泛函分析
泛函分析简介

泛函分析简介什么是泛函分析泛函分析是数学的一个分支,主要研究无限维空间的线性算子及其性质。
它源于传统的分析学,特别是微分方程、积分方程和最优化理论等领域的发展。
通过研究空间中的点和函数,以及这些点和函数之间的映射关系,泛函分析提供了一种强大的工具用于解决各种实际问题。
在物理学、工程学、经济学和其他科学领域中,泛函分析有着广泛的应用。
泛函分析的基本概念线性空间线性空间(或称向量空间)是泛函分析的基础。
它由一组元素组成,这些元素可以通过向量加法和标量乘法进行组合。
形式上,若 (V) 是一个集合,满足以下条件,则 (V) 是一个线性空间:对于任意 (u, v V),则 (u + v V)(封闭性)。
对于任意 (u V) 和标量 (c),则 (c u V)(封闭性)。
存在零向量 (0 V),使得对于任意 (u V),有 (u + 0 = u)。
对于每个向量 (u V),存在一个对应的负向量 (-u V),使得 (u + (-u) = 0)。
向量加法满足交换律和结合律。
标量乘法满足分配律以及结合律。
拓扑空间拓扑空间是讨论连续性和极限的重要工具。
在泛函分析中,通常会结合线性空间与拓扑结构。
例如,一个拓扑向量空间需要具备以下性质:每个点都有邻域;任意多个开集的并集仍为开集;有限多个开集的交集仍为开集。
此时,可以引入收敛、限制、开集、闭集等概念,从而更深入地研究函数的性质。
巴拿赫空间与希尔伯特空间巴拿赫空间(Banach Space)是一类重要的完备线性空间,其定义为一个带有范数的线性空间,使得它是完备的。
也就是说,在这个空间中,每个柯西序列都收敛于某个元素。
范数是一个度量,用来描述向量之间的“距离”。
希尔伯特空间(Hilbert Space)则是一个完备的内积空间,是巴拿赫空间的一种特殊情况。
内积允许我们定义角度、正交性等概念,对于研究四维空间中的物理现象尤为重要。
主要定理与结果超平面定理与 Hahn-Banach 定理超平面定理指出,在有限维欧几里德空间中,任何非空闭子集至少可以由一个超平面相切。
泛函分析第一讲

线性算子和线性泛函
第二章 泛函分析
绪论
2.1 距离空间
第二章 泛函分析
一、距离空间的定义
lim
n
xn
x
0, N, 当 n 时N,有
dx, y x y
x y 0, x y 0当且仅当 x y
xy yx
xy xz zy
xn x
第二章 泛函分析
第一节 距离空间
一、距离空间的定义
第一节 距离空间
一、距离空间的定义
例2.1.2 设 X ,d 是距离空间,对任意 x, y X ,源自定义x,y
d
1+d
x,xy, y ,则
X
,
也是距离空间.
证明 三角不等式 d(x, y) d(x, z) d(z, y),
第二章 泛函分析
第一节 距离空间
一、距离空间的定义
例2.1.3 空间l p p 1.
x0 X. 如果d (xn , x0 ) 0, n , 则称该点列 xn
收敛于 x0 , 并记为
lim
n
xn
x0
或
xn x0 n
定理1 距离空间 X ,d 中,收敛点列的极限是唯一的.
第二章 泛函分析
第一节 距离空间
二、距离空间中的收敛
例2.1.5 在Rn 中,点列的收敛为按坐标收敛.
♣ 泛函分析在微分方程、概率论、函数论、计算 数学、控制论、最优化理论、连续介质力学、量 子物理等以及一些工程技术学科都有重要作用.
