抽象函数-题型大全(例题-含答案)

合集下载

抽象函数模型归纳总结(八大题型)(解析版)

抽象函数模型归纳总结(八大题型)(解析版)

抽象函数模型归纳总结目录01方法技巧与总结02题型归纳总结题型一:一次函数模型题型二:二次函数模型题型三:幂函数模型题型四:指数函数模型题型五:对数函数模型题型六:正弦函数模型题型七:余弦函数模型题型八:正切函数模型03过关测试20一次函数(1)对于正比例函数f x =kx k≠0,与其对应的抽象函数为f x±y=f x ±f y .(2)对于一次函数f x =kx+b k≠0,与其对应的抽象函数为f x±y=f x ±f y ∓b.二次函数(3)对于二次函数f x =ax2+bx+c a≠0,与其对应的抽象函数为f x+y=f x +f y +2axy-c幂函数(4)对于幂函数f x =x n,与其对应的抽象函数为f xy=f x f y .(5)对于幂函数f x =x n,其抽象函数还可以是fxy=f x f y.指数函数(6)对于指数函数f x =a x,与其对应的抽象函数为f x+y=f x f y .(7)对于指数函数f x =a x,其抽象函数还可以是f x -y =f xf y.其中(a >0,a ≠1)对数函数(8)对于对数函数f x =log a x ,与其对应的抽象函数为f xy =f x +f y .(9)对于对数函数f x =log a x ,其抽象函数还可以是fxy=f x -f y .(10)对于对数函数f x =log a x ,其抽象函数还可以是f x n=nf x .其中(a >0,a ≠1)三角函数(11)对于正弦函数f x =sin x ,与其对应的抽象函数为f x +y f x -y =f 2x -f 2y 注:此抽象函数对应于正弦平方差公式:sin 2α-sin 2β=sin α+β sin α-β(12)对于余弦函数f x =cos x ,与其对应的抽象函数为f x +f y =2fx +y 2 f x -y2注:此抽象函数对应于余弦和差化积公式:cos α+cos β=2cos α+β2cosα-β2(13)对于余弦函数f x =cos x ,其抽象函数还可以是f x f y =12f x +y +f x -y注:此抽象函数对应于余弦积化和差公式:cos αcos β=cos α+β +cos α-β2(14)对于正切函数f x =tan x ,与其对应的抽象函数为f x ±y =f x ±f y1∓f x f y注:此抽象函数对应于正切函数和差角公式:tan α±β =tan α±tan β1∓tan αtan β题型一:一次函数模型1已知f x +y =f x +f y -1且f 1 =2,则f 1 +f 2 +⋯+f n 不等于A.f 1 +2f 1 +⋯+nf 1 -n n -12B.f n n +1 2+n -1C.n 2+3n2 D.n n +1【答案】D【解析】∵f x +y =f x +f y -1,∴f x +y -1=f x -1 +f y -1 ,构造函数g x =f x -1,则g x +y =g x +g y ,且g 1 =f 1 -1=1,令a n =g n =f n -1,则a 1=f 1 -1=1,令x =n ,y =1,得g n +1 =g n +g 1 ,∴a n +1=a n +a 1=a n +1,即a n +1-a n =1,所以,数列a n 为等差数列,且首项为1,公差为1,∴a n =1+n -1 ×1=n ,∴f n -1=n ,则f n =n +1.f 1 +f 2 +⋯+f n =2+3+⋯+n +1 =n 2+n +1 2=n n +3 2=n 2+3n 2,f 1 +2f 1 +⋯+nf 1 -n n -1 2=n n +1 2f 1 -n n -1 2=n n +1 -n n -1 2=n 2+3n2,合乎题意;f n n +1 2 +n -1=n n +1 2+1+n -1=n 2+3n 2,合乎题意;故选D .2已知函数f x 的定义域为R ,且f 12≠0,若f (x +y )+f (x )f (y )=4xy ,则下列结论错误的是()A.f -12=0 B.f 12=-2C.函数f x -12是偶函数 D.函数f x +12是减函数【答案】C【解析】对于A ,令x =12、y =0,则有f 12 +f 12 ×f 0 =f 121+f 0 =0,又f 12≠0,故1+f 0 =0,即f 0 =-1,令x =12、y =-12,则有f 12-12 +f 12 f -12 =4×12×-12,即f 0 +f 12 f -12 =-1,由f 0 =-1,可得f 12 f -12 =0,又f 12 ≠0,故f -12=0,故A 正确;对于C ,令y =-12,则有f x -12 +f x f -12 =4x ×-12,则f x -12 =-2x ,故函数f x -12是奇函数,故C 错误;对于D ,有f x +1-12 =-2x +1 =-2x -2,即f x +12=-2x -2,则函数f x +12 是减函数,故D 正确;对于B ,由f x -12 =-2x ,令x =1,有f 12=-2×1=-2,故B 正确.故选:C 3(2024·河南新乡·一模)已知定义在R 上的函数f x 满足∀x ,y ∈R ,f 2xy -1 =f x ⋅f y +f y +2x -3,f 0 =-1,则不等式f x >3-2x 的解集为()A.1,+∞B.-1,+∞C.-∞,1D.-∞,-1【答案】A【解析】令x =y =0,得f (-1)=f (0)⋅f (0)+f (0)-3=-3.令y =0,得f (-1)=f (x )f (0)+f (0)+2x -3,解得f (x )=2x -1,则不等式f (x )>3-2x 转化为2x +2x -4>0,因为y =2x +2x -4是增函数,且2×1+21-4=0,所以不等式f (x )>3-2x 的解集为(1,+∞).故选:A4已知定义在R 上的单调函数f x ,其值域也是R ,并且对于任意的x ,y ∈R ,都有f xf y =xy ,则f 2022 等于()A.0B.1C.20222D.2022【答案】D【解析】由于f x 在R 上单调,且值域为R ,则必存在y 0∈R ,使得f y 0 =1,令y =y 0得,f xf y 0 =xy 0,即f x =y 0x ,于是∀x ,y ∈R ,f xf y =f xy 0y =y 0xy 0y =y 20xy =xy ,则y 0=±1,从而f x =±x ,有f 2022 =2022.故选:D题型二:二次函数模型1(2024·高三·河北保定·期末)已知函数f (x )满足:∀x ,y ∈Z ,f (x +y )=f (x )+f (y )+2xy +1成立,且f (-2)=1,则f 2n n ∈N * =()A.4n +6B.8n -1C.4n 2+2n -1D.8n 2+2n -5【答案】C【解析】令x =y =0,则f 0 =f 0 +f 0 +1,所以f 0 =-1,令x =y =-1,则f -2 =f -1 +f -1 +2+1=2f -1 +3=1,所以f -1 =-1,令x =1,y =-1,则f 0 =f 1 +f -1 -2+1=f 1 -2=-1,所以f 1 =1,令x =n ,y =1,n ∈N *,则f n +1 =f n +f 1 +2n +1=f n +2n +2,所以f n +1 -f n =2n +2,则当n ≥2时,f n -f n -1 =2n ,则f n =f n -f n -1 +f n -1 -f n -2 +⋯+f 2 -f 1 +f 1=2n +2n -2 +⋯+4+1=2n +4 n -12+1=n 2+n -1,当n =1时,上式也成立,所以f n =n 2+n -1n ∈N * ,所以f 2n =4n 2+2n -1n ∈N * .故选:C .2(2024·山东济南·三模)已知函数f x 的定义域为R ,且yf x -xf y =xy x -y ,则下列结论一定成立的是()A.f 1 =1B.f x 为偶函数C.f x 有最小值D.f x 在0,1 上单调递增【答案】C【解析】由于函数f x 的定义域为R ,且yf x -xf y =xy x -y ,令y =1,则f x -xf 1 =x x -1 ,得f x =x 2+f 1 -1 x ,x =1时,f 1 =12+f 1 -1 恒成立,无法确定f 1 =1,A 不一定成立;由于f 1 =1不一定成立,故f x =x 2+f 1 -1 x 不一定为偶函数,B 不确定;由于f x =x 2+f 1 -1 x 的对称轴为x =-12⋅f 1 -1 与0,1 的位置关系不确定,故f x 在0,1 上不一定单调递增,D 也不确定,由于f x =x 2+f 1 -1 x 表示开口向上的抛物线,故函数f x 必有最小值,C 正确,故选:C3(2024·陕西西安·模拟预测)已知函数f (x )的定义域为R ,且满足f (x )+f (y )=f (x +y )-2xy +2,f (1)=2,则下列结论正确的是()A.f (4)=12B.