晶体硅电池制作过程

合集下载

晶体硅电池技术路线

晶体硅电池技术路线

晶体硅电池技术路线随着可再生能源在全球范围内的应用逐渐增多,太阳能发电等技术已成为重要的清洁能源来源之一。

而晶体硅电池则是太阳能电池的一种主流技术,其高效性和稳定性使其成为太阳能光伏发电系统的重要组成部分。

在本文中,将介绍晶体硅电池的技术路线。

晶体硅电池的工作原理是通过将光线转化为电能。

而其制作过程则需要采用一系列的工艺和材料。

晶体硅电池的技术路线可以分成以下几步:硅棒生长、硅片制备、硅片清洗、P/N结的制备、电极蒸镀和成品测试。

首先,晶体硅电池的生产需要用到单晶硅,而单晶硅的生产则涉及硅棒的生长。

硅棒就是长条形的单晶硅材料,其直径一般为10cm左右。

硅棒可以通过CZ法(Czochralski法)或者FZ法(Floating Zone法)生长。

CZ法是将事先准备好的硅料放入一个石英坩埚中,在坩埚下方加热并通过一系列的控制方式,使硅料逐渐融化并形成一个单晶硅棒。

而FZ法是通过用高频电场熔化硅料,使其逐渐凝固成一个单晶硅棒。

在硅棒生长完成后,需要将它切成厚度为150微米左右的硅片。

切片时需要注意切片的厚度要保持一致。

硅片在制作过程中需要被加工和清洗,以便制备P/N结。

加工包括对硅片进行去毛刺处理和对硅片的表面进行蚀刻处理。

清洗则是清除硅片表面的杂质,采用的是一些特殊的溶液。

处理完硅片后,需要对其进行P/N转化,使得硅片具有PN结的特性。

P/N结是硅片的核心部分,其制作需要精密的生产工艺。

P/N结制作过程中需要用到在硅片表面无损氧化和扩散等技术,最终实现P、N区的构造和形成。

接下来,需要在硅片上制作金属电极。

电极一般是用铝镀膜实现,以实现与硅片的导电连通,电极的制备需要基于高真空蒸镀技术。

最后,制造完成的硅片需要进行测试。

测试过程包括对硅片的开路电压、短路电流和转换效率等参数进行测试,并且对其进行分类和质量确认。

总体而言,晶体硅电池的技术路线非常繁琐和复杂。

虽然晶体硅电池已经成为太阳能发电行业中的主流技术,但是目前主要的问题是成本问题。

晶体硅太阳能电池原理与制造工艺

晶体硅太阳能电池原理与制造工艺

晶体硅太阳能电池原理与制造工艺晶体硅太阳能电池原理与制造工艺1.硅太阳能电池丄作原理与结构太阳能电池发电的原理主要是半导体的光电效应一般的半导体主要结构如图1-1:图1-1 半导体主要结构正电荷表示硅原子负电荷表示围绕在硅原子旁边的四个电子当硅晶体中掺入其他的杂质如硼、磷等当掺入硼时硅晶体中就会存在着一个空穴它的形成可以参照图1-2o图1-2 P型半导体正电荷表示硅原子负电荷表示围绕在硅原子旁边的四个电子黃色表示掺入的硼原子因为硼原子周围只有3个电子所以就会产生如图1-2所示的蓝色的空穴这个空穴因为没有电子而变得很不稳定容易吸收电子而中和形成Ppositive型半导体。

同样掺入磷原子以后因为磷原子有五个电子所以就会有一个电子变得非常活跃形成Nnegative型半导体。

黄色的为磷原子核红色的为多余的电子。

如图1-3所示。

图1-3 '型半导体正电荷表示硅原子负电荷表示圉绕在硅原子旁边的四个电子黃色表示掺入的磷原子当P型和'型半导体结合在一起时在两种半导体的交界面区域里会形成一个特殊的薄层界面的P型一侧带负电'型一侧带正电。

