带隙基准
开关电容带隙基准

开关电容带隙基准1. 引言开关电容带隙基准是指在开关电容器中,用于控制开关的电荷存储和释放的能量差。
该能量差由带隙决定,带隙越大,存储和释放的能量差越大,开关性能越好。
本文将介绍开关电容带隙基准的定义、影响因素以及相关技术。
2. 开关电容带隙基准的定义开关电容器是一种用于存储和释放电荷的装置,它由两个可互相接通或断开的电极构成。
当两个电极相连时,可以通过充放电过程将电荷存储在其中,当两个电极断开时,则可以将存储的电荷释放出来。
而带隙则是指两个相连或相断的状态之间所需施加的最小能量。
3. 影响开关电容带隙基准的因素3.1 材料选择材料选择是影响带隙大小的重要因素之一。
常见的材料有金属氧化物、聚合物等。
不同材料具有不同的导体特性和介质特性,从而影响带隙大小。
例如,金属氧化物通常具有较大的带隙,可以实现更大的能量差。
3.2 结构设计结构设计也是影响带隙大小的因素之一。
开关电容器的结构设计包括电极形状、间距等。
间距越小,带隙越小,存储和释放的能量差也相应减小。
因此,在设计过程中需要综合考虑结构参数对带隙的影响。
3.3 制造工艺制造工艺对开关电容带隙基准同样有重要影响。
不同的制造工艺可能导致材料性质、结构参数等方面的差异,进而影响带隙大小。
因此,在制造过程中需要选择合适的工艺参数,并进行严格控制。
4. 开关电容带隙基准相关技术4.1 薄膜沉积技术薄膜沉积技术是一种常用于制备开关电容器的技术。
该技术通过在底座上沉积一层薄膜来形成电容器结构。
通过控制沉积过程中的温度、压力等参数,可以实现带隙的精确控制。
4.2 纳米材料应用纳米材料具有较小的尺寸效应和表面效应,可以实现更小的带隙。
因此,在开关电容器中引入纳米材料可以有效提高带隙基准。
4.3 光刻技术光刻技术是一种常用于微电子制造中的技术。
通过光刻技术,可以在电容器结构上形成亚微米级别的图案,从而实现更小的带隙。
5. 结论开关电容带隙基准是影响开关电容器性能的重要因素之一。
电压模带隙基准

电压模带隙基准在电子技术领域中,电压模带隙基准是一种非常重要的基准。
它是一种基于半导体材料的电压基准,被广泛应用于各种电子设备中,如模拟电路、数字电路、计量仪器等。
本文将从电压模带隙的基本原理、应用领域、发展历程和未来发展方向等方面进行探讨。
一、电压模带隙的基本原理电压模带隙基准是一种基于材料带隙特性的电压基准。
在半导体材料中,电子和空穴的能量分布形成了能带结构,其中导带和价带之间的能量差称为带隙。
在纯净的半导体材料中,电子处于价带中,无法传导电流。
当掺杂材料时,杂质原子的掺入将会形成额外的能级,使得电子可以从价带跃迁到导带中,形成电子和空穴对,从而形成电流。
而在半导体材料中,不同材料的带隙大小是不同的,因此可以通过不同材料的带隙大小来形成不同的电压基准。
电压模带隙基准的原理是利用半导体材料的带隙特性,通过特定的电路将带隙电压转化为稳定的电压输出。
电路中通常包含一个参考电压源和一个比较器,参考电压源提供带隙电压,比较器将参考电压源的电压与输入电压进行比较,从而输出一个稳定的电压值。
电压模带隙基准的输出电压通常非常稳定,可以达到几个小数点的精度。
二、电压模带隙的应用领域电压模带隙基准被广泛应用于各种电子设备中。
以下列举几个主要的应用领域:1.模拟电路在模拟电路中,电压模带隙基准被用作参考电压源,提供一个稳定的电压值作为基准。
模拟电路中的各种电路,如放大器、滤波器、振荡器等,都需要一个稳定的参考电压源来保证其工作稳定性和精度。
2.数字电路在数字电路中,电压模带隙基准被用作时钟电路中的参考电压源,提供一个稳定的电压值作为时钟信号的基准。
时钟信号是数字电路中非常重要的信号,对于数字电路的工作速度和精度有很大的影响。