方程f (x )=x 有解C.f x +12 是偶函数D.f x -12是偶函数【答案】C【解析】对于A ,因为函数f (x )的定义域为R ,且满足f (x )+f (y )=f (x +y )-2xy +2,f (1)=2,取x =y =1,得f (1)+f (1)=f (2)-2+2,则f (2)=4,取x =y =2,得f (2)+f (2)=f (4)-8+2,则f (4)=14,故A 错误;对于B ,取y =1,得f (x )+f (1)=f (x +1)-2x +2,则f (x +1)-f (x )=2x ,所以f (x )-f (x -1)=2(x -1),f (x -1)-f (x -2)=2(x -2),⋯,f (2)-f (1)=2,以上各式相加得f (x )-f (1)=2(x -1)+2 ⋅(x -1)2=x 2-x ,所以f (x )=x 2-x +2,令f (x )=x 2-x +2=x ,得x 2-2x +2=0,此方程无解,故B 错误.对于CD ,由B 知f (x )=x 2-x +2,所以f x +12 =x +12 2-x +12 +2=x 2+74是偶函数,f x -12 =x -12 2-x -12 +2=x 2-2x +114不是偶函数,故C 正确,D 错误.故选:C .4(2024·河南·三模)已知函数f x 满足:f 1 ≥3,且∀x ,y ∈R ,f x +y =f x +f y +6xy ,则9i =1f i 的最小值是()A.135 B.395C.855D.990【答案】C【解析】由f x +y =f x +f y +6xy ,得f x +y -3x +y 2=f x -3x 2+f y -3y 2,令g x =f x -3x 2,得g x +y =g x +g y ,令x =n ,y =1,得g n +1 -g n =g 1 ,故g n =g n -g n -1 + g n -1 -g n -2 +⋅⋅⋅+ g 2 -g 1 +g 1 =ng 1 ,又g n =f n -3n 2,所以f n =g n +3n 2=3n 2+f 1 -3 n ,所以9i =1f i =39i =1i 2+f 1 -3 9i =1i =855+45f 1 -3 ,因为f 1 ≥3,当f 1 =3时,9i =1f i 的最小值为855.故选:C .题型三:幂函数模型1已知函数f x 的定义域为-∞,0 ∪0,+∞ ,且xf x =y +1 f y +1 ,则()A.f x ≥0B.f 1 =1C.f x 是偶函数D.f x 没有极值点【答案】D【解析】令g x =xf x ,则g y +1 =y +1 f y +1 ,所以g x =g y +1 ,且x ,y +1为定义域内任意值,故g x 为常函数.令g x =k ,则f x =kx,为奇函数且没有极值点,C 错,D 对;所以f x ≥0不恒成立,f 1 =1不一定成立,A 、B 错.故选:D2(2024·河北·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x 满足f xy =f -x y +f -yx+1xy,则()A.f x 是奇函数且在0,+∞ 上单调递减B.f x 是奇函数且在-∞,0 上单调递增C.f x 是偶函数且在0,+∞ 上单调递减D.f x 是偶函数且在-∞,0 上单调递增【答案】A【解析】令x =y =-1,则f 1 =-2f 1 +1,所以f 1 =13,令x =y =1,则f 1 =2f -1 +1,所以f -1 =-13,令y =-1,则f -x =-f -x +f 1 x -1x =-f -x +13x -1x =-f -x -23x,所以f -x =-13x,令y =1,则f x =f -x +f -1 x +1x =-13x -13x +1x =13x ,所以f x =13x,因为f -x =-13x=-f x ,且定义域关于原点对称,所以函数f x 是奇函数,由反比例函数的单调性可得函数f x =13x在0,+∞ 上单调递减.故选:A .题型四:指数函数模型1(多选题)(2024·山西晋中·三模)已知函数f x 的定义域为R ,满足f x +y =f x f y +f x +f y ,且f 0 ≠-1,f 1 >-1,则下列说法正确的是()A.f 0 =0B.f x 为非奇非偶函数C.若f 1 =1,则f 4 =15D.f x >-1对任意x ∈N *恒成立【答案】ACD【解析】我们有恒等式:f x +y +1=f x f y +f x +f y +1=f x +1 f y +1 .对于A ,由恒等式可得f 0 +1=f 0 +1 f 0 +1 ,而f 0 ≠-1,故f 0 +1≠0,所以1=f 0 +1,即f 0 =0,故A 正确;对于B ,由于f x =0满足条件且是偶函数,所以f x 有可能是偶函数,故B 错误;对于C ,由恒等式可得f x +1 +1=f x +1 f 1 +1 ,故f 4 +1=f 3 +1 f 1 +1 =f 2 +1 f 1 +12=f 1 +1 4.若f 1 =1,则f 4 =f 1 +1 4-1=24-1=15,故C 正确;对于D ,由恒等式可得f x +1 +1=f x +1 f 1 +1 .而f 1 +1>0,故f x +1 +1和f x +1同号(同为正数,或同为负数,或同为0),从而再由f 1 +1>0可知f x +1>0x ∈N * ,即f x >-1x ∈N * ,故D 正确.故选:ACD .2已知函数f x 满足,f p +q =f p ⋅f q ,f 1 =3,则f 21 +f 2 f 1 +f 22 +f 4f 3+f 23 +f 6 f 5 +f 24 +f 8 f 7 +f 25 +f 10f 9 的值为()A.15B.30C.60D.75【答案】B【解析】∵f p +q =f p ⋅f q ,∴f n +1 =f n ⋅f 1 ,∵f 1 =3∴f n +1 =3f n ∴f n =3×3n -1=3n因此f 21 +f 2 f 1 +f 22 +f 4 f 3 +f 23 +f 6 f 5 +f 24 +f 8 f 7 +f 25 +f 10 f 9=32+323+34+3433+36+3635+38+3837+310+31039=6+6+6+6+6=30故选:B3如果f a +b =f a f b 且f 1 =2,则f 2 f 1 +f 4 f 3 +f 6f 5=()A.125B.375C.6D.8【答案】C【解析】∵f 1 =2,f a +b =f a f b ,∴f 2 =f 1 f 1 ,f 4 =f 3 f 1 ,f 6 =f 5 f 1 ,∴f 2 f 1 =f 1 ,f 4 f 3 =f 1 ,f 6 f 5 =f 1 ,∴f 2 f 1 +f 4 f 3 +f 6 f 5 =3f 1 =6,故选:C .4已知函数f x 对一切实数a ,b 满足f a +b =f a ⋅f b ,且f 1 =2,若a n =f n2+f 2n f 2n -1n ∈N *,则数列a n 的前n 项和为()A.nB.2nC.4nD.8n【答案】C【解析】∵函数f x 对一切实数a,b满足f a+b=f a ⋅f b ,且f1 =2∴f n+1=f n ⋅f1 =2f n∴数列f n是等比数列,首项为2,公比为2∴f n =2n,n∈N*所以a n=f n2+f2nf2n-1=22n+22n22n-1=4所以数列a n的前n项和为4n.故选:C.题型五:对数函数模型1(多选题)已知函数f x 的定义域为R,f xy=y2f x +x2f y ,则( ).A.f0 =0 B.f1 =0C.f x 是偶函数D.x=0为f x 的极小值点【答案】ABC【解析】方法一:因为f(xy)=y2f(x)+x2f(y),对于A,令x=y=0,f(0)=0f(0)+0f(0)=0,故A正确.对于B,令x=y=1,f(1)=1f(1)+1f(1),则f(1)=0,故B正确.对于C,令x=y=-1,f(1)=f(-1)+f(-1)=2f(-1),则f(-1)=0,令y=-1,f(-x)=f(x)+x2f(-1)=f(x),又函数f(x)的定义域为R,所以f(x)为偶函数,故C正确,对于D,不妨令f(x)=0,显然符合题设条件,此时f(x)无极值,故D错误.方法二:因为f(xy)=y2f(x)+x2f(y),对于A,令x=y=0,f(0)=0f(0)+0f(0)=0,故A正确.对于B,令x=y=1,f(1)=1f(1)+1f(1),则f(1)=0,故B正确.对于C,令x=y=-1,f(1)=f(-1)+f(-1)=2f(-1),则f(-1)=0,令y=-1,f(-x)=f(x)+x2f(-1)=f(x),又函数f(x)的定义域为R,所以f(x)为偶函数,故C正确,对于D,当x2y2≠0时,对f(xy)=y2f(x)+x2f(y)两边同时除以x2y2,得到f(xy)x2y2=f(x)x2+f(y)y2,故可以设f(x)x2=ln x (x≠0),则f(x)=x2ln x ,x≠00,x=0,当x>0肘,f(x)=x2ln x,则f x =2x ln x+x2⋅1x=x(2ln x+1),令f x <0,得0<x<e-12;令f x >0,得x>e-12;故f(x)在0,e-1 2上单调递减,在e-12,+∞上单调递增,因为f(x)为偶函数,所以f(x)在-e-1 2,0上单调递增,在-∞,e-12上单调递减,显然,此时x =0是f (x )的极大值,故D 错误.故选:ABC .2.已知定义在0,+∞ 上的函数f x ,满足f xy +1=f x +f y ,且f 12=0,则f 211 =()A.1B.11C.12D.-1【答案】C【解析】令x =y =1,则f 1 +1=f 1 +f 1 ,解得f 1 =1,令x =2,y =12,则f 1 +1=f 2 +f 12,解得f 2 =2,令x =y =2,则f 22 +1=f 2 +f 2 ,解得f 22 =3,令x =22,y =2,则f 23 +1=f 22 +f 2 ,解得f 23 =4,⋯⋯,依次类推可得f 211 =12。