第二章 泛函分析
绪论
二、泛函分析课程内容 1.空间 集合 + 一定的结构
距离空间 赋范线性空间 内积空间 Banach空间 Hilbert空间
数学物理学中的泛函分析及其应用

数学物理学中的泛函分析及其应用泛函分析是数学物理学中的一门重要学科,是研究函数空间及其上的映射的数学分析学科。
它涵盖了数学和物理很多领域中的重要论题,包括微积分,变分法,偏微分方程,量子力学等。
在科学研究和工程应用中,泛函分析发挥着极为重要的作用。
本文将介绍泛函分析及其应用。
一、泛函分析的概念泛函是一个映射,它把一个函数空间中的函数映射到一个标量域上的函数。
泛函分析是对这些映射的研究,它是基于函数空间的理论和方法。
泛函分析的目标是找出函数空间和其上的线性算子的基本性质和规律,研究它们的逼近和收敛性质以及存在性和唯一性等问题。
泛函分析的重要概念包括:线性空间、范数、内积、拓扑、紧算子、自伴算子等。
线性空间是指函数集合中的任意两个函数满足加法和数乘封闭性的集合。
范数是定义在线性空间上的一种实数函数,符合非负性、齐性和三角不等式。
内积是一个函数空间中的二元运算,它满足线性性和正定性。
拓扑是指函数空间中元素间的近似关系,定义了开集和闭集,并定义了连续性、紧性等概念。
紧算子是指将一个无限维线性空间中的元素映射到一个有限维线性空间的算子。
自伴算子是指满足自我共轭性质的线性变换。
二、泛函分析在物理学中的应用泛函分析在物理学中有着广泛的应用。
物理学中的方程和算子一般都具有函数变量,因此把物理问题转换为泛函问题,就可以运用泛函分析方法解决它们。
以下简单介绍几个物理学中泛函分析的应用:1.偏微分方程:泛函分析在偏微分方程中应用广泛,特别是在非线性偏微分方程的研究中。
例如,用变分法解决非线性偏微分方程的问题,就涉及到泛函分析中的极值问题和约束问题。
2.量子力学:量子力学中的波函数就是定义在函数空间上的一个元素,因此泛函分析在量子力学中也有着广泛的应用。
例如,量子力学的本征方程中的算子就是线性空间中的元素,因此可以利用泛函分析中的算子理论来解决这些问题。
3.碟形电机:泛函分析在碟形电机中应用广泛。
作为一种电子器件,碟形电机的设计和制造需要精确的电控理论。
泛函分析

( x) A
xB
反之亦然
( x) 表示以x为中心,以 为半径的小球。
第一章 距离空间
可分性:
定义:距离空间R称为可分的,是指在E中存在一 个稠密的可列子集。
第一章 距离空间
问题:
1、写出三维空间的几种距离
2、距离空间中的开集、闭集?
( x(t ), y(t )) [a x(t ) y(t ) dt]
2
b
1/ 2
第一章 距离空间
例5:l 2 表示满足 | xi |2 的实数列的全体,则其
i 1
中任意两点
x ( x1 , x2 ,, xn ), y ( y1 , y2 ,, yn )
n
(c), (d)说明,在赋范线性空间中,线性运算对范 数收敛是连续的。
第二章 赋范线性空间
2.3 有限维赋范线性空间
1、定义:若赋范线性空间E存在有限个线性无关
的元素 e1 , e2 ,, en ,使任意的 x E
都有
x xi ei
i 1
n
则称E为有限维赋范线性空间,称 {e1 , e2 ,, en }
n
( x, y ) [ | xi yi |2 ]1/ 2
1 ( x, y) max | xi yi |
1i n
i 1
第二章 赋范线性空间
例2: C[ a ,b ]
其中可定义范数
|| x || max | x(t ) |
a i b
并由它导出距离
( x, y) max | x(t ) y(t ) |
a i b
第二章 赋范线性空间
泛函分析学习心得

泛函分析学习心得在我学习泛函分析的过程中,我认为泛函分析是数学中非常重要的一个分支,它不仅有着广泛的应用,还对于理解数学的基本概念和思想有着重要的贡献。
下面是我在学习泛函分析的心得体会。
首先,泛函分析是研究无穷维空间中的向量和函数的性质和行为的数学学科。
相比于有限维空间,无穷维空间更为复杂和抽象,因此泛函分析需要引入一些新的概念和工具来描述和研究无穷维空间中的对象。
其中最基本的概念就是线性空间和赋范空间。
线性空间是指满足一定线性运算规则的集合,赋范空间是指在线性空间的基础上引入了范数的空间。
了解这些基本概念是理解泛函分析的核心,可以帮助我们更好地把握和理解泛函分析的核心思想。
其次,泛函分析的主要研究对象是泛函。
泛函是将一个向量或者函数映射到一个实数的映射。
通过研究泛函,我们可以了解和描述向量或者函数的性质和行为。
在泛函分析中,我们主要关注线性泛函和连续线性泛函。
线性泛函是指满足一定线性性质的泛函,连续线性泛函是指在赋范空间上满足一定连续性质的线性泛函。
学习泛函分析的关键就是理解和研究泛函的性质和行为,利用泛函来描述和分析无穷维空间中对象的特点。
