华南理工大学信号与系统期末考试试卷及参考
信号与系统-华南理工大学期末考试试卷及参考答案_A2009a

,考试作弊将带来严重后果!华南理工大学期末考试《 信号与系统 》试卷A1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;填空题(共32分,每小题 4 分)、考虑信号 t t x 0cos )(ω=,其基波频率为0ω。
信号)()(t x t f -=的付立叶级数系数是 A )(A)为其它k a a a k ,0,211-1=== (B) 为其它k a ja a k ,0,211-1=== (C) 为其它k a a a k ,0,21,211-1=-== (D) 为其它k a a a k ,0,2j1,2j 11-1=-==、设信号)(t f 的傅立叶变换为)(ωj F ,则信号)21()21(t f t --的傅里叶变换是( A )(A)(B)(C)2j e )]2j (F [d d ωω-ω (D) )]2j (F [d d ωω 、已知信号)(t ω=)(1t x )(2t x ,用一周期为T 的均匀冲激串对其采样,样本记为)(t p ω。
)(1t x 1ω,)(2t x 带限于2ω,即2211||,0)(||,0)(ωωωωωω≥=≥=j X j X ,要使)(t ω通过利用某一理想低通滤波器能从)(t p ω中恢复出来,最大的采样间隔T 为( D )。
(A)212ωωπ+ (B) 12ωπ (C) 22ωπ (D) 21ωωπ+4、已知]1[1)s (T a)(s e as X +--+=,其逆变换式)(t x 为( A )。
(A))]()([T t u t u e at --- (B) )]()([T t u t u e at +-- (C) )(t u e at - (D) )]()([T t u t u e at -+5、已知一因果离散序列]n [x 的Z 变换为X(z)=1325122+++---z z z ,则]0[x =( A );(A )2 (B)5 (C)0 (D)1/26、下列说法正确的是( B ) (A ) 累加器∑-∞==nk k x n y )()(是无记忆系统(B ) LTI )2()(4-=-t u e t h t是因果系统 (C ) [])2()(sin )(-+=t x t x t y 是线性系统 (D ) ()()y t tx t =是稳定系统7、已知一离散LTI 系统的脉冲响应h[n]=δ[n]+2δ[n-1]-3δ[n-2],则该系统的单位阶跃响应S[n]等于(C )(A) δ[n]+δ[n-1]-5δ[n-2]+ 3δ[n-3] (B) δ[n](C) δ[n]+3δ[n-1](D) δ[n]+δ[n-1]-2δ[n-2] 8 信号45[]cos()2jn x n n eππ=+,其基波周期为(A )(A ) 20s (B ) 10s (C ) 30s (D )5s二、 填空题(共20分,每小题 4 分)1、信号失真的类型有( 幅度失真、相位失真、频率失真 )。
信号与系统2009试题1答案(点击下载)

(A)
(B)
学号
d j (C) [F( j )]e 2 dω 2
(D)
d [F( j )] dω 2
3、 已知信号 (t ) = x1 (t ) x 2 (t ) , 用一周期为 T 的均匀冲激串对其采样, 样本记为 p (t ) 。 x1 (t ) 带限于 1 , x 2 (t ) 带限于 2 ,即
n
) 。
1 2
2
n, 则系统响应 y[n]
e 2 e2 为( 2 j 2 j
j n
j n
) 。
ห้องสมุดไป่ตู้
《信号与系统》试卷第 3 页 共 9 页
三、
简单计算题(共 30 分,每小题 10 分)
1、若某线性时不变系统的冲激响应为 h [ n ] ,系统函数为 H ( z ),且已知 (1) h [ n ] 是实序列 (2) h [ n ] 是右边序列 (3) (4) H ( z ) 在原点 z = 0 有一个二阶零点 (5) H ( z ) 有 2 个极点,其中 1 个位于 (6) 当系统的激励为 园周上的某个非实数位置
《信号与系统》试卷第 2 页 共 9 页
2
n) e
j
4 n 5
,其基波周期为(A )
二、 填空题(共 20 分,每小题 4 分) 1、信号失真的类型有( 幅度失真、相位失真、频率失真
) 。
2、一个称为低通微分器的连续时间滤波器的频率响应如图所示,输入信号
x(t ) cos(2 t ) cos(4 t ) 时 滤 波 器 的 输 出 y(t) 为 (
, H (e j ) 最小。
―――――――(9 分)
2010-2011《信号与系统》b-华南理工大学期末考试试卷及参考答案

,考试作弊将带来严重后果!2010-2011(2)华南理工大学期末考试《 信号与系统 》试卷B1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上; .考试形式:闭卷;填空题(答案直接写在试卷上,每空2分,共30分)连续时间线性时不变系统特性可由其传输函数确定,当系统满足因果性时,其系统函数的特性是 ,当系统满足稳定性时,其系统函数的特性是: 。
下图中的信号可以用冲激信号表示为 。
对以下输入为[]x n ,输出为[]y n 的系统:a ,[][2]y n x n =-;b ,[]sin[3][]y n n x n =;c ,[][]nm y n x m =-∞=∑; d, 3[][1]y n x n =-; 其中是线性系统的有: ,因果系统的有: ,稳定系统有: ,可逆系统有: 。