抽象函数定义域习题(含答案)

抽象函数定义域习题(含答案)

抽象函数定义域副标题一、选择题(本大题共5小题,共25.0分)1.已知函数y=f(x+1)的定义域是[-2,3],则函数y=f(2x-1)的定义域是()A. [0,52] B. [-1,4] C. [-5,5] D. [-3,7] 2.已知函数y=f(x)的定义域为[−1,3],则函数y=f(3x−2)的定义域为()A. [−5,7]B. [13,53] C. [−5,53] D. [13,7]3.已知函数y=f(2x−1)定义域是[0,1],则f(2x+1)log2(x+1)的定义域是( )A. (−1,0)B. (−1,0]C. [−1,0)D. [−1,0]4.已知函数f(x)的定义域为(−1,1),则函数g(x)=f(x2)+f(x−1)的定义域为()A. (−2,0)B. (−2,2)C. (0,2)D. (−12,0)5.已知函数y=f(x)的定义域为[0,2],则函数g(x)=f(2x)x−1的定义域为()A. [0,4]B. [0,1)∪(1,4]C. [0,1]D. [0,1)答案和解析1.【答案】A【解析】【分析】本题考查了函数的定义域及其求法,给出了函数y =f (x )的定义域为[a ,b ],求解y =f [g (x )]的定义域,只要让g (x )∈[a ,b ],求解x 即可.根据题目给出的函数y =f (x +1)定义域,求出函数y =f (x )的定义域,然后由2x -1在f (x )的定义域内求解x 即可得到函数y =f (2x -1)定义域. 【解答】∵函数y =f (x +1)定义域为[-2,3], ∴x ∈[-2,3],则x +1∈[-1,4], 即函数f (x )的定义域为[-1,4], 再由-1≤2x -1≤4,得:0≤x ≤52, ∴函数y =f (2x -1)的定义域为[0,52]. 故选A . 2.【答案】B【解析】【分析】本题主要考查函数的定义域的求解,根据复合函数定义域之间的关系是解决本题的关键.根据复合函数定义域之间的关系即可得到结论. 【解答】解:∵函数y =f(x)的定义域为[−1,3], ∴由−1≤3x −2≤3, ∴得13≤x ≤53, ∴函数的定义域为[13,53]. 故选B .3.【答案】A【解析】【分析】本题主要考查复合函数定义域的求法,要求熟练掌握复合函数定义域之间的关系.根据复合函数的定义域,先求出f (x )的定义域即可. 【解答】解:因为函数y =f (2x -1)定义域是[0,1], 所以-1≤2x -1≤1,所以函数f (x )的定义域为[−1,1], 由-1≤2x +1≤1,且{log 2(x +1)≠0x +1>0,解得-1<x <0,故选A.4.【答案】C【解析】【分析】考查抽象函数的定义域的求法,注意变量范围的转化.由原函数的定义域,解不等式组即可.【答案】解:∵原函数的定义域为(-1,1),∴{−1<x2<1−1<x−1<1,解得0<x<2.∴函数g(x)的定义域为(0,2).故选C.5.【答案】D【解析】【分析】本题考查函数的定义域的求法,注意运用分式的分母不为0,定义域的含义,以及运算能力,属于基础题.【解答】解:函数f(x)的定义域为[0,2],则函数g(x)=f(2x)x−1有意义,可得0≤2x≤2且x-1≠0,解得0≤x<1,即定义域为[0,1),故选D.。

数学练习题抽象函数(含答案)

数学练习题抽象函数(含答案)

高考一轮专练——抽象函数1. 已知函数y = f (x )(x ∈R ,x ≠0)对任意的非零实数1x ,2x ,恒有f (1x 2x )=f (1x )+f (2x ),试判断f (x )的奇偶性。

2 已知定义在[-2,2]上的偶函数,f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围3. 设f(x)是R 上的奇函数,且f(x+3) =-f(x),求f(1998)的值。

4. 设函数()f x 对任意121,[0,]2x x ∈,都有1212()()()f x x f x f x +=⋅,()2f x = 已知(1)2f =,求1()2f ,1()4f 的值.5. 已知f (x )是定义在R 上的函数,且满足:f (x+2)[1-f (x )]=1+f (x ),f (1)=1997,求f (2001)的值。

6. 设f (x )是定义R 在上的函数,对任意x ,y ∈R ,有 f (x+y )+f (x-y )=2f (x )f (y )且f (0)≠0.(1)求证f (0)=1;(2)求证:y=f (x )为偶函数.7. 已知定义在R 上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间?8. 设f (x )是定义在R 上的奇函数,且对任意a ,b ,当a+b ≠0,都有ba b f a f ++)()(>0(1)若a >b ,试比较f (a )与f (b )的大小;(2)若f (k )293()3--+⋅xxxf <0对x ∈[-1,1]恒成立,求实数k 的取值范围。

9.已知函数()f x 是定义在(-∞,3]上的减函数,已知22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。

10.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数;(2)若(3),(24)f a a f -=试用表示.11.已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,都满足: ()()()f a b af b bf a ∙=+. (1)求(0),(1)f f 的值;(2)判断()f x 的奇偶性,并证明你的结论;(3)若(2)2f =,*(2)()nn f u n N n-=∈,求数列{n u }的前n 项和n s .12.已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求(2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式.13.已知函数()f x 的定义域为R ,对任意实数,m n 都有1()()()2f m n f m f n +=++,且1()02f =,当12x >时, ()f x >0.(1)求(1)f ;(2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明.14.函数()f x 的定义域为R ,并满足以下条件:①对任意x R ∈,有()f x >0;②对任意,x y R ∈,有()[()]y f xy f x =;③1()13f >.(1)求(0)f 的值;(2)求证: ()f x 在R 上是单调减函数; (3)若0a b c >>>且2b ac =,求证:()()2()f a f c f b +>.15.已知函数()f x 的定义域为R,对任意实数,m n 都有()()()f m n f m f n +=∙,且当0x >时,0()1f x <<.(1)证明:(0)1,0f x =<且时,f(x)>1;(2)证明: ()f x 在R 上单调递减;(3)设A=22{(,)()()(1)}x y f x f y f ∙>,B={(,)(2)1,x y f ax y a R -+=∈},若AB =Φ,试确定a 的取值范围.16.已知函数()f x 是定义在R 上的增函数,设F ()()()x f x f a x =--. (1)用函数单调性的定义证明:()F x 是R 上的增函数; (2)证明:函数y =()F x 的图象关于点(,0)2a成中心对称图形.17.已知函数()f x 是定义域为R 的奇函数,且它的图象关于直线1x =对称. (1)求(0)f 的值;(2)证明: 函数()f x 是周期函数;(3)若()(01),f x x x =<≤求当x R ∈时,函数()f x 的解析式,并画出满足条件的函数()f x 至少一个周期的图象。