这是由于P型半导体多空穴X型半导体多自由电子出现了浓度差。

N区的电子会扩散到PP的“内电场”从而阻止扩区P区的空穴会扩散到N区一旦扩散就形成了一个由N指向散进行如图1-4所示。

达到平衡后就形成了这样一个特殊的薄层形成电势差这就是P\结。

图1-4内电场的形成当晶片受光后PN结中N型半导体的空穴往P 型区移动而P型区中的电子往X型区移动从而形成从X型区到P型区的电流。

然后在P\结中形成电势差这就形成了电源。

如图1-5所示图1 -5硅太阳电池结构示意图由于半导体结后如果在半导体中流动电阻非常大损耗也就非常不是电的良导体电子在通过pn大。

但如果在上层全部涂上金属阳光就不能通过电流就不能产生因此一般用金属网格覆盖p-n结如图1-6梳状电极以增加入射光的面积。

图1-6梳状电极及SiO2保护膜另外硅表面非常光亮会反射掉大量的太阳光不能被电池利用。

太阳能电池单晶硅

太阳能电池单晶硅

太阳能电池单晶硅
太阳能电池单晶硅是目前最常见的太阳能电池类型之一。

它由单晶硅制成,具有较高的转换效率和较长的使用寿命,广泛应用于家庭光伏发电系统、商业光伏电站、太阳能灯、太阳能电池板等领域。

太阳能电池单晶硅的制作工艺比较复杂,需要经过多个步骤才能完成。

下面是太阳能电池单晶硅的制作过程:
1. 硅单晶体生长:将硅原料熔化,然后通过种晶的方式让硅原子在晶体种子上逐渐生长,最终形成硅单晶体。

2. 切割硅片:将硅单晶体切割成厚度为0.3-0.4mm的硅片,通常采用金刚石线锯进行切割。

3. 清洗硅片:用酸洗液对硅片进行清洗,去除表面的氧化物和杂质。

4. 晶体硅片制备:将硅片放入炉中,在高温下进行扩散、氧化等处理,形成PN结。

5. 制作电极:在硅片表面涂上铝等金属,形成正负极。

6. 焊接:将多个硅片按照一定方式组合起来,形成太阳能电池板。

太阳能电池单晶硅的转换效率在20%左右,比其他太阳能电池类型高。

但由于制作过程复杂,成本较高,因此在大规模应用中仍存在一定的限制。

晶体硅太阳电池制造技术

晶体硅太阳电池制造技术

晶体硅太阳电池制造技术
晶体硅太阳能电池是目前应用最广泛的太阳能电池之一,其制造技术主要包括以下几个步骤:
1. 制备硅单晶材料:通过在高温环境下,将硅原料(通常为冶炼硅或多晶硅)融化并凝固形成硅单晶,然后切割成薄片。