已知信号)(t x 是带限信号,其频谱函数的截止频率m ω=600π(rad/s),则对信号()()sin(200)y t x t t π=⋅⋅进行时域采样,满足采样定理的最大采样间隔=max T 。
信号[]2[]x n u n =⋅的偶分量为: 。
6. 积分⎰+--55-)42()3(dtt t δ等于 。
7. 周期序列2cos(/8)n π的周期N 等于 。
8. 连续时间信号)(t x 的图形如下图所示,可求得)(ωj X 的角度函数)(ωj X ∠= ,)0(j X = ,=⎰+∞∞-ωωd j X )( ,=⎰+∞∞-ωωd j X 2|)(|= 。
(注:不必求出具体的傅立叶变换表达式)二、(25分)计算下列各题: 1.求[]()8j n x n e ππ+=的P ∞和E ∞,判断该信号是否为功率或能量信号?(6分);2.计算并画出[][][]y n x n h n =*,其中[][]112nx n u n -⎛⎫=-- ⎪⎝⎭,[][]1[5]h n u n u n =---。
(6分)3.求周期信号()21cos 68x t t ππ⎛⎫=++⎪⎝⎭的傅立叶变换。
信号及系统期末考试试题及答案

信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。
2. 说明傅里叶变换与拉普拉斯变换的区别。
三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。
2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。
四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。
2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。
五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。
参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。
数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。
2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。
三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。
信号与系统期末考试复习题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。
若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。
则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。
若x(t)为周期为T的信号,则y(t)也是周期为T的信号。
A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。
答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。
答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。
答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。
信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。
信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。
2. 请简要说明周期信号和非周期信号的区别。
答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。
非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。
...以上是关于信号与系统试题及答案的文档。
希望能对您的大学期末考试复习有所帮助。
祝您考试顺利!。
信号与系统期末考试题库及答案

信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y(t )一定是周期信号。
B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y(t ) 是周期信号。
C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。
D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。
3.下列说法不正确的是( D )。
A 、一般周期信号为功率信号。
B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C 、ε(t )是功率信号;D 、e t 为能量信号;4.将信号f (t )变换为( A )称为对信号f (t )的平移或移位。
A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (-t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。
A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D )。