抽象函数-题型大全(例题-含答案)之欧阳学文创作

抽象函数-题型大全(例题-含答案)之欧阳学文创作

高考抽象函数技巧总结欧阳学文由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u -=+=--∴2()1x f x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x xx +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

抽象函数(例题-含答案)

抽象函数(例题-含答案)

抽象函数(例题-含答案)重庆书之香教育CHONG QING *****ON高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号f(x)的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x的代数式,从而求出f(x),这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

x)?2x?1,求f(x). x?1xu2?xu2?u?u,则x??1?解:设∴f(u)?2∴f(x)? x?11?u1?x1?u1?u例1:已知f(2.凑合法:在已知f(g(x))?h(x)的条件下,把h(x)并凑成以g(u)表示的代数式,再利用代换即可求f(x).此解法简洁,还能进一步复习代换法。

例2:已知f(x?)?x?1x31,求f(x) 3x2解:∵f(x?)?(x?)(x?1?1x1x*****)?(x?)((x?)?3)|x?|?|x|??1 又∵x2xxx|x|∴f(x)?x(x2?3)?x3?3x,(|x|≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3.已知f(x)二次实函数,且f(x?1)?f(x?1)?x2+2x+4,求f(x).解:设f(x)=ax?bx?c,则f(x?1)?f(x?1)?a(x?1)2?b(x?1)?c?a(x?1)2?b(x?1)?c2?2(a?c)?413?22?a?,b?1,c?∴=2ax?2bx?2(a?c)?x?2x?4比较系数得?2a?122?2b?2?f(x)?123x?x? 224.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y=f(x)为奇函数,当x0时,f(x)?lg(x?1),求f(x)解:∵f(x)为奇函数,∴f(x)的定义域关于原点对称,故先求x0时的表达式。

抽象函数经典题答案

抽象函数经典题答案

当 − 2 ≤ x ≤ −1 时 0 ≤ x + 2 ≤ 1 时, f ( x + 2) = x + 2 + 2 = x + 4 ,又 f ( x + 2) = f ( x) , 所以 f ( x) = x + 4 ;
当 − 1 < x ≤ 0 时, 0 ≤ − x < 1 , f (− x) = − x + 2 又 f (x) 是偶函数,所以 f (− x ) = f ( x) ,所以 f ( x) = − x + 2
解:由 f(x-1)=f(x+1),设 x-1=t,所以 x=t+1,所以 f(t)=f(t+2),所以 f(x+2)=f(x)
当 0 ≤ x ≤ 1 时, 2 ≤ x + 2 ≤ 3
又 f ( x + 2) = f ( x) 所以
所以 f ( x + 2) = x + 2
f ( x) = x + 2 ;
综上, f ( x) =
x + 4,-2 ≤ x ≤ -1 - x + 2,-1 < x ≤ 0
3.已知函数 f ( x) = x x + m + n ,其中 m, n ∈ R . (Ⅰ)判断函数 f ( x) 的奇偶性,并说明理由; (Ⅱ)设 n =-4,且 f ( x) < 0 对任意 x ∈ [0,1] 恒成立,求 m 的取值范围
∴ f (x) 不是奇函数,
f ( n) = n n + m + n , f (- n) = n - m - n n , 则 f (n) ≠ f (−n) , f (x) 不是偶函

第4节 抽象函数问题(有答案)

第4节 抽象函数问题(有答案)