2. 清洁处理:将硅单晶薄片进行严格的清洁处理,去除表面的杂质和有害物质。

3. 电池片制造:将清洁处理后的硅单晶薄片进行P型和N型掺杂,形成PN结构。

这一步骤一般采用扩散法、离子注入法或液相浸渍法。

4. 捕获和反射层涂覆:在电池片的前表面涂覆反射层,以提高光的利用率。

同时,在电池片的背面涂覆捕获层,以提高光的吸收。

5. 金属化和焊接:将电池片表面涂覆导电金属(通常为铝)和更薄的阳极面涂覆导电金属(通常为银),然后使用焊接技术将电池片连接成电池组。

6. 封装和测试:将电池组封装在透明的玻璃或塑料基板中,以保护电池组不受外界环境的影响,并进行电气性能测试和质量控制。

这些步骤是晶体硅太阳能电池制造的基本流程,具体制造技术还有其他细节和改进方法,以提高电池的效率和稳定性。

晶硅太阳能电池制造工艺-工艺流程以及工序简介

晶硅太阳能电池制造工艺-工艺流程以及工序简介
7.丝网印刷背电场
2)、工序简介
目前硅太阳能电池制造工序主要有:
制绒清洗工序 扩散工序 PECVD工序 丝网印刷工序 烧结工序 Laser刻蚀工序 测试分选工序
1. 制绒清洗工序
(a).单晶制绒---捷佳创
目的与作用:
(1)去除单晶硅片表面的机械损伤层和氧 化层。
(2)为了提高单晶硅太阳能电池的光电转 换效率,根据单晶硅的各向异性的特性, 利用碱(KOH)与醇(IPA)的混合溶液在单 晶硅表面形成类似“金字塔”状的绒面, 有效增强硅片对入射太阳光的吸收,从而 提高光生电流密度。
1)、硅太阳能电池的制造工艺流程:
清洗制绒
扩散
周边刻蚀
印刷电极PECVD去磷玻璃烧结分选测试
检验入库
1.原料硅片清洗制绒 12.测试分选
11.激光 10.烧 结 9.丝网印刷正电极 8.烘 干
2.高温扩散(液态扩散) 3.去磷硅玻璃(去PSG) 4.沉积减反射膜(PECVD)
5.丝网印刷背电极 6.烘 干
去除磷硅玻璃的目的、作用:
1. 磷硅玻璃的厚度在扩散中工艺难控制,且其工艺窗口太小,不稳 定。
2. 磷硅玻璃的折射率在1.5左右,比氮化硅折射率(2.07左右)小, 若磷硅玻璃较厚会降低减反射效果。
3. 磷硅玻璃中含有高浓度的磷杂质,会增加少子表面复合,使电池 效率下降。
2. 扩散(POCl3液态扩散)
(b). 多晶制绒---RENA InTex
3Si 2HNO3 18HF 3H2SiF6 0.45NO 1.35NO2 0.1N2O 4.25H2 2.75H2O
目的与作用:
(1)去除单晶硅片表面的机械损 伤层和氧化层。
(2)有效增加硅片对入射太阳光 的吸收,从而提高光生电流密度,提高 单晶硅太阳能电池的光电转换效率。