3.计量仪器在计量仪器中,电压模带隙基准被用作参考电压源,提供一个稳定的电压值作为测量的基准。
计量仪器中的各种测量,如电压、电流、频率等,都需要一个稳定的参考电压源来保证其测量精度。
三、电压模带隙的发展历程电压模带隙基准的发展历程可以追溯到20世纪50年代。
带隙基准电压正温度系数和负温度系数

带隙基准电压正温度系数和负温度系数导言:带隙基准电压是半导体器件中重要的电性能指标之一。
它在不同温度下的变化特性对于设计和应用具有重要意义。
本文就带隙基准电压的正温度系数和负温度系数进行介绍与分析。
一、带隙基准电压正温度系数带隙基准电压的正温度系数是指随着温度升高,带隙基准电压增大的现象。
在半导体器件中,此现象源于载流子的热激发。
1.1 形成机制当半导体材料受热时,晶格中的原子开始振动,导致电子的能级发生变化。
在固体体系中,电子能级的变化与金属的热膨胀系数相关。
对于半导体材料而言,其能带结构决定了载流子的运动,进而影响带隙基准电压。
1.2 影响因素带隙基准电压的正温度系数受到多种因素的影响:(1)半导体材料的选择:不同的半导体材料具有不同的能带结构,因此其带隙基准电压的正温度系数也会有所不同。
(2)杂质掺杂:掺入不同的杂质可以改变半导体材料的能带结构,从而影响带隙基准电压的正温度系数。
(3)器件结构:不同结构的器件对于带隙基准电压的正温度系数也有一定的影响,例如PN结构和MOS结构。
二、带隙基准电压负温度系数带隙基准电压的负温度系数是指随着温度升高,带隙基准电压减小的现象。
这种现象在部分半导体材料中观察到,其出现机理较特殊。
2.1 形成机制带隙基准电压负温度系数的产生与半导体材料的特殊能带结构有关。
例如,砷化镓(GaAs)是一种典型的具有负温度系数的半导体材料。
2.2 影响因素带隙基准电压的负温度系数同样受到多种因素的影响:(1)半导体材料的选择:具有负温度系数的材料往往具有特殊的能带结构,对于选择合适的材料非常关键。
(2)杂质掺杂:杂质掺杂可以使半导体材料的能带结构发生变化,从而影响带隙基准电压的负温度系数。
(3)温度范围:带隙基准电压的负温度系数通常在一定的温度范围内存在,超出该范围后可能出现正温度系数的情况。
结论:带隙基准电压的正温度系数和负温度系数是半导体器件中重要的电性能指标之一。
其变化特性对于器件设计和应用具有重要意义。
《带隙基准电压源》课件

4. 优化电路参数
根据仿真结果和实际测试数据,对电路参数进行优化,以提高带隙基 准电压源的性能。
电路设计的优化方法
温度补偿
通过引入温度补偿元件或采用 温度补偿技术,减小温度对带 隙基准电压源输出电压的影响
。
噪声抑制
采用低噪声元件、优化布线方 式和滤波技术等手段,减小带 隙基准电压源输出电压中的噪 声成分。
温漂
02
带隙基准电压源的温漂是指其在一定温度范围内的输出电压变
化量,温漂越小,性能越好。
热稳定性
03
带隙基准电压源在高温下的稳定性,良好的热稳定性可以保证
其在高温环境下正常工作。
04
带隙基准电压源的实现方式
模拟实现方式
01
02
03
运算放大器
使用运算放大器来调整和 稳定带隙基准电压,以实 现高精度和低噪声的输出 。
电阻和电容
通过精密电阻和电容来构 建带隙基准电压源,以实 现温度补偿和稳定性。
差分放大器
使用差分放大器来提高带 隙基准电压的精度和线性 度,以减小温度和电源电 压变化的影响。
数字实现方式
查找表
使用查找表来存储不同温度下的带隙基准 电压值,通过查表方式实现温度补偿。
数字滤波器
使用数字滤波器来处理带隙基准电压的输 出,以提高其稳定性和精度。
数字控制环路
使用数字控制环路来调整带隙基准电压的 输出,以实现高精度和低噪声的性能。
混合实现方式
模拟与数字相结合
将模拟和数字技术相结合,以实现高性能的带隙基准电压源。例如,可以使用 模拟电路来实现温度补偿和稳定性,同时使用数字电路来实现高精度和低噪声 的性能。