第4节抽象函数问题内容提要1.轴对称:如果函数()y f x =满足若122x x a +=,就有12()()f x f x =,则()f x 的图象关于直线x a =对称.记法:自变量关于a 对称,函数值相等,如图1.2.中心对称:若函数()y f x =满足若122x x a +=,就有12()()2f x f x b +=,则()f x 关于点(,)a b 对称.记法:自变量关于a 对称,函数值关于b 对称,如图2.3.函数图象的对称轴和对称中心距离(规律:x 系数相反是对称,x 系数相同是周期)()()f x a f a x +=-或(2)()f a x f x +=-()f x 关于直线x a =对称(当0a =时,()f x 即为偶函数,关于y 轴对称)()()f a x f b x +=-()f x 关于直线2a bx +=对称()()0f a x f a x ++-=()f x 关于(,0)a 对称(当0a =时,()f x 即为奇函数,关于原点对称)()()f a x b x c++-=()f x 关于点(,)22a b c+对称4.双对称的周期结论(可借助三角函数辅助理解):(1)如果函数()f x 有两条对称轴,则()f x 一定是周期函数,周期为对称轴距离的2倍.(2)如果函数()f x 有一条对称轴,一个对称中心,则()f x 一定是周期函数,周期为对称中心与对称轴之间距离的4倍.(3)如果函数()f x 有在同一水平线上的两个对称中心,则()f x 一定是周期函数,周期为对称中心之间距离的2倍.5.原函数与导函数的对称结论:(无需死记结论,想象图象,能理解就行)(1)若()f x 存在导函数()f x ',且()f x 有对称中心(,)a b ,则()f x '必有对称轴x a =.特别地,若()f x 为奇函数,则()f x '为偶函数.(2)若()f x 存在导函数()f x ',且()f x 有对称轴x a =,则()f x '必有对称中心(,0)a .特别地,若()f x 为偶函数,则()f x '为奇函数.(3)若()f x '有对称中心(,)a b ,则()f x 不一定有对称轴x a =;但若0b =,则()f x 一定有对称轴x a =.特别地,若()f x '为奇函数,则()f x 必为偶函数.(4)若()f x '有对称轴x a =,则()f x 必有对称中心(,)a b .特别地,若()f x '是偶函数,则()f x 不一定是奇函数,只能()f x 关于(0,)b 对称,但b 不一定是0.典型例题【例1】已知函数()y f x =满足()(2)0()f x f x x --=∈R ,且在[1,)+∞上为增函数,则()(A )(1)(1)(2)f f f ->>(B )(1)(2)(1)f f f >>-(C )(1)(2)(1)f f f ->>(D )(2)(1)(1)f f f >->答案:C解析:()(2)0()(2)()f x f x f x f x f x --=⇒=-⇒的图象关于直线1x =对称,所以(1)(3)f f -=,因为321>>,且()f x 在[1,)+∞上为增函数,所以(3)(2)(1)f f f >>,从而(1)(2)(1)f f f ->>.【反思】本题的关键是由()(2)0f x f x --=识别出()f x 的对称性.【变式1】已知函数()y f x =满足()(2)0()f x f x x +-=∈R ,且在[1,)+∞上为增函数,则()(A )(1)(1)(2)f f f ->>(B )(1)(2)(1)f f f >>-(C )(1)(2)(1)f f f ->>(D )(2)(1)(1)f f f >>-答案:D解析:()(2)0()f x f x f x +-=⇒关于点(1,0)对称,又()f x 在[1,)+∞上 ,所以()f x 的草图如图,由图可知()f x 在R 上 ,所以(2)(1)(1)f f f >>-.【反思】本题只需由()(2)0f x f x +-=识别出()f x 的对称性,结合单调性想象图形就可以解题.【变式2】已知函数()f x 满足()(2)()f x f x x =-∈R ,若函数1()y x f x =--有3个不同的零点1x 、2x 、3x ,则123x x x ++=.答案:3解析:看到()(2)f x f x =-,马上想到()f x 的图象关于1x =对称,而要研究1()y x f x =--的零点,可以分离一下,再作图看交点,1()01()x f x x f x --=⇔-=,函数()f x 没给解析式,只能从对称的角度来看,由于()y f x =和1y x =-的图象也都于1x =对称,故它们的交点关于直线1x =对称,如图,设123x x x <<,则必有1312x x +=且21x =,故1233x x x ++=.【变式3】已知函数()f x 满足(2)2()()f x f x x -=-∈R ,若(1)(0)4f f -+=,则(2)(3)f f +=.答案:0解析:(2)2()(2)()2f x f x f x f x -=-⇒-+=,所以()f x 的图象关于点(1,1)对称,而(1)f -,(0)f ,(2)f ,(3)f 这几个函数值中,1-和3关于1对称,0和2关于1对称,所以(1)f -和(3)f 有关系,(0)f 和(2)f 有关系,抓住这点就可以求(2)(3)f f +了,在(2)()2f x f x -+=中取3x =可得(1)(3)2f f -+=,所以(3)2(1)f f =--,取2x =可得(0)(2)2f f +=,所以(2)2(0)f f =-,故(2)(3)4(1)(0)f f f f +=---,又(1)(0)4f f -+=,所以(2)(3)0f f +=.【例2】偶函数()y f x =的图象关于直线2x =对称,(3)3f =,则(1)f -=.答案:3解析:由题意,()f x 有对称轴0x =和2x =,所以()f x 的周期为4,故(1)(3)3f f -==.【反思】对称轴+对称轴=周期,周期为对称轴之间距离的2倍.【变式1】偶函数()f x 满足(2)()2f x f x -+=,且(4)1f =-,则(0)(1)f f +=.答案:0解析:由题意,(2)()2()f x f x f x -+=⇒关于点(1,1)对称,又()f x 为偶函数,所以()f x 关于y 轴对称,从而()f x 的周期为4,故(0)(4)1f f ==-,在(2)()2f x f x -+=取1x =可求得(1)1f =,所以(0)(1)0f f +=.【反思】对称轴+对称中心=周期,周期为二者之间距离的4倍.【变式2】(2018·新课标Ⅱ卷)若()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+,若(1)2f =,则(1)(2)(50)f f f ++⋅⋅⋅+=()(A )50-(B )0(C )2(D )50答案:C解法1:首先由双对称,推出周期,下面给出结论的推导方法,因为()f x 是奇函数,且(1)(1)f x f x -=+,所以(1)(1)f x f x +=--,故(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=,即()f x 是以4为周期的周期函数,故(3)(1)(1)2f f f =-=-=-,接下来还需计算(2)f 和(4)f ,不能只由周期来求,要结合奇函数满足(0)0f =这个隐含条件,在(1)(1)f x f x -=+中取1x =-知(2)(0)0f f ==,又(4)(0)0f f ==,所以(1)(2)(3)(4)20(2)00f f f f +++=++-+=,故(1)(2)(50)[(1)(4)][(5)(8)][(45)(48)](49)(50)f f f f f f f f f f f ++⋅⋅⋅+=+⋅⋅⋅+++⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+++(49)(50)(1)(2)2f f f f =+=+=.解法2:也可以分析已知条件,举一个具体的函数来求解答案,()f x 为奇函数()f x ⇒有对称中心坐标原点,(1)(1)f x f x -=+⇒有对称轴1x =,既有对称轴又有对称中心,在三角函数中比较好找,结合(1)2f =,可取()2sin 2f x x π=,此时不难发现()f x 周期为4,(2)0f =,(3)2f =-,(4)0f =,所以(1)(2)(50)[(1)(4)][(5)(8)][(45)(48)](49)(50)f f f f f f f f f f f ++⋅⋅⋅+=+⋅⋅⋅+++⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+++(49)(50)(1)(2)2f f f f =+=+=.【变式3】(2021·新高考Ⅱ卷)已知函数()f x 的定义域为R ,且(2)f x +是偶函数,(21)f x +是奇函数,则下列选项中值一定为0的是()(A )1()2f -(B )(1)f -(C )(2)f (D )(4)f 答案:B解法1:先由题干的条件推导()f x 的对称性情况,(2)f x +是偶函数()f x ⇒关于直线2x =对称,题干给出(21)f x +是奇函数,这个条件怎么翻译?实际上,它和(1)f x +为奇函数效果一样,都能得出()f x 关于点(1,0)对称,理由如下,设()(21)v x f x =+,则()v x 是奇函数,所以()()v x v x -=-,即(2()1)(21)f x f x -+=-+,从而(21)(21)f x f x -+=-+,令2t x =,则(1)(1)f t f t -+=-+,故(1)(1)0f t f t -+++=,所以()f x 关于点(1,0)对称,从而()f x 周期为4,且(1)0f =,又()f x 的图象关于2x =对称,所以(3)0f =,故(1)(3)0f f -==,选B.解法2:也可以直接翻译已知条件,通过赋值来求解答案,但这种解法更抽象,由题意,(2)f x +是偶函数,所以(2)(2)f x f x -+=+①,又(21)f x +是奇函数,所以(21)(21)f x f x -+=-+②,在②中取0x =得(1)(1)f f =-,所以(1)0f =,已经得到一个等于0的函数值了,但没有这个选项,所以结合式①继续推理,为了在式①中构造出(1)f ,取1x =得(1)(3)f f =,故(3)0f =,选项中还是没有(3)f ,所以又结合式②继续推理,为了构造出(3)f ,在②中取1x =得(1)(3)0f f -=-=,所以选B.【反思】若()f x 的图象关于点(,)a b 对称,且()f x 在x a =处有定义,则必有()f a b =.【变式4】定义在R 上的奇函数()f x 满足(2)()0f x f x ++-=,当[1,0]x ∈-时,()f x x =,则9()2f =.答案:12解析:由题意,()f x 有对称中心(0,0)和(1,0),故其周期为2,所以9111(()()2222f f f ==--=.【反思】若()f x 有位于同一水平线上的两个对称中心,则()f x 为周期函数,周期为二者之间距离的2倍.【例3】已知()f x '是函数()f x 的导函数,若(1)f x +为偶函数,且()f x 在点(0,(0))f 处的切线方程为2y x =+,则(2)(2)f f '+=.答案:1解析:(1)f x +为偶函数()f x ⇒的图象关于直线1x =对称,又()f x 在(0,(0))f 处的切线方程为2y x =+,所以(0)2f =,(0)1f '=,因为()f x 的图象关于直线1x =对称,所以(2)2f =,(关于2x =对称的位置函数值相等)且(2)1f '=-(关于2x =对称的位置的切线也关于2x =对称,斜率相反,如图),故(2)(2)1f f '+=.【变式1】已知()f x '是函数()f x 的导函数,(1)f x +为奇函数,设()()g x f x '=,(4)()0()g x g x x -+=∈R ,且(2)2f =,则(1)(2)(10)f f f ++⋅⋅⋅+=.答案:2解析:先利用已知条件推出()f x 的对称性、周期性,再画草图看函数值,(1)f x +为奇函数()f x ⇒关于点(1,0)对称,所以(1)0f =,又(2)2f =,所以(0)2f =-,如图,(4)()0()g x g x g x -+=⇒关于(2,0)对称()f x ⇒关于直线2x =对称,所以()f x 周期为4,且(3)(1)0f f ==,(4)(0)2f f ==-,从而(1)(2)(3)(4)0f f f f +++=,故(1)(2)(10)[(1)(2)(3)(4)][(5)(6)(7)(8)](9)(10)f f f f f f f f f f f f f ++⋅⋅⋅+=+++++++++(9)(10)(1)(2)2f f f f =+=+=.【变式2】(2022·新高考Ⅰ卷)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若3(2)2f x -,(2)g x +均为偶函数,则()(A )(0)0f =(B )1()02g -=(C )(1)(4)f f -=(D )(1)(2)g g -=答案:BC解析:先把已知的3(2)2f x -,(2)g x +均为偶函数翻译一下,可以翻译成()f x 和()g x 的对称性,3(2)2f x -为偶函数33(2)(2)()22f x f x f x ⇒+=-⇒的图象关于直线32x =对称,(2)g x +为偶函数()g x ⇒的图象关于直线2x =对称()f x ⇒的图象关于点(2,(2))f 对称,(此处必须通过直观想象图形的样子,用()g x 的对称性反推()f x 的对称性,否则无法求解此题)所以()f x 是以2为周期的周期函数(双对称周期结论),故()g x 也是以2为周期的周期函数,A 项,(0)(2)f f =,而(2)f 的值无法确定,故A 项错误;B 项,()g x 周期为213()()22g g ⇒-=,因为()f x 的图象关于直线32x =对称,所以3()2f 必是()f x 的极值,从而3()02f '=,故3(02g =,所以1()02g -=,故B 项正确;C 项,()f x 的图象关于直线32x =对称(1)(4)f f ⇒-=,故C 项正确;D 项,()g x 周期为2(1)(1)g g ⇒-=,又()f x 的图象关于直线32x =对称,所以()f x 的图象在1x =和2x =处的切线斜率互为相反数,从而(1)(2)g g =-,所以(1)(2)g g -=-,故D 项错误.