齐次马氏链,其一步转移概率矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=p qp q p q p qP 0000000 由于01,0>-=>p q p ,画出状态转移图,可知各个状态都相通,且都是非周期的,因此此链是不可约的遍历链。
(也可以利用02>P 判定此链是不可约的遍历链)(2)显然,}2,{≥n Y n 的状态空间为}1,0{=S ,由于:}1,1{}1,1,0{}1,10{23234234=========Y Y P Y Y Y P Y Y Y P}0,1{}0,1,0{}0,10{23234234=========Y Y P Y Y Y P Y Y Y P由}2,{≥n Y n 的定义,可知}1,1,1{}1,1,0{}0,1,1{}0,1,0{}1,0,1{}1,1{12312312312312323===⋃===⋃===⋃⋃===⋃======ξξξξξξξξξξξξξξξY Y}1,1,0,0{}0,1,0,0{}1,1,0{12341234234====⋃========ξξξξξξξξY Y Y}0,0,1{}0,1{12323======ξξξY Y , ∅====}0,1,0{234Y Y Y利用}1,{≥n n ξ是相互独立同分布的随机变量序列及其分布,我们有:322233}1,1{q q p pq Y Y P ++=== 223234}1,1,0{q p pq Y Y Y P +==== 223}0,1{pq Y Y P ===0}0,1,0{234====Y Y Y P即有:22222343}1,10{q p pq qp pq Y Y Y P +++==== 0}0,10{234====Y Y Y P由于01,0>-=>p q p ,因此有}0,10{}1,10{234234===≠===Y Y Y P Y Y Y P根据马氏链的定义可知}2,{≥n Y n 不是马氏链。
随机过程第四章马尔可夫链

0,
p(n) ij
1, i,
jI
jI
即P(n)也为随机矩阵.
当n
1时,
p (1) ij
pij
,
P (1)
P
当n
0时,规定pi(j0)
0 , i 1 , i
j j
13
4.1 马尔可夫链与转移概率
• 定理4.1 设{Xn, nT}为马尔可夫链, 则对任意 整数n0, 0l<n和i,jI, n步转移概率 p具i(jn) 有性
Ckx 0
pxqy ,
,
k ( j i)为偶数 k ( j i)为奇数
11
4.1 马尔可夫链与转移概率
例4.4 具有吸收壁和反射壁的随机游动状态空间 {1,2,3,4}, 1为吸收壁, 4为反射壁.
解:状态转移图
状态转移矩阵
1 3
1 0 0 0
1
1
3
1 1
3
1
1
1 1 1
1 3
1 3
2
P 3
5
4.1 马尔可夫链与转移概率
= =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1 |Xn-2=in-2}
P{X1=i1|X0=i0}P{X0=i0} 马尔可夫链的统计特性完全由条件概率 P{Xn+1=in+1|Xn=in}确定。
6
4.1 马尔可夫链与转移概率
定义 称条件概率pij(n)= P{Xn+1=j|Xn=i} 为马尔 可夫链{Xn, nT}在时刻n的一步转移概率,简 称转移概率,其中i,jI.
P{X 0 i}P{X1 i1 | X 0 i} iI
P{X 2 i2 | X1 i1} P{X n in | X n1 in1}
随机过程习题答案及知识点

协方差矩阵及n 维正态分布1、设n 维随机变量)(n X X ,,,X 21⋯的二阶混合中心距:[][];,,2,1,},)()({),(,n j i j X E j X X E X E X X Cov c i i j i j i ⋯=--==都存在,则称矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=∑nn c c c c c c c c c n2n12n 22211n 1211为n 维随机变量)(n X X ,,,X 21⋯的协方差矩阵,它是一对称矩阵。
2、n 维正态分布定义:若n 维随机变量)(n X X ,,,X 21⋯的概率密度可以表示成以下的形式:⎭⎬⎫⎩⎨⎧-∑--∑==⋯-)()(21ex p )(det )2(1)(),,,(f 12/12/21U X U X X f x x x T n n π其中,Tn T T n X E X E X E U x x x X ))(,),(),((),,,(,),,,(21n 2121⋯=⋯=⋯=μμμ∑是)(n X X ,,,X 21⋯的协方差矩阵,则称n 维随机变量)(n X X ,,,X 21⋯为n 维正态随机变量,记为),(~),,,X (21∑⋯=μN X X X n ,),,,(f 21n x x x ⋯为n 维正态概率密度函数。
N 维正态随机变量的性质(1) n 维正态随机变量)(n X X ,,,X 21⋯的每一个分量都是正态变量;反之,若nX X ,,,X 21⋯都是正态随机变量,且相互独立,则)(n X X ,,,X 21⋯是n 维正态随机变量。
(2) n 维随机变量)(n X X ,,,X 21⋯服从n 维正态分布的充要条件是n X X ,,,X 21⋯的任意的线性组合n n X l X l X l +⋯++2211服从一维正态分布;(3) 若)(n X X ,,,X 21⋯服从n 维正态分布,设n Y Y ,,,Y 21⋯是),,3,2,1(X n j j ⋯=的线性函数,则n Y Y ,,,Y 21⋯也服从正态分布。
上海大学随机过程第六章习题及答案