晶体硅太阳能电池的制造工艺流程

晶体硅太阳能电池的制造工艺流程

晶体硅太阳能电池的制造工艺流程一、硅材料的准备首先,需要获取高纯度的硅材料作为太阳能电池的基础材料。

常用的硅材料有硅硷、多晶硅和单晶硅。

这些材料一般通过熔炼、洗涤和纯化等工艺步骤进行准备,以确保材料的纯度和质量符合要求。

二、硅片的制备在准备好的硅材料中,首先需要将硅材料熔化并形成硅棒。

硅棒可以采用单晶硅棒或多晶硅棒,通过将硅材料放入熔炉中进行熔化并慢慢降温,以获得纯度高的硅棒。

接下来,通过使用切割机将硅棒切割成很薄的硅片。

这些硅片称为硅片,硅片的厚度通常为几十微米到几百微米。

三、电池片的制备在硅片制备好后,需要对硅片进行一系列的加工工艺,以形成能够转化太阳能的电池片。

首先,通过在硅片表面涂上磷化剂,然后将硅片放入磷化炉中进行磷化反应,使硅片表面形成一层钙钛矿薄膜。

这一步骤的目的是增加太阳能的吸收能力。

接着,需要在硅片上涂覆一层导电膜。

最常用的导电膜是铝或铝合金,在硅片表面蒸镀一层铝膜。

该层铝膜将形成电场,使得硅片的上下两面形成正负两极。

最后,通过将硅片放入扫描激光器中进行图案化处理,将电池片分成多个小的电池单元,形成电池片。

四、组装在制造完电池片后,还需要将电池片组装成最终的太阳能电池模块。

电池片通过焊接或粘贴在玻璃基板上,并加上前电极和后电极,形成电池模块。

同时,还需将电池模块封装起来,以保护电池片并增加光的吸收。

最后,经过严格的测试和质量检查,太阳能电池模块将会被装配成太阳能电池板,并投入市场使用。

总结起来,晶体硅太阳能电池的制造工艺流程主要包括硅材料的准备、硅片的制备、电池片的制备和组装。

这些步骤涉及到多种物理、化学和加工工艺,需要高技术水平和严格的质量控制。

不断的研发和创新使得晶体硅太阳能电池在效率和可靠性方面得到了不断的提升。

晶体硅太阳能电池生产工艺流程图

晶体硅太阳能电池生产工艺流程图

晶体硅太阳能电池生产工艺流程图电池片工艺流程说明:(1)清洗、制绒:首先用化学碱(或酸)腐蚀硅片,以去除硅片表面机械损伤层,并进行硅片表面织构化,形成金字塔结构的绒面从而减少光反射。

现在常用的硅片的厚度在 180 μm 左右。

去除硅片表面损伤层是太阳能电池制造的第一道常规工序。

(2)甩干:清洗后的硅片使用离心甩干机进行甩干。

(3)扩散、刻蚀:多数厂家都选用 P型硅片来制作太阳能电池,一般用 POCl3液态源作为扩散源。

扩散设备可用横向石英管或链式扩散炉,进行磷扩散形成 P-N结。

扩散的最高温度可达到 850- 900℃。

这种方法制出的 PN结均匀性好,方块电阻的不均匀性小于 10%,少子寿命大于 10 微秒。

扩散过程遵从如下反应式:4POCl3+3O2(过量)→ 2P2O5+2Cl 2(气) 2P2O5+5Si → 5SiO2 + 4P 腐蚀磷硅玻璃和等离子刻蚀边缘电流通路,用化学方法除去扩散生成的副产物。

SiO2与HF生成可溶于水的 SiF 62-,从而使硅表面的磷硅玻璃(掺 P2O5的SiO2)溶解,化学反应为:SiO2+6HF → H2(SiF 6)+ 2HO(4) 减反射膜沉积:采用等离子体增强型化学气相沉积(PECVD: Plasma Enhanced Chemical Vapor Deposition)技术在电池表面沉积一层氮化硅减反射膜,不仅可以减少光的反射,而且由于在制备SiNx 减反射膜过程中有大量的氢原子进入,因此也起到了很好的表面钝化和体钝化的效果。