强化训练1.(2022·成都模拟·★★★)已知函数()y f x =满足(4)()0()f x f x x +--=∈R ,且()f x 在[2,)+∞上为减函数,则()(A )22(log 3)(log 5.1)(3)f f f >>(B )22(log 5.1)(log 3)(3)f f f >>(C )22(log 5.1)(3)(log 3)f f f >>(D )22(log 3)(3)(log 5.1)f f f >>答案:B解析:(4)()0()f x f x f x +--=⇒的图象关于直线2x =对称,结合()f x 在[2,)+∞上为减函数可得当自变量与2的距离越大时,函数值越小,如图,而22234log 32log log 43-==,225.1log 5.12log 4-=,321-=,所以225.14log log 143<<,故22(3)(log 3)(log 5.1)f f f <<.2.(2022·甘肃模拟·★★★)定义在R 上的奇函数()f x 满足(8)(4)f x f x +=--,且当[0,2]x ∈时,()13x f x =-,则(2022)f =()(A )8-(B )2-(C )2(D )8答案:D解析:(8)(4)()f x f x f x +=--⇒关于2x =对称,()f x 为奇函数()f x ⇒关于原点对称,所以周期为8,故2(2022)(25286)(6)(2)(2)(13)8f f f f f =⨯+==-=-=--=.3.(2021·湖北模拟·★★★)(多选)设()f x 是定义在R 上的偶函数,且对任意的x ∈R ,都有(2)(2)f x f x +=-,当[0,2]x ∈时,21()()2x f x -=,则()(A )()f x 是周期函数,且周期为2(B )()f x 的最大值是1,最小值是14(C )()f x 在[2,4]上单调递减,在[4,6]上单调递增(D )当[2,4]x ∈时,21()()2x f x -=答案:BC解析:A 项,()f x 是偶函数()f x ⇒关于0x =对称,(2)(2)()f x f x f x +=-⇒关于2x =对称,所以()f x 是以4为周期的周期函数,故A 项错误;B 项,当[0,2]x ∈时,21()()2x f x -=,结合()f x 是周期为4的偶函数可作出()f x 的大致图象如图,由图可知min 1()(0)4f x f ==,max ()(2)1f x f ==,故B 项正确;C 项,由图可知C 项正确;D 项,由图可知()f x 在[2,4]上 ,而21()2x y -=在[2,4]上 ,故D 项错误.4.(★★★)若()f x 是定义域为R 的奇函数,(2)()f x f x +=-,若(1)1f =,则(1)(2)(2022)f f f ++⋅⋅⋅+=.答案:1解析:()f x 有对称中心(0,0)和对称轴1()x f x =⇒周期为4,在(2)()f x f x +=-中取0x =知(2)(0)0f f ==,又(3)(1)(1)1f f f =-=-=-,(4)(0)0f f ==,所以(1)(2)(3)(4)0f f f f +++=,故(1)(2)(2022)(2021)(2022)(1)(2)1f f f f f f f ++⋅⋅⋅+=+=+=.5.(★★★)已知函数())1f x x =+,定义域为R 的函数()g x 满足()()2g x g x -+=,若函数()y f x =与()y g x =的图象的交点为11(,)x y ,22(,)x y ,…,55(,)x y ,则51()i i i x y =+=∑()(A )0(B )5(C )10(D )15答案:B解析:()g x 没给解析式,给的是()()2g x g x -+=,只能得出对称性,所以也要研究()f x 的对称性,注意到)y x =为奇函数,其图象关于原点对称,所以()f x 的图象关于点(0,1)对称,又()()2g x g x -+=,所以()g x 的图象也关于点(0,1)对称,故()f x 与()g x 的交点关于点(0,1)对称,如图,由图可知,1250x x x ++⋅⋅⋅+=,1255y y y ++⋅⋅⋅+=,所以51()5i i i x y =+=∑.6.(2022·四川模拟·★★★)奇函数()f x 满足(2)()0()f x f x x ++-=∈R ,若当01x ≤≤时,2()44f x x x =-,则函数()lg y f x x =-的零点个数为.答案:9解析:(2)()0()f x f x f x ++-=⇒的图象关于点(1,0)对称,又()f x 为奇函数,所以()f x 的图象关于原点对称,所以()f x 的周期为2,如图,lg y x =与()y f x =的图象共有9个交点,所以函数()lg y f x x =-有9个零点.7.(2022·江苏模拟·★★★)偶函数()f x 满足()(2)()f x f x x =-∈R ,当[0,1]x ∈时,2()22f x x =-,则函数4()()2log 1g x f x x =--的所有零点之和为()(A )4(B )6(C )8(D )10答案:B解析:()(2)()f x f x f x =-⇒的图象关于1x =对称,()f x 为偶函数()f x ⇒的图象关于y 轴对称,所以()f x 的周期为2,4()0()2log 1g x f x x =⇔=-,作出图象如图,由图可知两图象有6个交点,且它们两两关于直线1x =对称,故()g x 的零点之和为6.8.(★★★)已知()f x '是函数()f x 的导函数,若(1)f x -为奇函数,且()f x 在点(0,(0))f 处的切线方程为20x y ++=,则(2)(2)f f '-+-=.答案:1解析:(1)f x -为奇函数()f x ⇒的图象关于点(1,0)-对称,又()f x 在(0,(0))f 处的切线方程为20x y ++=,所以(0)2f =-,(0)1f '=-,因为()f x 的图象关于点(1,0)-对称,所以(2)2f -=,(点(2,(2))f --和(0,(0))f 关于(1,0)-对称)且(2)1f '-=-(关于(1,0)-对称的位置的切线斜率相等,如图),故(2)(2)1f f '-+-=.9.(★★★★)已知()f x '是函数()f x 的导函数,若(2)f x +和()f x '均为奇函数,且(0)2f =,则(2)(4)(2022)f f f ++⋅⋅⋅+=.答案:2-解析:先把已知条件翻译成()f x 的对称性,再利用对称性求函数值,最好画个图比较容易理解,(2)f x +为奇函数()f x ⇒的图象关于点(2,0)对称,所以(2)0f =,()f x '为奇函数()f x ⇒为偶函数()f x ⇒的图象关于y 轴对称,所以()f x 的周期为8,因为(0)2f =,且()f x 关于(2,0)对称,所以(4)2f =-,又()f x 为偶函数,且周期为8,所以(6)(2)(2)0f f f =-==,(8)(0)2f f ==,从而(2)(4)(6)(8)0(2)020f f f f +++=+-++=,故(2)(4)(2022)[(2)(4)(6)(8)][(10)(12)(14)(16)]f f f f f f f f f f f ++⋅⋅⋅+=++++++++⋅⋅⋅[(2010)(2012)(2014)(2016)](2018)(2020)(2022)f f f f f f f +++++++(2018)(2020)(2022)(2)(4)(6)2f f f f f f =++=++=-.10.(2021·新课标Ⅱ卷·★★★★)设函数()f x 的定义域为R ,(1)f x +为奇函数,(2)f x +为偶函数,当[1,2]x ∈时,2()f x ax b =+.若(0)(3)6f f +=,则9()2f =()(A )94-(B )32-(C )74(D )52答案:D解析:(1)f x +为奇函数()f x ⇒的图象关于点(1,0)对称,所以(1)(1)f x f x +=--,(2)f x +为偶函数()f x ⇒的图象关于直线2x =对称,所以(2)(2)f x f x +=-,从而()f x 是以4为周期的周期函数,所以91()(22f f =,在(1)(1)f x f x +=--中取12x =可得13()(22f f =-,所以939(()224f f a b =-=--,还得把a 和b 求出来才能得出答案,在(1)(1)f x f x +=--中取1x =可得(0)(2)4f f a b =-=--,在(2)(2)f x f x +=-中取1x =得(3)(1)f f a b ==+,所以(0)(3)36f f a +=-=,故2a =-,在(1)(1)f x f x +=--中取0x =得(1)0f =,而(1)f a b =+,所以0a b +=,故2b =,所以995()242f a b =--=.11.(2022·全国乙卷·理·12·★★★★)已知函数()f x ,()g x 的定义域均为R ,且()(2)5f x g x +-=,()(4)7g x f x --=.若()y g x =的图象关于直线2x =对称,(2)4g =,则221()k f k ==∑()(A )21-(B )22-(C )23-(D )24-答案:D解析:要求221()k f k =∑,得研究()f x 的性质,先用已知的()(2)5()(4)7f xg x g x f x +-=⎧⎨--=⎩把()g x 有关的消掉,在()(4)7g x f x --=中将x 换成2x -可得(2)(2)7g x f x ----=,所以(2)(2)7g x f x -=--+,代入()(2)5f x g x +-=可得()(2)75f x f x +--+=,所以()(2)2f x f x +--=-,故()f x 关于(1,1)--对称,题干给出了()g x 关于2x =对称,而()g x 和()f x 显然是有关系的,可以由此条件再推导()f x 的对称性,由()(4)7g x f x --=可得(4)()7f x g x -=-,将x 换成4x +可得()(4)7f x g x =+-,从而()f x 可由()g x 左移4个单位,下移7个单位得到,故()f x 关于直线2x =-对称,所以()f x 是以4为周期的周期函数,接下来求一个周期的整点函数值,就可以算出221()k f k =∑,首先,()f x 关于(1,1)--对称,所以(1)1f -=-,故(3)1f =-,又()f x 关于2x =-对称,所以(3)(1)1f f -=-=-,结合周期为4可得(1)(3)1f f =-=-,只要求出(2)f 和(4)f ,就大功告成,条件中(2)4g =还没用,先在题干给的等式中将(2)g 构造出来,因为(2)4g =,在()(2)5f x g x +-=中取0x =可得(0)(2)5f g +=,所以(0)5(2)1f g =-=,故(4)1f =,由(0)1f =以及()f x 关于(1,1)--对称可得(2)3f -=-,结合周期为4可得(2)3f =-,所以221()5[(1)(2)(3)(4)](1)(2)5(1311)1324k f k f f f f f f ==⨯+++++=⨯---+--=-∑.12.(2022·新高考Ⅱ卷·★★★★)若函数()f x 的定义域为R ,且()()()()f x y f x y f x f y ++-=,(1)1f =,则221()k f k ==∑()(A )3-(B )2-(C )0(D )1答案:A 解法1:本题要221()k f k =∑,应该要先求()f x 的周期,可以在()()()()f x y f x y f x f y ++-=中对y 赋值,在()()()()f x y f x y f x f y ++-=中令1y =可得(1)(1)()f x f x f x ++-=①,在①中将x 换成1x +可得(2)()(1)f x f x f x ++=+,结合式①可得(2)()()(1)f x f x f x f x ++=--,所以(2)(1)f x f x +=--,从而(3)()f x f x +=-,故(6)(3)()f x f x f x +=-+=,所以()f x 的周期为6;求出了周期,接下来需要计算一个周期内的整点函数值,问题就解决了,因为已知(1)f ,所以可以在()()()()f x y f x y f x f y ++-=通过赋值构造出(1)f 和其它的函数值,在()()()()f x y f x y f x f y ++-=中令1x =,0y =可得2(1)(1)(0)f f f =,又(1)1f =,所以(0)2f =,结合周期为6可得(6)2f =,令1x y ==可得2(2)(0)(1)f f f +=,所以2(2)(1)(0)1f f f =-=-,令2x =,1y =可得(3)(1)(2)(1)f f f f +=,所以(3)(2)(1)(1)2f f f f =-=-,在(3)()f x f x +=-中令1x =可得(4)(1)1f f =-=-,令2x =可得(5)(2)1f f =-=,所以(1)(2)(6)1121120f f f ++⋅⋅⋅+=---++=,故221()(1)(2)(3)(4)11213k f k f f f f ==+++=---=-∑.解法2:设()2cos 3f x x π=,不难验证满足题干所有条件,进一步可求得221()3k f k ==-∑.。