第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间;(2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =为相互独立的随机变量序列,则 (1){,1,2,}i Y i =是否为Markov 链?(2)令1nn ii X Y ==∑,问{,1,2,}iX i =是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================因此,{,1,2,}n Y n =是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++为1n U -的函数,记为1112(),n n n nf U X U U U --=+++为n U 的函数,记为().n n f U 由于12,,,,n U U U 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑因此{,1,2,}n X n =是马尔可夫链.3 设,1,2,i X i =是相互独立的随机变量,且使得(),0,1,i j P X j a j ===,如果max{,1,2,,1}n i X X i n >=-,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值. (1)证明,{,1,2,}n R n =是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P tn i i ===++=⎩⎨⎧≤>ij i j a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j i j iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
上海大学随机过程第六章习题与答案

第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间; (2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则(1){,1,2,}i Y i =L 是否为Markov 链? (2)令1nn ii X Y ==∑,问{,1,2,}iX i =L 是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================L L L L L因此,{,1,2,}n Y n =L 是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++L 为1n U -的函数,记为1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L因此{,1,2,}n X n =L 是马尔可夫链.3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n 产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值.(1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P t n i i ===++=⎩⎨⎧≤>i j ij a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j ij iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
随机过程-9马尔科夫链的状态分类

1 2
P
0 1
1 0
0 1
2 0
1
2 0
1 0 1
P2
2 0
1
2 0
1 2
1
1
1 2
2
3
1 2
1
由1出发,经过一步首次回到1:无
由1出发,经过两步首次回到1:1→2→1
由1出发,经过三步首次回到1:无
由1出发,经过四步首次回到1:1→2→3→2→1
f (1) 0 11
f (2) 1
11
2
f (3) 0 11
f (4) 1
11
4
f (5) 0 11
f (6) 1
马尔科夫链状态的分类
1、周期性
• 例:从状态1出发,再回到状态1,可能的步数为 3,6,9,...,例如:1→3→6→1,或 1→4→6→2→5→6→1,等等。
• 步数的最大公约数,称为周期。周期为3.
4.2 马尔可夫链的状态分类
例4.6 设马尔可夫链的状态空间 I={1,2,,9},转移概率如下图
• 定义4.3 状态i的周期d: d=G.C.D{n: p(n) >0}
ii
(最大公约数greatest common divisor) • 如果d>1,就称i为周期的, • 如果d=1,就称i为非周期的
4.2 马尔可夫链的状态分类
注(1)如果i有周期d,则对一切非零的n,
n0 mod d,有 p(n) 0
同理可得
4.2 马尔可夫链的状态分类
f (n) 13
( (
p1q2 p1q2
随机过程 第三章 马尔科夫链

4
设P表示一步转移概率所组成的矩阵,则
p11 p12 p1n P p21 p22 p2n
称为系统状态的一步转移概率矩阵,它具有如下性质:
1、pij 0, i, j I
2、
p
jI
ij
1, i, j I
满足上述两个性质的矩阵称为随机矩阵。
p j (n)
pj
(n) p (n 1) p
( pi pijn) iI
i
ij
iI
PT (n) PT (0)P ( n)
P T (n) P T (n 1)P
13
定理 设{Xn,n∈T}为马尔可夫链,则对任意i1, …,in∈I和n≥1,有
P{X1 i1 ,, X n in }
22
状态的常返性 例:状态转移概率图
1 1/2
1