A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。
信号与系统期末考试试卷 含答案(3)

,考试作弊将带来严重后果!华南理工大学期末考试《 信号与系统 》试卷B1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;4. 本试卷共 五 大题,满分100分, 考试时间120分钟。
题 号 一 二 三四五总分得 分 评卷人一、 填空题(共20分,每小题 2 分)1、()⎪⎭⎫⎝⎛π+=3t 4cos 3t x 是否为周期信号 , 若是其基波周期T= 。
2、[]⎪⎭⎫⎝⎛π+=64n cos n x 是否为周期信号 , 若是基波周期 N= 。
3、信号()()()t 3sin t 2cos t x +π=的傅里叶变换()ωj X = 。
4、一离散LTI 系统的阶跃响应[][][]1n 2n n s -δ+δ=,该系统的单位脉冲响应[]=n h 。
5、一连续LTI 系统的输入()t x 与输出()t y 有如下关系:()()()ττ=⎰+∞∞-+τ--d x et y 2t ,该系统的单位冲激响应()=t h 。
6、一信号()()2u 34+=-t et x t,()ωj X 是该信号的傅里叶变换,求()=ωω⎰+∞∞-d j X 。
7、周期性方波x(t)如下图所示,它的二次谐波频率=2ω 。
8、设)e(X j ω是下图所示的离散序列x[n]傅立叶变换,则=⎰ωπωd )e (X 20j 。
9、已知一离散实偶周期序列x[n]的傅立叶级数a k 如图所示,求x[n]的周期N= 。
10、一因果信号[]n x ,其z 变换为()()()2z 1z 1z 5z 2z X 2++++=,求该信号的初值[]=0x 。
二、 判断题(判断下列各题,对的打√,错的打×)(共20分,每小题2分)1、已知一连续系统的频率响应为)5j(23e )H(j ωωω+-=,信号经过该系统不会产生相位失真。
( )2、已知一个系统的单位冲击响应为)2t (u e )t (h t+=-,则该系统是非因果系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《 信号与系统 》试卷B 答案
一、 填空题(共20分,每小题 2 分) 1、()⎪⎭
⎫
⎝
⎛π+=3t 4cos 3t x
(选填:是或不是)周期信号, 若是,其基波周期T=----。
2、[]⎪⎭
⎫ ⎝⎛+=64
cos ππn n x
(选填:是或不是)周期信号,若是,基波周期 N= 。
3信号()()()t 3sin t 2cos t x +π=的傅里叶变换()ωj X = 4、一离散LTI 系统的阶跃响应[][][]12-+=n n n s δδ,该系统的单位脉冲响应[]=n h 。
5、一连续LTI 系统的输入()t x 与输出()t y 有如下关系:()(
)()ττ=⎰+∞
∞
-+τ--d x e t y 2t ,该系统的单
位冲激响应()=t h。
6、一信号()()2u 34+=-t e t x
t ,()ωj X 是该信号的傅里叶变换,求()=ωω⎰
+∞∞
-d j X 。
7、周期性方波x(t)如下图所示,它的二次谐波频率=2
ω 。
8、设)e
(X j ω
是下图所示的离散序列x[n]傅立叶变换,则=⎰ωπ
ωd )e (X 20
j 。
9、已知一离散实偶周期序列x[n]的傅立叶级数系数a k 如图所示,求x[n]的周期N= 。
10、一因果信号[]n x ,其z 变换为()()()
2z 1z 1z 5z 2z X 2++++=,求该信号的初值[]=0x 。
[]
x n k a
8
-8
k
. . . . . .
T 1 -T 1 T
-T
T/2
-T/2 t
()x t
二、 判断题(判断下列各题,对的打√,错的打×)(共20分,每小题2分) 1、已知一连续系统的频率响应为)
5j(2
3e )H(j ωω
ω+-=,信号经过该系统不会产生相位失真。
2、已知一个系统的单位冲击响应为)2t (u e )
t (h t +=-,则该系统是非因果系统。
3、如果x(t)是有限持续信号,且绝对可积,则X(s)收敛域是整个s 平面。
4、已知一左边序列x[n]的Z 变换()()()
2
31
5111+++=
---z z z z X ,则x[n]的傅立叶变换存在。
5、对()()2
t t 1000sin t x ⎥⎦
⎤
⎢⎣⎡ππ=进行采样,不发生混叠现象的最大采样间隔=m ax
T 0.5ms 。
6、一个系统与其逆系统级联构成一恒等系统,则该恒等系统是全通系统。
7、离散时间系统S ,其输入为]n [x ,输出为
]n [y ,输入-输出关系为:]n [n ]n [x y =则该系
统是LTI 系统。
8、序列信号)1(2][-=
-n u n x n 的单边Z 变换等于
1
21
-z 。
9、如果]n [x 的傅立叶变换是)5cos()sin(X ωωω
j e
j =)(,则]n [x 是实、奇信号。
10、若t 50
2jk
100
100
k e
)k (cos )t (x ππ∑-==
,则它的傅立叶级数系数为实、奇函数。
三、 计算或简答题(共40分,每小题 8 分)
1、f 1 (t )与f 2 (t ) 波形如下图所示,试利用卷积的性质,画出f 1 (t ) * f 2 ( t ) 的波形。
2、如下图所示系统,如果)j (H 1ω是截止频率为hp ω、相位为零相位的高通滤波器,求该系统
的系统函数)j (H ω,)j (H ω是什么性质的滤波器?