数学练习题抽象函数(含答案)

数学练习题抽象函数(含答案)

高考一轮专练——抽象函数1. 已知函数y = f (x )(x ∈R ,x ≠0)对任意的非零实数1x ,2x ,恒有f (1x 2x )=f (1x )+f (2x ),试判断f (x )的奇偶性。

2 已知定义在[-2,2]上的偶函数,f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围3. 设f(x)是R 上的奇函数,且f(x+3) =-f(x),求f(1998)的值。

4. 设函数()f x 对任意121,[0,]2x x ∈,都有1212()()()f x x f x f x +=⋅,()2f x =已知(1)2f =,求1()2f ,1()4f 的值.5. 已知f (x )是定义在R 上的函数,且满足:f (x+2)[1-f (x )]=1+f (x ),f (1)=1997,求f (2001)的值。

6. 设f (x )是定义R 在上的函数,对任意x ,y ∈R ,有 f (x+y )+f (x-y )=2f (x )f (y )且f (0)≠0.(1)求证f (0)=1;(2)求证:y=f (x )为偶函数.7. 已知定义在R 上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间?8. 设f (x )是定义在R 上的奇函数,且对任意a ,b ,当a+b ≠0,都有ba b f a f ++)()(>0(1)若a >b ,试比较f (a )与f (b )的大小;(2)若f (k )293()3--+⋅xx x f <0对x ∈[-1,1]恒成立,求实数k 的取值范围。

9.已知函数()f x 是定义在(-∞,3]上的减函数,已知22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。

10.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数;(2)若(3),(24)f a a f -=试用表示.11.已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,都满足: ()()()f a b af b bf a •=+. (1)求(0),(1)f f 的值;(2)判断()f x 的奇偶性,并证明你的结论;(3)若(2)2f =,*(2)()n n f u n N n-=∈,求数列{n u }的前n 项和n s .12.已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求(2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式.13.已知函数()f x 的定义域为R ,对任意实数,m n 都有1()()()2f m n f m f n +=++,且1()02f =,当12x >时, ()f x >0. (1)求(1)f ;(2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明.14.函数()f x 的定义域为R ,并满足以下条件:①对任意x R ∈,有()f x >0;②对任意,x y R ∈,有()[()]y f xy f x =;③1()13f >.(1)求(0)f 的值;(2)求证: ()f x 在R 上是单调减函数;(3)若0a b c >>>且2b ac =,求证:()()2()f a f c f b +>.15.已知函数()f x 的定义域为R,对任意实数,m n 都有()()()f m n f m f n +=•,且当0x >时,0()1f x <<.(1)证明:(0)1,0f x =<且时,f(x)>1;(2)证明: ()f x 在R 上单调递减; (3)设A=22{(,)()()(1)}x y f x f y f •>,B={(,)(2)1,x y f ax y a R -+=∈},若A B =Φ,试确定a 的取值范围.16.已知函数()f x 是定义在R 上的增函数,设F ()()()x f x f a x =--. (1)用函数单调性的定义证明:()F x 是R 上的增函数; (2)证明:函数y =()F x 的图象关于点(,0)2a成中心对称图形.17.已知函数()f x 是定义域为R 的奇函数,且它的图象关于直线1x =对称. (1)求(0)f 的值;(2)证明: 函数()f x 是周期函数;(3)若()(01),f x x x =<≤求当x R ∈时,函数()f x 的解析式,并画出满足条件的函数()f x 至少一个周期的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号f(x)的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式:1. 换元法:即用中间变量匚!表示原自变量x的代数式,从而求出f(x),这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

x例 1 :已知f ( ) =2x • 1,求f (x).x 1解:设—u,贝V x — f (u) = 2 —■ 1 = --------------- 二f (x)= --------x+1 1-^ 1-u 1-u 1-x2. 凑合法:在已知f(g(x)) =h(x)的条件下,把h(x)并凑成以g(u)表示的代数式,再利用代换即可求f (x).此解法简洁,还能进一步复习代换法。