1
2
3
4
1/2
1
23
首中概率 它表示质点由i出发,经n步首次到达j 的概率
f ij( n ) P( X m v j,1 v n 1, X m n j | X m i)
定理 对任一状态i, j及1 n , 有 p
5
例:一维随机游动。设一醉汉Q(或看作一随机游动的 质点)在直线上的点集I={1,2,3,4,5}作随机游动, 游动的概率规则是:如果Q现在位于点i(1<i<5), 则下一时刻各以1/3的概率向左或向右移动一格, 或以1/3的概率留在原处;如果Q现在处于1(或5) 这一点上,则下一时刻就以概率1移动到2(或4)这点上, 1和5这两点称为反射壁,这种游动称为带有两个反射壁 的随机游动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息论与编码课程习题1——预备知识 概率论与马尔可夫链1、某同学下周一上午是否上课,取决于当天情绪及天气情况,且当天是否下雨与心情好坏没有关系。
若下雨且心情好,则50%的可能会上课;若不下雨且心情好,则有10%的可能性不上课;若不下雨且心情不好则有40%的可能性上课;若下雨且心情不好,则有90%的可能不会上课。
假设当天下雨的概率为30%,该同学当天心情好的概率为20%,试计算该同学周一上课的可能性是多大? 分析:天气情况用随机变量X 表示,“0”表示下雨,“1”表示不下雨;心情好坏用Y 表示,“0”表示心情好用“0”表示,心情不好用“1”表示;是否上课用随机变量Z 表示,“0”表示上课,“1”表示不上课。
由题意可知已知[]5.00,0|0====Y X Z P ,[]5.00,0|1====Y X Z P []1.00,1|1====Y X Z P ,[]9.00,1|0====Y X Z P []4.01,1|0====Y X Z P ,[]6.01,1|1====Y X Z P []9.01,0|1====Y X Z P ,[]1.01,0|0====Y X Z P []3.00==X P ,[]7.01==X P []2.00==Y P ,[]8.01==Y P即题目实际上给出了八个个条件概率和四个概率[][][][]0,0|00|000===⋅==⋅===X Y Z P X Y P X P Z P[][][]0,1|00|10===⋅==⋅=+X Y Z P X Y P X P [][][]1,0|01|01===⋅==⋅=+X Y Z P X Y P X P [][][]1,1|01|11===⋅==⋅=+X Y Z P X Y P X P 由于X ,Y 相互独立,则有[][][][]0,0|0000===⋅=⋅===X Y Z P Y P X P Z P[][][]0,1|010===⋅=⋅=+X Y Z P Y P X P [][][]1,0|001===⋅=⋅=+X Y Z P Y P X P [][][]1,1|011===⋅=⋅=+X Y Z P Y P X P[]5.02.03.00⨯⨯==Z P 1.08.03.0⨯⨯+9.02.07.0⨯⨯+1.08.07.0⨯⨯+ =?注意:全概率公式的应用2、已知随机变量X 和Y 的联合分布律如又表所示,且()Y X Y X g Z +==211,,()Y X Y X g Z /,22==,求:1)1Z 的分布律与数学期望2)2Z 的分布律与数学期望 3)1Z 大于10的概率4)由上面的例子,你是否能得到离散随机变量函数的数学期望的一般表达式?包括一元和多元随机变量函数。
分析: 1)[]()()()()()22222211221222111121212111,p y x p y x p y x p y x p y x g Z E j i ij j i ⋅++⋅++⋅++⋅+==∑∑==()()()()4.0621.0523.0612.0512222⨯++⨯++⨯++⨯+=?=2)[]()()()()()2222211212211111212122////,p y x p y x p y x p y x p y x g Z E j i ij j i ⋅+⋅+⋅+⋅==∑∑==()()()()4.06/21.05/23.06/12.05/1⨯+⨯+⨯+⨯=?=说明:主要考虑联合分布律与随机变量函数分布律的关系 3)[]0101=>Z P4)()[]()∑==ii i p x g Y E thenX g Y if 11()[]()∑∑==ijij j i p y x g Z E thanY X g Z if ,,22()[]()∑∑∑==kijijk k j i p z y x g A E thanZ Y X g A if,,,,33and so on.3、已知随机变量X 的概率密度函数为⎩⎨⎧≥≥<>=-ax b ax or b x x f ab X 10)(,其中10,3==b a ,()2X X g Y ==为X 的函数,求:1)随机变量X 小于或等于5的概率 2)随机变量Y 的概率密度函数 3)随机变量Y 大于10的概率 4)随机变量Y 的数学期望 分析1)[]()72537155===≤⎰⎰∞-dx dx x f X P X 2)假设用()()()y F y f x F Y Y X ,,分别表示随机变量X 的分布函数、随机变量Y 的概率密度函数和分布函数,则有:()[][]y X P y Y P y F Y ≤=≤=2 []⎩⎨⎧≥≤≤-<=000y yX y P y()⎪⎩⎪⎨⎧≥<=⎰-00y dxx f y y yX()()⎩⎨⎧≥--<=000y y F y F y XX有()()()()[]⎪⎪⎩⎪⎪⎨⎧≥--<==0y dyy F y F d y dy y dF y f XXY Y()()⎪⎩⎪⎨⎧≥⋅-+⋅<=002121y y f y f y yX y X3)[][][]()⎰--=≤≤--=≤-=>101011010110110dx x f X P Y P Y P X73101110371--=-=⎰dx 4)[][]()?10371222====⎰⎰∞∞-dx x dx x f x X E Y E X4、已知随机变量X 和Y 的联合概率密度函数为⎩⎨⎧≥≥≥≥=others y and x y x f XY 00231),(41,()Y X Y X g Z 2,2+==。