此外,在泛函分析中还有一些重要的概念和工具,例如:内积、正交、完备性、紧算子、谱理论等。
这些概念和工具在泛函分析中起着关键作用,可以帮助我们深入理解和分析无穷维空间中的对象。
例如,内积可以用来定义向量的长度和角度,正交关系可以用来描述向量的互相垂直的关系,完备性可以用来刻画向量空间的完整性等等。
学习和掌握这些概念和工具对于理解泛函分析的基本原理和思想非常重要。
最后,在学习泛函分析过程中,练习和实践也非常重要。
泛函分析是一个非常抽象和理论性很强的学科,对于我们来说可能有一定的难度。
但是通过练习和实践,我们可以更好地理解和运用所学的知识。
可以通过做一些练习题、阅读一些经典的参考书籍、参加研讨会等方式来提升自己的泛函分析水平。
在实践中我们还可以体会到泛函分析的应用,并且可以与其他学科进行交叉的思考,提高自己的综合能力。
泛函

泛函分析在数学物理方程、概率论、计算数学、连续介质力学、量子物理学等学科有着广泛的应用。近十几年来,泛函分析在工程技术方面有获得更为有效的应用。它还渗透到数学内部的各个分支中去,起着重要的作用。
泛函分析的起源
泛函分析的源头之一是变分法。18世纪形成的变分法的核心课题是研究形如
连续线性泛函
泛函分析的一个基本概念。围绕对它的研究形成的对偶理论至今仍是泛函分析中心课题之一。对它的研究最早可追溯到C.博莱特(1897)提出要用连续性条件来刻画一定函数类上的连续线性映射T:E→F。1903年阿达马在E是C[α,b]([α,b]上连续函数的全体),F是实数域,当{?n}一致收敛于? 时,T?n→T?的情况下,将T 表示成一列积分的极限的形式。但这种表示不惟一,并且有极大任意性。后来在实l2空间上,弗雷歇和里斯独立地在T 是所谓强连续假设下给出简单而惟一的表示,即希尔伯特空间l2上的连续线性泛函表示定理。里斯在1909~1910年又相继给出C[α,b]、Lp[α,b]、lp(p>1)上的表示定理。在这些表示定理的证明中实质上已蕴含线性子空间(又称向量子空间)上连续线性泛函必可延拓到全空间的事实。E.黑利从1912年开始(中间经过第一次世界大战的中断),直到1921年用“赋范数列空间”(他并未用这个名称)代替具体的C[α,b]、Lp[α,b]、lp等而考虑较抽象形态的延拓问题。他使用了凸性以及在有限维空间情况下早为H.闵科夫斯基用过的术语,如支撑超平面等。
巴拿赫空间
在许多具体的无限维空间以及它们上面相应的收敛性出现之后,抽象形态的线性空间(向量空间)以及按范数收敛的出现就成为自然的了。1922~1923年,E.哈恩和巴拿赫(同时还有N.维纳)独立地引入赋范线性空间。当时的讨论事实上都限于完备的赋范线性空间。1922年哈恩从当时分析数学许多分支已达到的成果和方法中提炼出了共鸣定理。1927年H.施坦豪斯和巴拿赫用完备度量空间的第二纲性代替原来所谓“滑动峰”证明方法,给出现今常见的证明。1922~1923年巴拿赫又得到了压缩映射的不动点定理、开映射定理。1927年哈恩完全解决了完备赋范线性空间上泛函延拓定理的证明,并第一次引入赋范线性空间E的对偶空间(共轭空间)K(当时称为极空间)。两年后,巴拿赫用同样方法也得到同样结果(后来,他承认哈恩的优先权),并看到这个定理可以推广。这个推广形式在后来的局部凸拓扑线性空间理论中起了重要作用。1931年巴拿赫将他1923~1929年的工作以及当时主要成果写成《线性算子理论》一书,书中大部分讨论他1929年开始研究的弱收敛,这又成为局部凸拓扑线性空间理论出现的先导。在同一书中还发表了完备赋范线性空间上连续线性算子值域不是第一纲集便是全空间以及闭图像定理等重要结果。这时,作为完备赋范线性空间理论的独立体系已基本形成,它的许多结果已成为泛函分析应用中的强有力工具。人们为纪念他的功绩,把完备赋范线性空间称为巴拿赫空间。近年来,人们特别感兴趣的一个领域是研究巴拿赫空间的几何学。
什么是泛函分析及其应用

泛函分析是数学中的一个重要分支,它主要研究无穷维向量空间中的函数和函数序列。
泛函分析不仅具有广泛的理论意义,而且在工程、物理学和经济学等应用领域中也有着重要的实际应用。
泛函分析中经常用到的基本概念包括范数、内积和度量等。
范数是用来衡量向量的大小的一种数学工具,它满足非负性、齐次性和三角不等式等性质。
内积则是定义了向量空间中的两个向量之间的夹角和长度之间的关系,它是一种更加广义的概念,包括了点积、矩阵的迹和函数的积分等。
度量则是一种用来衡量向量空间中的元素之间距离的函数。
泛函分析的核心研究对象是线性空间中的函数。
线性空间是指满足线性结构和空间结构的集合。
在泛函分析中,我们关注的是函数的性质和行为,而不仅仅是函数的数值。
泛函是一种从函数空间到数域的映射,它对应于一个实数或复数。
泛函可以对函数空间中的函数进行排序和比较,并且可以通过泛函的性质和行为来推断函数的性质和行为。
泛函分析的应用非常广泛。