这是因为对于具有大量晶界的多晶硅材料而言,晶界的悬挂键被饱和,降低了复合中心的原因。

由于表面钝化和体钝化作用明显,就可以降低对制作太阳能电池材料的要求。

由于增强了对光的吸收,氢原子对太阳能电池起到很好的表面和体内钝化作用,从而提高了电池的短路电流和开路电压。

(5)印刷、烧结:为了从电池上获取电流,一般在电池的正、背两面制作电极。

晶硅单结电池-概述说明以及解释

晶硅单结电池-概述说明以及解释

晶硅单结电池-概述说明以及解释1.引言1.1 概述晶硅单结电池是一种基于晶体硅材料制造的太阳能电池,它利用光的能量转化为电能。

晶硅单结电池具有高效转化太阳能的特点,被广泛应用于太阳能发电系统中。

晶硅单结电池的工作原理基于光电效应。

当光线照射到晶硅单结电池的表面时,光子会激发晶体硅中的电子。

这些被激发的电子会从材料中释放出来,并在电场的作用下形成电流。

通过将两个不同掺杂的硅层连接在一起,形成一个p-n结。

当光子通过p-n结时,会产生电子和空穴对,并形成电流。

这样,晶硅单结电池就能将太阳能转化为电能。

制备晶硅单结电池的方法具有一定的复杂性。

首先,需要选择高质量的硅材料作为基底。

然后,通过在硅基底上加热和涂覆一层掺杂层,形成p-n结。

接下来,使用电子束蒸发或物理气相沉积等技术,在硅基底上镀上金属电极,以提供电流的输出通路。

最后,通过对制备好的晶硅单结电池进行分选和封装,保证其性能和稳定性。

晶硅单结电池在太阳能领域具有广泛的应用前景。

它可以作为光伏组件,广泛应用于屋顶太阳能发电系统、太阳能道路照明系统、太阳能灯饰等领域。

由于其高效能转换和长时间稳定工作的特点,晶硅单结电池也被用于航天器、卫星等领域的能源供应。

对于晶硅单结电池的展望,人们正在不断研究改进其制备工艺和提高其转换效率。

还有一些新型太阳能电池技术的出现,如多晶硅电池、钙钛矿太阳能电池等,对晶硅单结电池提出了一些竞争。

然而,晶硅单结电池作为已经商业化和应用广泛的太阳能电池技术,预计仍将持续发展和完善,为人类的清洁能源需求做出更大贡献。

1.2文章结构文章结构部分的内容可以包括以下内容:2. 文章结构本文共分为三个部分,即引言、正文和结论。

2.1 引言部分介绍了本文要讨论的主题——晶硅单结电池,并包含了概述、文章结构和目的三个小节。

2.2 正文部分着重介绍了晶硅单结电池的原理和制备方法,通过对其原理进行深入剖析和对制备方法进行介绍,使读者对晶硅单结电池有一个全面的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
晶体硅太阳电池
一、基本结构 二、制作太阳电池的基本流程 三、模组化技术 四、薄膜型微晶硅太阳电池
2
一、太阳电池基本结构
太阳能之应用系统的最基本单位是太阳电池(cell)。 一般来说,一个单一的晶体硅电池输出电压在0.5V左右,
而其最大输出功率则与太阳电池效率和表面积有关。 如,一个接受光面积约为100cm2 ,效率为15%的太阳电
常用TiO2、SiN、SiO、Al2O3、SiO2、CeO2等。折 射率为硅折射率的平方根最好,厚度d=nλ/4最好, 反射的情到)
在太阳电池中,金属接触必须被用来取出产生光电的 载流子,而且这种作用必须是选择性的,即只允许一 种形态的载流子由硅表面流向金属,但阻止另外一种 形态的载流子流通。
3 P-N二极体
PN二极体是光伏效应的来源,由高温扩散产生。 在P型晶体硅基板上做N型扩散,或是在N型基板 上做P型扩散而产生的。
一般的N型扩散只有约0.5μm左右的厚度,而且 是在基板做完粗糙化处理后才进行的。
17
4 抗反射层(Antireflection Coating)
除了将晶体硅表面做粗糙织构化之外,在表面涂 布抗反射层是降低反射损失的另一有效方式,即 在硅晶体表面涂布一层低折射系数的透明材料。
5
在一把的太阳电池应用系统上,还包括蓄电池(storage battery)、功率调节器(power conditioner)和安装固 定结构(mounting structures)等周边设施,统称为平衡 系统(balance of system)。
随材料和制造技术不同,太阳电池的架构会有不同变化, 但最基本的结构可分为基板、PN二极管、抗反射层、 表面粗糙结构化和金属电极等五个主要部分。