1)求随机变量Z 的数学期望 2)求随机变量Z 的概率密度函数3)结合习题3,总结连续随机变量的函数的数学期望的一般表达式,包括包括一元和多元随机变量函数。
分析: 1)[]()()()?2,,2031412=⋅+=⋅=⎰⎰⎰⎰∞∞-∞∞-dy dx y xdy dx y x f y x g Z E XY 2)()[][]z Y X P z Z P z F Z ≤+=≤=2=()⎰⎰≤+z y x XYdxdy y x f 2,3)()[]()()⎰∞∞-==dx x f x g Y E then X g Y if X 11()[]()()⎰⎰∞∞-∞∞-==dy dx y x f y x g Z E thanY X g Z if XY ,,,22()[]()∑∑∑==kijijkkjip z y x g A E thanZ Y X g A if,,,,33and so on.P352 T2给定随机过程{}(),X t t T ∈,x 是任意实数,定义另一随机过程1()()0()X t x Y t X t x ≤⎧=⎨>⎩试将的均值函数和自相关函数用随机过程()X t 的一维和二位分布函数表示出来 分析:由题知,是随机过程,()Y t 的取值由()X t 决定,所以()Y t 也是随机过程。
由题中不知道随机过程()X t 是连续还是离散,但()Y t 一定是离散随机过程,它的样本空间是{}0,1。
概率分布可以表示成如下形式因为()Y t 等于1的概率等于()X t 小于等于x 的概率(),()Y t 等于0的概率等于()X t 大于x 的概率([][]()0()P Y t P X t x ==>)。
因此有[][][][]()1()0()()(;)X E Y t P X t x P X t x P X t x F x t =⨯≤+⨯>=≤=。
同理,由题知()()1122121()()0X t x X t x Y t Y t ≤≤⎧⋅=⎨⎩且其它所以得到[]()()[][]1212111111111212,1(),()0(),()(,;,)Y X R t t E Y t Y t P X t x X t x P P X t x X t x F x x t t =⋅⎡⎤⎣⎦=⨯≤≤+⨯⎡⎤⎣⎦=≤≤=其它P352 T3设随机过程()AtX t e =,0t >,其中A 是在区间[]0,a 服从均匀分布的随机变量。
试求()X t 的均值函数和自相关函数。
分析:A 是随机变量,t 是普通变量,所以()X t 是随机过程。
由题知A 的概率密度函数为10()0aA y a f y ≤≤⎧=⎨⎩其它 因为随机过程()X t 可以看作是随机变量A 的函数,因此有 ()1()()ayt yt X A a t E X t e f y dy e dyμ∞-∞==⋅=⋅⎡⎤⎣⎦⎰⎰()()()1212112120(,)()a y t tyt yt X A a R t t E X t X t e e f y dy edy∞+-∞=⋅=⋅⋅=⋅⎡⎤⎣⎦⎰⎰注意A 才是随机变量,不是我们习惯的X 。
注意理解其本质意义,否则换个符号表示就会难倒你。
P353 T9()(),X t Y t t T∈,是互不相关的随机过程。
()()()()()()Z t a t X t b t Y t c x =++,其中(),(),()a t b t c x 是普通函数。
求()Z t 的均值函数和自相关函数。
分析:1()()()()()()[]()()()()()()Z t E Z t E a t X t b t Y t c x E a t X t E b t Y t E c t μ==++⎡⎤⎡⎤⎣⎦⎣⎦=++⎡⎤⎡⎤⎣⎦⎣⎦因为数学期望运算只对随机变量和随机过程起作用,对普通函数、普通变量和常量不起作用。
(为什么?)。
所以()()()()()()()()()()()Z X Y t a t E X t b t E Y t c t a t t b t t c t μμμ=⋅+⋅+=++⎡⎤⎡⎤⎣⎦⎣⎦分析2()()()()()()()()Z X Y Z t t a t X t t b t Y t t μμμ-=-+-⎡⎤⎡⎤⎣⎦⎣⎦()()(){}121122,()()Z z z C t t E Z t t Z t t μμ=--⎡⎤⎡⎤⎣⎦⎣⎦()(){}()(){}{}111111222222()()()()()()()()X Y X Y E a t X t t b t Y t t a t X t t b t Y t t μμμμ=-+--+-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦()()()(){}()(){}1212121211222211()(),()(),()()()()X Y X Y X Y a t a t C t t b t b t C t t E X t t Y t t E X t t Y t t μμμμ=++--+--⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦因为()(),X t Y t 相互独立,则其在任何时刻对应的随机变量之间也相互独立,即()()()()i j i j E X t Y t E X t E Y t ⎡⎤⎡⎤=⎡⎤⎣⎦⎣⎦⎣⎦。