它在工程领域中可以用来解决控制系统、信号处理和图像处理等问题。
例如,在控制系统中,泛函分析可以用来描述系统的稳定性和性能指标,通过对控制器进行优化,实现对系统的最优控制。
在信号处理和图像处理中,泛函分析可以用来对信号进行分析和重构,提取信号中的信息并去除噪音。
在物理学中,泛函分析可以用来描述多体系统和量子力学问题。
例如,泛函分析可以用来研究无限维的希尔伯特空间中的粒子的运动和性质,并且可以通过泛函的极值性质来解决量子力学中的变分问题。
在经济学中,泛函分析可以用来解决经济学模型和经济学问题。
例如,在宏观经济学中,泛函分析可以用来描述经济系统的动态行为和稳定性,通过构建适当的泛函和约束条件,可以对经济系统进行最优化问题的求解。
总之,泛函分析是一门重要的数学分支,它研究的是向量空间中的函数和函数序列。
泛函分析不仅具有广泛的理论意义,而且在工程、物理学和经济学等应用领域中也有着重要的实际应用。
通过泛函分析的方法和工具,我们可以更好地理解和描述自然界和人类社会中的一系列现象和问题。
数学中的泛函分析原理

数学中的泛函分析原理泛函分析是数学中一个重要的分支,它研究的是函数空间中的向量和算子,并研究它们之间的关系和性质。
在应用数学和理论数学中都有广泛的应用。
本文将介绍泛函分析的基本原理和一些常见的应用。
一、泛函分析概述泛函分析是在无穷维向量空间中研究函数和算子的一门数学学科。
它主要关注函数的空间与函数之间的线性关系和连续性。
泛函分析广泛应用于物理学、工程学和计算机科学等领域,并为这些领域提供了强大的工具和理论支持。
二、函数空间的定义和性质函数空间是泛函分析中非常重要的概念。
它可以用来描述函数的性质和空间结构。
在泛函分析中,常见的函数空间包括连续函数空间、可积函数空间和L^p空间等。
1. 连续函数空间连续函数空间是指定义在某个区间上的连续函数的集合。
常见的连续函数空间有C[0,1]和C^k[0,1]等。
在连续函数空间中,可以定义范数和内积等结构,从而形成一个向量空间。
2. 可积函数空间可积函数空间是指具有有限或无限积分性质的函数集合。
常见的可积函数空间有L^1[0,1]和L^2[0,1]等。
可积函数空间是泛函分析中非常重要的对象,它与概率论、信号处理和图像处理等领域密切相关。
3. L^p空间L^p空间是泛函分析中非常重要的一类函数空间。
它包括了所有p 次幂可积的函数的集合。
L^p空间具有范数结构,可以用来描述函数的大小和趋势,并且在测度论、偏微分方程和调和分析等领域有重要应用。
三、泛函的定义和性质泛函是定义在函数空间上的映射,它将函数映射到实数或复数。
泛函可以看作是函数的函数,它对函数进行操作并输出一个数值。
泛函的定义和性质在泛函分析中起着关键作用。
1. 线性泛函和非线性泛函线性泛函是指满足线性性质的泛函,即对于任意的函数f和g,以及任意的实数a和b,有F(af+bg) = aF(f) + bF(g)。
非线性泛函是不满足线性性质的泛函。
2. 连续性和有界性在泛函分析中,连续性和有界性是泛函的重要性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泛函分析论文(数学与计算机科学学院数11 赵洁 1060211014036)摘要:本文简单介绍泛函分析方法的基本理论,以及其在力学和工程的若干应用,包括泛函观点下的结构数学理论、直交投影法等。
关键字:泛函分析1.引言泛函分析是研究拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。
它是20世纪30年代形成的。
从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法分析学的课题,可看作无限维的分析学。
2.泛函分析概述2.1泛函分析的产生十九世纪以来,数学的发展进入了一个新的阶段。
这就是由于欧几里得第五公社的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。
这些新的理论都为用同一观点把古典分析的基本概念和方法一般化准备了条件。
本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽。
随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。
到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。
由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。
这种相似在积分方程论中表现的更突出了。
泛函分析的产生正是和这种情况有关,都存在着类似的地方。
非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。