3、设x(t)为一带限信号,其截止频率ωm = 8 rad/s 。
现对x(4t) 采样,求不发生混迭时的最大
间隔T max 4、系统函数为2)
s )(3s (1s )
s (H -+-=
的系统是否稳定,请说明理由?
5、已知一个因果离散LTI 系统的系统函数1
2z 1
5z )z (H ++=
,其逆系统也是因果的,其逆系统是
否稳定?并说明理由。
四、 (10分)关于一个拉普拉斯变换为()s X 的实信号()t x 给出下列5个条件:(1)()s X 只有两个
极点。
(2)()s X 在有限S 平面没有零点。
(3)()s X 有一个极点在j 1s +-=。
(4)()t x e t 2是绝对可积的。
(5)、()20X =。
试确定()s X 并给出它的收敛域。
五、 (10分)一个LIT 因果系统,由下列差分方程描述:
)1n (e 3
1
)2n (e )y(n 81)1n (y 43)2n (y +++=++-
+ (1) 求系统函数H (z ),并绘出其极零图。
(2) 判断系统是否稳定,并求h (n )。
()y t
()x t
答案
一、 填空题
1、是2/π。
2、 是8 。
33)](3)([j )]2()2([++--++-ωδωδππωδπωδπ。
4、]2n [2]1n []n [---+δδδ 。
5、)
2t (e
+- 。
6、π6。
7、=2
ωT
4π 。
8、π2 。
9、 8 。
10、2 。
二、 判断题
1、( × )
2、( √ )
3、( √ )
4、( × )
5、( √ )
6、( √ )
7、( × )8、( √ ) 9、( √ )10、( × )
三、 计算或简答题 1、 解:
2、 解:
)j (H 1)
j (X )
j (Y )j (H )j (H )j (X )j (X )j (Y )t (h )t (x )t (x )t (y 111ωωωωωωωω-==
-=*-= 低通滤波器。
3、 解:
设 x(t)的傅立叶变换为X(j ω) ,则 x(4t) 的傅立叶变换为)4
j (X 41)j (X ωω=
, ∴ x(4t) 的截止频率ωm = 32 rad/s , ∴ s 32
T 64,T 12max max
π
π=
=,
4
解: 该系统由2个极点,s 1=-3和s 2=2,
1) 当系统的ROC :σ<-3时,ROC 不包括j ω轴,∴系统是不稳定的。
2) 当系统的ROC :σ>2时,ROC 不包括j ω轴,∴系统是不稳定的。
3) 当系统的ROC :-3<σ<2时,ROC 包括j ω轴,∴系统是稳定的。
5、
解:逆系统的系统函数为
1
5z 1
2z )Z (H 1)Z (G ++==
,
)Z (G 有一极点51z -
=,∵逆系统是因果的,∴)Z (G 的ROC :5
1
z >,包含单位圆, ∴逆系统是稳定的。
解:
设X(s)的两个极点为s 1和s 2, 根据条件(1)、(2),可设)
s s )(s s (A
)
s (X 21--=
,A 为常数;
∵ x(t)是实信号;∴ s 1和s 2是共轭复数,s 1=-1+j ,s 2=-1-j;
∴
()2)1)(1(0=+-=
j j A
X , A=4;
∴ )
j 1s )(1s (4
)
s (X ++-+=
j
由条件(4)可知:()s X 的ROC :σ>-1 . 解:
(1)对差分方程两边做Z 变换
)z (zE 3
1
)z (E z )z (Y 81)z (zY 43)z (Y z 22+=+-
8
1z 43z z
31z )z (E )z (Y )z (H 22+
-+== ,21z >.
(2)
4
1-z z
3
7
21z z 310)z (H --=
因为H (z )的极点均在单位圆内,且收敛域包含单位圆,所以系统稳定。
)()41(37)21(310][h n u n n n ⎥⎦⎤
⎢⎣
⎡-=
Re[z]。