带隙基准温度系数仿真计算

带隙基准温度系数仿真计算
带隙基准温度系数是指半导体材料的能隙随温度变化的情况。
在实际应用中,我们希望了解材料的带隙基准温度系数,以便预测材料在不同温度下的性能。
仿真计算带隙基准温度系数可以通过密度泛函理论(DFT)或者有效质量理论(EFA)来实现。
首先,使用密度泛函理论(DFT)进行计算。
DFT是一种计算材料电子结构和性质的理论方法,可以通过计算材料的电子能带结构来获得带隙随温度变化的信息。
在这种方法中,我们可以利用软件如VASP、Quantum ESPRESSO等进行第一性原理计算,得到材料在不同温度下的电子结构,然后通过拟合得到带隙随温度变化的关系,从而得到带隙基准温度系数。
其次,使用有效质量理论(EFA)进行计算。
在EFA中,我们可以将材料的电子结构简化为具有有效质量的载流子模型,通过考虑载流子在晶格振动下的运动来得到带隙随温度变化的关系。
这种方法相对于DFT计算来说计算成本更低,但是精度相对较低。
除了以上两种方法,还可以考虑使用紧束缚模型、Monte Carlo 模拟等方法来进行带隙基准温度系数的仿真计算。
这些方法各有优
劣,选择合适的方法取决于具体的研究对象和研究目的。
需要注意的是,在进行带隙基准温度系数的仿真计算时,需要考虑材料的晶体结构、杂质掺杂、外界应力等因素对带隙的影响,以得到准确的结果。
同时,仿真计算的结果需要与实验数据进行验证和比较,以确保计算的准确性和可靠性。
带隙基准psrr推导

带隙基准PSRR推导一、引言在集成电路设计中,带隙基准(或称为参考电压)是一个重要的参数,用于提供稳定的参考电压给其他电路模块。
而PSRR(Power Supply Rejection Ratio)则是衡量电路对电源噪声的抑制能力的指标。
本文将详细探讨带隙基准PSRR的推导方法。
二、带隙基准简介带隙基准是一种基于半导体材料的电压参考源,其具有较高的稳定性和线性度。
它通常由一个差分放大器和一个反馈环路组成,通过对差分放大器的输入电压进行调整,使得输出电压与参考电压保持稳定。
三、PSRR的定义PSRR是指在输入电压发生变化时,输出电压相对于输入电压的变化比例。
在实际应用中,电源噪声是不可避免的,因此高PSRR是带隙基准设计中的重要指标之一。
PSRR的计算方法如下:PSRR = ΔVout / ΔVin其中,ΔVout表示输出电压的变化量,ΔVin表示输入电压的变化量。
四、带隙基准PSRR的推导方法带隙基准的PSRR可以通过差分放大器的增益和反馈环路的特性来推导。
下面将详细介绍推导的步骤:1. 建立差分放大器模型首先,我们需要建立差分放大器的模型。
差分放大器一般由两个晶体管和若干电阻、电容组成。
通过对差分放大器的小信号模型进行分析,可以得到其输入输出关系式。
2. 计算差分放大器的增益根据差分放大器的输入输出关系式,可以计算其增益。
增益的计算通常采用增益公式或者传输函数的方法。
3. 分析反馈环路的特性反馈环路对差分放大器的输出进行反馈,从而稳定输出电压。
通过分析反馈环路的特性,可以得到反馈系数和相位延迟等参数。
4. 推导带隙基准的传输函数将差分放大器的增益和反馈环路的特性结合起来,可以推导出带隙基准的传输函数。
传输函数描述了输入电压和输出电压之间的关系。
5. 计算带隙基准的PSRR根据带隙基准的传输函数,可以计算其PSRR。
PSRR的计算需要考虑输入电压的变化对输出电压的影响。
五、结论带隙基准的PSRR是衡量其抑制电源噪声能力的重要指标。
高压带隙基准及其启动电路

高压带隙基准及其启动电路
高压带隙基准是一种用于产生稳定高压的电路。
它通常用于测试和校准高压设备,例如电源、传感器和仪器。