这样,就显示出了分析和几何之间相似的地方,同时存在着把分析几何化的一种可能性。
这种可能性要求把几何概念进一步推广,以至最后把欧式空间扩充成无穷维数的空间。
这时候,函数概念被赋予了更为一般的意义,古典分析中的概念是指两个数集之间所建立的某种对应关系。
在数学上,把无限维空间到无限维空间的变换叫做算子。
研究无限维线性空间上的泛函数和算子理论,就生了一门新的分析数学,叫做泛函分析。
在二十世纪三十年代,泛函分析就已经成为数学中一门独立的学科了。
2.2泛函分析的特点和内容泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。
它既包含了以前讨论过的几何对象,也包括了不同的函数空间。
泛函分析对于研究现代物理学是一个有力的工具。
N维空间可以用来描述具体有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统。
一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。
现代物理学中的量子场理论就属于无穷自由度系统。
正如研究有穷自由度系统要求 n维空间的几何学和微积分学作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。
因袭,泛函分析也可以通俗的叫做无穷维空间的几何学和微积分学。
古典分析中的基本方法,也就是用线性的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。
泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。
他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。
半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象,和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、广义函数论等等;另一方面,它也强有力地推动着其他不少分析学科的发展。
它在微分方程、概率论、函数论、连续介质力学、量子物理、计算数学、控制论、最优化理论等学科中都有重要的应用,还是建立群上调和分析理论的基本工具,也是研究无限个自由度物理系统的重要而自然的工具之一。
今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。
泛函分析在数学物理方程、概率论、计算数学、连续介质力学、量子物理学等学科有着广泛的应用。
近十几年来,泛函分析在工程技术方面有获得更为有效的应用。
它还渗透到数学内部的各个分支中去,起着重要的作用。
2.3 泛函分析的主要定理1. 一致有界定理,该定理描述一族有界算子的性质。
2.谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学的数学描述中起到了核心作用。
3. 罕-巴拿赫定理(Hahn-Banach Theorem)研究了如何将一个算子保范数地从一个子空间延拓到整个空间。
另一个相关结果是对偶空间的非平凡性3.泛函观点下的近代结构理论众所周知,为研究固体平衡与变形,已提出多种模型(三维、二维、一维和离散模型等)。
经典固体理论(弹性、板壳和杆等)立足于上述诸模型求解平衡与变形的种种具体问题。
Oliveira[6][7]以有限元和板壳理论为背景提出“结构的数学理论(The Matrematical Theory of Structures)”。
该理论不涉及具体解法,而是用近代泛函工具建立一般的响应模型,考察各具体模型的类同性,并研究由一个模型生成另一模型的可能性和合理性。
固体响应的一般模型举例1. 给定某弹性结构,把满足应力-应变方程的任一对应力场和应变场 X = (e,σ)称为结构场。
若还满足称之为既协调又平衡的场称为精确场。
记全体结构场的集为X,按应变和应力分别引入线性运算,然后配上如下泛数X称为Banach空间。
对于任给的系统,X中与之的所有结构场构成X的子集。
X的全体子集类记为。
通常,假定等协调和等平衡子集之交仅包含一个元。
于是,可建立X的元与笛卡尔积1N的元之间的一一对应,X=x(I,E)。
称为|外部作用响应|空间。
由功原理得到的总能原理表明:精确解使上表达到驻值。
临近两个结构场X和X+h的距离除了用范数定义外,更方便地另行定义为d(X+h,X)=1/2,因为此时满足2. 把结构场空间X中满足的子集C称为X的约束子集。
在X 上有连续泛函类,其中泛函在每个约束子集C上有极小点s。
对给定的,各种约束子集C的这种s之全体构成X的最小子集M。
若两个结构场属同一子集,称它们是的。