1 3 1例2:已知f (x ) = x 3 ,求f (x)x x1 1 1 11 1 1解:••• f (x ) =(x )(x2-1 2)= (x )((x )2-3)又••• |x —|=|x| —- 1x x x x x x | x|2 3f(x) =x(x -3) =x -3x, (| x | > 1)3. 待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3.已知f (x)二次实函数,且f(x ・1) • f(x-1) =X2+2X+4,求f(x).解:设f (x) = ax2 bx c,则f (x 1) f (x「1) = a(x 1)2 b(x 1) c a(x「1)2 b(x「1) c l2(a c) =42 2 1 3= 2ax 2bx 2(a c) =x 2x 4 比较系数得2a =1 =a ,b=1,c2 2 2b =21 2 丄3f (x) = 一X x -2 24. 利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式•例4.已知y = f (x)为奇函数,当x>0时,f (x) = lg(x • 1),求f (x)解:••• f (x)为奇函数,••• f (x)的定义域关于原点对称,故先求x<0时的表达式。

••• - x>0, •••f (-x) =lg( -X 1) =lg(1 _x),f (x)为奇函数,••• lg(1 一 x) = f (_x) - - f (x) •••当 x <0 时 f (x) - _ lg(1 - x) /.pg(1+x),xzO f (x)二I —lg(1—x),X£O1例5.—已知f (x)为偶函数,g(x)为奇函数,且有f (x) + g(x),求f(x),g(x).X —1 解:T f (x)为偶函数,g(x)为奇函数,• f (_x) = f (x), g(_x) - -g(x),1不妨用-x 代换f(x) + g(x)= ------------x —1 1二 f (-x) g(-x) 即 f (x) - g(x) 口_x _1x再代入①求出g(x)二再二 -1 x -1例6 :设f(x)的定义域为自然数集,且满足条件 f(x T)二f (x) • f (y) xy ,及f (1)=1,求f(x)解:••• f (x)的定义域为N,取y =1,则有f (x T) = f (x) x 1 •/ f(1)=1, • f (2) = f(1)+2, f (3) = f(2)3 ……f(n) = f (n —1) n 以上各式相加,有 f(n)=1+2+3+……+ n =凹 耳••• f(x)=[x(x 1),x N 2 2二、禾U 用函数性质,解 f(x)的有关问题 1. 判断函数的奇偶性:例7已知f(x y) f (^y^2f (x)f (y),对一切实数x 、y 都成立,且f(0) = 0,求证f(x)为偶 函数。

证明:令x =0,则已知等式变为f (y)f (-y) =2f (0) f (y)............. ①在①中令 y =0 则 2 f (0) =2 f (0) •/ f (0)丰 0「. f (0) =1 • f(y) f ( - y) = 2f (y) /. f ^yH f (y) • f (x)为偶函数。

2. 确定参数的取值范围例&奇函数f (x)在定义域(-1,1)内递减,求满足f (1 - m) • f (1 - m 2) ::: 0的实数m 的取值范围。

2 2 2解:由 f (1 - m) f (1 - m ) :: 0 得 f (1 - m) :: - f (1 - m ),T f (x)为函数,• f (1 - m) :: f (m -1)一1 v 1 - m £ 1又T f (x)在(-1,1)内递减,•-1 :: m 2 -1 1- 0 :: m 1 21 - m m -13. 解不定式的有关题目①中的x , 显见①+②即可消去g(x),求出函数f(x)二5.赋值法:给自变量取特殊值,从而发现规律,求出f (x)的表达式例9 :如果f(x) = ax2 bx c对任意的t有f (2 • t)二f2 -t),比较f (1、f (2)、f⑷的大小解:对任意t有f (2 • t) = f 2 —t) ••• x =2为抛物线y =ax2• bx • c的对称轴又•••其开口向上•••f (2)最小,f (1)= f(3) T在]2,+^ )上,f (x)为增函数• f (3)< f (4), • f (2)< f (1)< f (4)五类抽象函数解法1、线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数。

例1、已知函数f (x)对任意实数x, y,均有f (x+ y)= f (x) + f (y),且当x> 0时,f (x)> 0, f (- 1)=- 2,求f (x)在区间[—2, 1]上的值域。

分析:由题设可知,函数f (x)是'■■■■ ■■ 1:的抽象函数,因此求函数f (X)的值域,关键在于研究它的单调性。

解:设孟I <比.则心-石> 0 .•当孟>0时"/(兀)》0 心-孟])> 0 ,・ ?― 一;,即>「(":,••• f(X)为增函数。

在条件中,令y=—X,则「宀;•"」•:•,再令x= y = 0,则f (0)= 2 f (0 ),• f (0)= 0, 故f (—x)= f (x), f (x)为奇函数,• f (1)=—f (—1)= 2,又f (—2)= 2 f (—1 )=—4,•- f (x)的值域为[—4, 2]o例2、已知函数f (x)对任意……匸二,满足条件f (x)+ f ( y)= 2 + f (x + y),且当x> 0时,f(x)> 2, f (3)= 5,求不等式?- ’ 的解。

分析:由题设条件可猜测:f (x)是y = x+ 2的抽象函数,且f (x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。

解:设*.:;,•.•当孟>0时』㈤>2,.. /(比-和》2,则jg - /[(^a -XjJ + xJ - -盂J +-2 > 2 + 3閒-2-/(帀)即*八'I , • f (X)为单调增函数。

•/©- /(2 + 1)-/®+ /(I) - 2 = [/(I) + /Q)- 2] + /(I) - 2 = 3/(1)-4又• f (3)= 5,. f (1) = 3。

. ;- f - ■- - J即「丄 -■- ,解得不等式的解为一1 < a < 3。

即- -■ ■■ , • f (幻是(0,+8) 上的增函数,故2、指数函数型抽象函数例3、设函数f (x )的定义域是(— 8,+^),满足条件:存在 匚二J ,使得1 •匸-二:,对任何x 和y , J 门■ ;=「工:成立。

求: (1)f (0); (2)对任意值x ,判断f (x )值的正负。

分析:由题设可猜测 f (x )是指数函数; ,的抽象函数,从而猜想 f ( 0)= 1且f (x )> 0。

解:( i )令 y =0 代入,则"mu■■■'' - - ''o 若f (x )= o ,则对任意■'=±:,有rm 」,这与题设矛盾,• f ( x )工 0,.・.f (0)= 1 o (2)令 y = X M 0 ,^「5’ : I 「: I .•;-; 1",又由(1)知 f(x )工 0,.・.f (2x )> 0,即f (x )> 0,故对任意x , f (x ) > 0恒成立。

例4、是否存在函数f (x ),使下列三个条件:①f ( x ) > 0, x € N;②•「7 -!- -■③f ( 2)= 4。

同时成立?若存在,求出 f (x )的解析式,如不存在,说明理由。

分析:由题设可猜想存在 「,又由f (2 )= 4可得a = 2 •故猜测存在函数::,',用数学归纳法证明如下:(1) x = 1 时,门一,又••• x € N 时,f(x )> 0, 一 :\结论正确。

(2) 假设工乩二丄时有:,则x = k + 1时,—「一…’ • x = k + 1时,结论正确。

综上所述,x 为一切自然数时」’’^ '。

3、对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数。

例5、设f (x )是定义在(0,+8)上的单调增函数,满足 ''-'J1 ,求:(1) f (1);(2) 若f ( x ) + f (x — 8) < 2,求x 的取值范围。

分析:由题设可猜测 f (x )是对数函数的抽象函数,f (1)= 0, f (9)= 2o解:• ,(2)/⑵= /(3x3) = / (3) + /(3) = 2,从而有 f (x )+ f ( x — 8)w f (9),[x(z-85 < 9 x > 0严一结> ° ,解之得:8v x w 9。

例 6、设函数 y = f (x )的反函数是 y = g (x )。

如果 f (ab ) = f (a ) + f (b ),那么 g (a + b )= g (a ) - g (b )是否正确,试说明理由。

分析:由题设条件可猜测 y = f (x )是对数函数的抽象函数,又••• y = f (x )的反函数是y = g (x ),.•• y =g (x )必为指数函数的抽象函数,于是猜想g (a + b )= g (a )・g ( b )正确。

相关文档
最新文档