高压带隙基准的主要功能是产生一个已知的稳定高压输出,以便对其他设备进行校准和测试。
高压带隙基准的启动电路通常包括以下几个部分:
1. 电源部分,用于提供基准电路所需的电源。
这可能涉及到变压器、整流器和滤波器等组件,以确保基准电路获得稳定的电源。
2. 参考电压源,用于产生一个稳定的参考电压。
这通常可以通过使用稳压器、参考电压源芯片或者精密电阻器等元件来实现。
3. 驱动电路,用于控制高压输出的开关元件,例如场效应管或者晶闸管。
驱动电路通常需要一个精确的时序控制以确保高压输出稳定。
4. 反馈回路,用于监测和调节高压输出,以使其保持在设定的数值范围内。
这通常包括一个比较器和反馈元件,例如电阻网络或
者电容器。
5. 保护电路,用于保护基准电路免受过载、短路和其他异常情况的影响。
这可能包括过压保护、过流保护和温度保护等功能。
总的来说,高压带隙基准及其启动电路是一个复杂的系统,需要精心设计和调试以确保其稳定性和可靠性。
在实际应用中,工程师们需要综合考虑电路的性能指标、成本和可靠性等因素,选择合适的元件和设计方案来实现所需的高压输出。
pnp带隙基准电路

pnp带隙基准电路
摘要:
1.PNP 带隙基准电路的概述
2.PNP 带隙基准电路的工作原理
3.PNP 带隙基准电路的主要应用领域
4.PNP 带隙基准电路的优缺点分析
正文:
一、PNP 带隙基准电路的概述
PNP 带隙基准电路,是一种基于PNP 型晶体管的基准电压源电路。
它在电子电路设计中具有重要的应用价值,能够为电路设计者提供一个稳定的电压参考,以确保电路的稳定性和可靠性。
二、PNP 带隙基准电路的工作原理
PNP 带隙基准电路的工作原理主要基于PNP 晶体管的输出特性。
在正常工作状态下,PNP 晶体管的输出特性接近于线性,这使得它可以被用作电压基准源。
通过调整晶体管的偏置电阻,可以获得所需的基准电压。
三、PNP 带隙基准电路的主要应用领域
PNP 带隙基准电路广泛应用于各种电子设备和电路设计中,如电源电路、放大电路、振荡电路等。
在这些应用中,PNP 带隙基准电路可以提供稳定的电压参考,确保电路的性能和稳定性。
四、PNP 带隙基准电路的优缺点分析
优点:
1.输出电压稳定,精度高;
2.电源抑制能力强,抗干扰性能好;
3.结构简单,制作容易。
缺点:
1.对温度敏感,输出电压随温度变化而变化;
2.动态响应速度较慢,不适合高速电路应用。
总的来说,PNP 带隙基准电路是一种具有较高精度和稳定性的电压基准源,适用于各种电子设备和电路设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏置电路
例:分析启动电路 上电时,M5、M6 off
Vx = Vy = 0(t = 0) ⇒Vx ↑,Vy ↑ ⇒Vy ,Vx > Vth, M6 M5 on
M5 on 导致电路脱离简并点。 M6 导通使X点的电压下降,最终 使M5关断。
1 W 分析关键点: 2 µCox L = [VDD − I6 (Ra + Rb ) −Vth6 ] = I6 6
(if
VT IC VT Eg = ln − (4 + m) − 2 VT m ≈ −3/ 2 T IS T kT ≈ Vbe − (4 + m)VT − Eg / q T
o
当
Vbe = 750mV T = 300 K
⇒
∂Vbe = −1.5mV /o K ∂T
带隙基准
2 I1 2I 2
令: Vgs 3 = Vgs 4 ⇒ Vth 3 +
β3
= Vth 4 +
β4
因为衬偏效应相同, ∴ I1 I 2 = β 3 β 4 则:Vgs1 = Vgs 2 ⇒ I1 I 2 = β1 β 2 设计: W
L 3 W W W = L 4 L 1 L 2
Rout ≅ gm1ro1ro2 (1+ A)