通常,每个最小子集和约束子集之交仅一个元,就是精确解。
4.应用中的泛函分析法4.1直交投影法该方法把调和方程或泊松方程Dirichlet问题的解空间表达成两个直交子空间之和:调和函数类和边界上为零的函数类。
Minihin在讨论方截面杆的Saint-Venant扭转问题时,用本方法详细给出方形域中泊松方程Dirichlet问题之解,并证明所算得的最大剪应力之精度胜于Ritz法。
此外还给出一般三维域中同一问题的解以及本方法对一般方程Au=0(其中A是下有界、正线性椭圆微分算子)应用。
Maurin分析了微分方程[^|c(x)]u=0的Dirichlet问题。
他指出直交投影法和Ritz-Trefftz法之间的密切关系。
以后Rafalski把之用于瞬态热传导、瞬态热弹性和线性粘弹性,证实了Maurin所发现的两种方法的关系。
Bessel不等式中的等号,对应于f的等于它在生成空间中的直交投影的情形。
Klyot-Dashinsky曾把之应用于平面有势问题,以及更一般的各项异性板的变形方程。
Nowinski和Cho给出由电流加热的长杆热弹问题的解。
4.2变分法Mikhlin较早地用泛函分析为工具研究直接变分法。
以后,Kato,Noble等的论文中在估算各类边界条件下的弹性板振动频率及其界限时,甚至在更一般背景下研究算子*LL(*L是L的伴随)的理论。
这类算子在许多数理方程中出现,例如调和方程,双调和方程,Sturm-Liouville方程,线弹性方程以及某些Fredholm型积分方程。
Oden和Raddy进一步推广补余变分原理;Sandhu和Pister给出广义Mikhlin 变分问题,对于连续统力学中出现的一类线性耦合场问题建立扩充的变分问题。
以上诸研究中,泛函变分为零蕴涵Fréchet导数为零。
Tonti指出,与泛函变分问题相关的微分方程中的算子L不必对称。
若L非对称,可以另取下述双线性型卷积为内积(Gurtin)思想。
Raddy利用此双线性卷积及Gateau导数构造粘弹性动态理论的变分原理。
该方法可用于流体弹性、在电学、热弹性和其它领域中的静态和动态弹性问题。
在初值问题方面,Reiss和Hang考察了极值原理,用抽象算子记号构造了相当一般的最小原理,把一大类线性初值和混合问题包括在内。
其应用包括振动、波传导、热传导,电磁体和粘弹体。
Magri推广了Tonti的工作。
他证明:对每个线性算子,有无限多个使该算子对称的双线性型,从而有可能做出相应的变分公式。
他已就扩散问题对此作了解释。
Collins曾对自共轭算子提出构造补余极值原理的一般过程。
Telega把这种思想推广到塑性边值问题。
参考文献[1]魏国强,数学专题讲选[M]. 高等教育出版社出版书籍第二版,北京师范大学出版社[2]程其襄,张奠宙等,实变函数与泛函分析基础[M].北京:高等教育出版社出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中府中,俱为一体;陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。
侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。
将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。
亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。
先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。
侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。
臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。
先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。
后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。
先帝知臣谨慎,故临崩寄臣以大事也。
受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。
今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。
此臣所以报先帝而忠陛下之职分也。
至于斟酌损益,进尽忠言,则攸之、祎、允之任也。
愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。
若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。