9
少数载流子的寿命是影响能量转换效率的重要因素之 一。而晶体硅中少数载流子的寿命主要受金属杂质的 影响,金属杂质越高,寿命越短,能量转换效率越低。 除了起始基板本身的金属杂质外,太阳电池的高温制 备过程中也会引入杂质。
除了严格控制制备过程以去除杂质污染外,另一重要 技术是引入去疵技术(Gettering technology),去降 低金属杂质对少数载流子寿命的影响。
如果直接将硅及金属接触在一起,并不具有这种选择 性流通的目的。为达到选择性目的,一般的做法是在 金属电极下方先制造出一个N+的区域以取出电子,或 制造出一个P+的区域以取出空穴。
19
在这样的结构中,多数载流子可以顺利地由硅表面流 到金属,不会有太大的电压损失;而由于重掺杂区域 的影响,少数载流子的浓度已被降到最低,因此产生 的流通自然被被抑制到最小的程度。
蚀刻反应的速度与晶面方向有关(antisotropical), 以硅而言,(111)面的反应速度最慢,所以会被蚀刻 出逆金字塔状的凹槽。
此形状的凹槽具有最佳的光封存效果,被广泛使用在 太阳电池的制造流程上,成为基本的制造步骤之一。
15
利用NaOH或KOH的碱性蚀刻液,产生出的逆金字塔状凹槽
16
最早的晶体硅太阳电池是使用P型的CZ硅单晶做基板, 随着价格较低的多晶硅片出现,多晶硅太阳电池已成 为占有率最高的主流技术。但多晶硅太阳电池的效率 低于单晶硅太阳电池,所以,从单位成本的发电效率 (Watt per dollar)来看,两者实际上非常接近。
本章介绍晶体硅太阳电池的基本结构、制作太阳电池 的基本流程及模组化技术
此外,利用氢气钝化处理(passivation),也是提高 能量转换效率的有效方法。
10
最常用的晶体硅基板,是P型掺杂,即添加硼(Boron)。 当然,N型晶体硅也可以被用来当作基板,只不过现有 的太阳电池技术大多采用P型硅而设计。
使用电阻率较低的晶体硅基板,会降低太阳电池的串联 电阻(series resistance)而导致的能量损耗,目前工业 界常用的晶体硅基板的电阻率为0.5~30ohm·cm。
晶体硅基板的厚度也会影响太阳电池的效率。
11
晶体硅基板的厚度与太阳电池效率的关系 (Ld为扩散长度)
12
2 表面结构粗糙化(Texturing)
由于硅具有很高的反射系数(reflection index),它 对太阳光的反射程度在长波区域(~1100nm)可达到 54%,在短波长区域(~400nm),可达到34%。因此 将晶体硅基板表面做粗糙化处理的目的,在于降低太 阳光自表面反射损失的几率,进而提高电池的效率。
6
基本的晶体硅太阳电池结构
7
为达到最佳的转换效率,主要考虑的因素有: 减低太阳光的表面反射; 减低任何形式的载流子再结合(carrier recombination); 金属电极接触最优化。
8
1 基板
在晶体硅太阳电池中,以单晶硅能达到的能量转换效 率最高。要达到最优的能量转换效率,所使用的基板 的品质最为关键,这里的品质指基板应具有很好的结 晶完美性、最低的杂质污染等。
池的最大输出功率仅为1.5W左右。
3
为达到一般应用要求,必须将许多太阳电池串联 及并联在一起,形成所谓的模组(module)。
并联的目的是为了增加输出功率,串联的目的在 于提高输出电压,进一步的串联或并联则可形成 阵列安排(array)。
4
电池(cell);模组(module);阵列(array)
就品质的完美性而言,所有的结晶硅中以FZ硅片 (Float Zone Silicon)最佳,而CZ硅片次之。在低成本 的要求下,多晶硅片(multicrystalline)甚至比单晶硅 更为广泛使用。多晶硅片中的内部缺陷,例如晶界 (grain boundaries)及差排(dislocation),使得能 量转换效率不如CZ单晶硅片。
所谓的粗糙化,是将电池的表面,蚀刻成金字塔 (pyramid)或角锥状的形状,这使得太阳入射光至少 要经过两次以上的表面反射,因此降低了来自表面反 射损失的太阳光比例。
13
利用表面的粗糙结构可以降低光线的反射程度原理图
14
逆金字塔(倒金字塔)状的凹槽,一般是利用NaOH或 KOH碱性液对硅晶体表面进行蚀刻。
相关文档
最新文档