例: mirror A (Sackinger 1990)
rout ≅ g m1 g m 3 rds1 rds 2 rds 3 2
VDS 2 = VDS 5 = Veff 3 + Vtn
改进的电流源
mirror B (Martin 1994)
VG 3 = 2Veff + Vtn
1 W W > ⇒VG5 ↑ 可保证M3和M2处在饱和区。 2 L 5 (n +1) L
另外: M1和M4 比M2和M3的漏源电压大。设计的沟道长度大
偏置电路
简单的偏置电路和Vdd相关连:
以第一幅图为例:
偏置电路
偏置稳定的思路:使Iout反馈至Iref。若Iout和VDD无关,则, Iref和VDD无关。 如图,采用威尔逊电流源 电流满足: kIref = Iout 电流是任意的,必须加入约束
QVDS4 = VG3 −Veff = (Vth +Veff ) −Veff = Vth Vth > Veff 4 = nVeff
是可以保证的
上述偏置使M2和M3处在饱和与线性区的边缘 若: Ibias ≥ Iin, 则,M5栅极电压足够使M3和M2处在饱和与区 若: Ibias = Iin, I ↑⇒Veff1 ↑⇒γ ≠ 0,Vth4 ↑⇒VDS3 < Veff ⇒ Rout ↓ 使
具有正温度系数。
通过调节Q1、Q2面积改变电流密度
nIo Io ∆Vbe = VT ln −VT ln = VT ln(mn) I I s1 s2 ∂Vbe k = ln(nm) ∂T q
带隙基准
III. 带隙基准 令: Vref = α1Vbe +α2VT lnn
vS = io RS
考虑衬偏效应:
I in Rs1 = I out Rs 2 ⇒ Veff 1 = Veff 2
rout = ro 2 [1 + RS (g m 2 + g mb 2 + g o 2 )] ≅ ro 2 [1 + RS ( g m 2 + g mb 2 )]
例: RS = 5kΩ g mb = 0.2 g m
II. 正温度系数 Q1、Q2相同:
∆Vbe = Vbe1 −Vbe2 nIo Io kT = VT ln −VT ln VT = I I q s1 s2 = VT lnn
Is1 = Is2 , Ae1 = Ae2
∂Vbe k = lnn ∂T q
1 ∂IC 1 ∂IS ∂Vbe ∂VT IC = ln +VT I I ∂T − I ∂T (if IC ≠ constant ) ∂T ∂T S S C
和原公式相比,多了一项
VT ∂IC VT k lnn VT VT lnn VT = × = × = IC ∂T IC qR3 IC TR T 3
2Leabharlann 电流和电源无关,和电阻有关。 当沟道长度效应很小时,电流和电源的依赖性很小。 电路有另一个稳定点: Iout = 0 必须加启动电路。 电路在上电时,启动电路驱动偏置电路摆脱“简并”偏置 点 如图:M3-M5-M2-Rs提供了一条电源 到地的通路,使M2和M3工作。 M2和M3导通后, Vgs5 < Vth M5被关断,不影响偏置电路的正常工作
∂Vbe ∂VT = α1 +α2 lnn ∂T ∂T ∂T ∂V ∂VT k Q be = −1.5mV /o K = = 0.087 /o K mV ∂T ∂T q α1 =1 α2 = α ∂Vref ⇒α lnn =17.2时, =0 ∂T ∂Vref
Vref = α1Vbe +α2VT lnn = Vbe +17.2VT ≈1.25 V
带隙基准
I. 负温度系数
IC Vbe = VT ln I S
IS = bT
4+m
− Eg exp kT
IC = constant )
∂Vbe ∂VT IC VT ∂IS = ln − ∂T ∂T IS IS ∂T
β2
=
取:
Ibias = Iin
1 W W = L 5 (n +1)2 L
2
2I5 (n +1) ⇒Veff 5 = = (n +1)Veff µnCox(W L)
近似地:
W W 1 W Veff 4 = Veff1 = Veff 5 −Veff 2 = nVeff ⇒ = = 2 L 4 L 1 n L
∴Vout > Veff 2 +Veff1 = Veff + nVeff = (n +1)Veff
例如,取
n =1, ⇒Vout > 2Veff
显然,摆幅可以增加。
改进的电流源
注意M5的栅极偏置电压:
VG1 = VG4 = VG5 = (n +1)Veff +Vth
同时: VDS4 >Veff 4 = nVeff
带隙基准
• 改进的电流源 • 与电源无关的偏置 • 带隙基准
– 正温度系数 – 负温度系数
• PTAT电流源的产生 • 实例分析
改进的电流源
问题的提出: 对简单的电流镜电路,考虑沟道长度调制效应后,引入了电 流的复制误差。误差由有限的输出阻抗决定。
I out = W2 L2 (1 + λVDS 2 ) • I in W1 L1 (1 + λVDS1 )
输出阻抗增加: rout = ro4 [1+ RS (gm4 + gmb4 )] QRs = ro2 ∴rout = ro4 [1+ ro2 (gm4 + gmb4 )] ≅ ro4 (ro2 gm4 )
改进的电流源
相同的摆幅问题:
VG 3 = VGS 1 + VGS 3 = 2Veff + 2Vtn VDS 2 = VG 3 − VGS 4 = Veff + Vtn Vout > VDS 2 + Veff = 2Veff + Vtn
带隙基准
概念:与温度无关的电压或电流基准电路 因为大多数参数(工艺参数)和温度有关。 因此,和温度无关,即和工艺无关。 思路:将两个具有正温度系数和负温度系数的量加权相加, 则,得到的量显示零温度系数。 负温度系数: PN结二极管的基极-发射极正向电压,具有负温度系数。 正温度系数: 不同电流密度下的二个PN结二极管的基极-发射极正向电 压之差,具有正温度系数。 带隙基准:实现上述二者的加权相加。
使M5 off
⇒得到 I6 ⇒Vx = VDD − I6 (Ra + Rb ) ≤ Vth5
在复杂的电路中,可能有多个简并点,需要仔细分析。
偏置电路
和大摆幅电流镜结合,可以有效减小由于有限输出阻抗引起 的误差,同时不影响信号的摆幅。提供共源共栅电路的偏置
偏置电路
Q1~Q4 是共源共栅NMOS电流镜,Q5提供二极管偏置。 Q6~Q9 是共源共栅PMOS电流镜,Q14提供二极管偏置。 Q5的电流由共源共栅偏置回路Q10、Q11提供,同样, Q14的电流由共源共栅偏置回路Q12、Q13提供。 启动电路 Q15-Q18: bias loop off , Ii = 0, Q17 off, Q18 on VG5=VG6 ↑, Q15, Q16 ON Q6~Q9 ON→Q10-Q11 ON→Q5 ON →Q1-Q4 ON When bias loop on , Q17 ON VG5=VG6 ↓, Q15, Q16 OFF 电路中的回路:偏置正反馈回路、启动回路、 二个偏置(共源共栅)回路
R2 零温度系数时, 1+ lnn =17.2 R 3
R2 可选择,n = 31⇒ = 4 R3
设计时,必须考虑PNP晶体管的匹配性,例如,选择n=8
带隙基准
① Ic随温度的变化(在具体电路中,可求Ic的表达式)
IC1 = IC2 = ∆Vbe VT lnn = R3 R3
g m 2 = 2 µCox (W L )I out = 1.07 mA / V 1 rout = 128k 1 + 51.07 + 0.2 × 1.07 + = 955kΩ 128