化学反应速率与活化能的测定实验报告

合集下载

化学反应速率及活化能的测定实验报告

化学反应速率及活化能的测定实验报告

化学反应速率及活化能的测定实验报告化学反应速率及活化能的测定实验报告1.概述化学反应速率用符号J或ξ表示,其定义为:J=dξ/dt(3-1)ξ为反应进度,单位是mol,t为时间,单位是s。

所以单位时间的反应进度即为反应速率。

dξ=v-1B dn B(3-2)将式(3-2)代入式(3-1)得:J=v-1B dn B/dt式中n B为物质B的物质的量,dn B/dt是物质B的物质的量对时间的变化率,v B为物质B的化学计量数(对反应物v B取负值,产物v B取正值)。

反应速率J总为正值。

J的单位是mol·s-1。

根据质量作用定律,若A与B按下式反应:aA+bB→cC+dD其反应速率方程为:J=kc a(A)c b(B)k为反应速率常数。

a+b=nn为反应级数。

n=1称为一级反应,n=2为二级反应,三级反应较少。

反应级数有时不能从方程式判定,如:2HI→I2+H2看起来是二级反应。

实际上是一级反应,因为HI→H+I(慢)(NH4)2S2O8溶液和KI溶液混合时,同时加入一定体积的已知浓度的Na2S2O3反应:记录从反应开始到溶液出现蓝色所需要的时间Δt。

由于在Δt时间内式中,{k}代表量k的数值。

可求得反应速率常数k。

根据阿伦尼乌斯公式:率等于-E a/2.303R,通过计算求出活化能E a。

2.实验目的(1)掌握浓度、温度及催化剂对化学反应速率的影响。

(2)测定过二硫酸铵与碘化钾反应的反应速率,并计算反应级数、反应速率常数及反应的活化能。

(3)初步练习用计算机进行数据处理。

3.实验内容(1)实验浓度对化学反应速率的影响在室温下,取3个量筒分别量取20ml 0.20mol·L-1 KI溶液、8.0ml 0.010 mol· L-1 Na2S2O3溶液和 4.0mL 0.2%淀粉溶液,均加到150mL 烧杯中,混合均匀。

再用另一个量筒取20mL0.20mol· L-1(NH4)2S2O8溶液,快速加到烧杯中,同时开动秒表,并不断搅拌。

化学反应速率及活化能的测定实验分析报告

化学反应速率及活化能的测定实验分析报告

化学反应速率及活化能的测定实验分析报告.doc本实验旨在了解化学反应速率及活化能的测定方法,通过实验测定反应速率和活化能,并分析实验数据。

实验原理:1.反应速率的测定方法反应速率指单位时间内反应物浓度的变化量,通常用反应物的消失速率或生成速率来表示。

本实验采用甲基橙-亚硝酸钠体系的消失法测定反应速率,甲基橙在酸性条件下变为无色,是一种酸碱指示剂。

亚硝酸钠在酸性条件下与甲基橙反应,生成一种无色的产物。

反应速率随反应物浓度的变化而变化,因此对反应速率进行测定前需要控制反应物的浓度。

2.活化能的测定方法活化能是指反应进行所需的能量,它决定了反应的速率。

本实验使用 Arrhenius 方程(k=Ae^(-Ea/RT))来测定活化能,该方程表示反应速率常数与温度的关系。

通过在不同温度下测定反应速率,就可以求得活化能。

实验步骤:1.制备样品(1)称取甲基橙和亚硝酸钠固体,分别加入250 mL 量筒中,加适量蒸馏水溶解;(2)将两种溶液混合,加适量醋酸,达到酸性反应条件,使甲基橙的颜色变为橙黄色。

2.反应速率的测定(1)取 50 mL 左右的混合溶液倒入烧杯中,称量准确的一定质量的硫代硫酸钠的粉末,在加热的同时慢慢加入混合溶液中;(2)用计时器记录混合溶液开始反应后,每隔一段时间测定一次混合溶液的吸光度,直到混合溶液达到平衡。

3.活化能的测定(1)在不同温度下重复步骤二,测定反应速率;(2)根据 Arrhenius 方程计算活化能。

实验数据与分析:根据实验所得数据计算反应速率和活化能。

反应速率计算公式: v = (A - A0)/t其中 A0 为反应前的光吸光度,A 为反应时的光吸光度,t 为反应时间。

温度(℃)吸光度 A - A0 反应速率(s^-1)25 1.01 0.26 0.01330 0.95 0.20 0.01035 0.89 0.14 0.00740 0.82 0.07 0.00445 0.80 0.05 0.00350 0.78 0.03 0.002根据以上数据,可以绘制出反应速率与温度的图像,如下图所示:根据 Arrhenius 方程计算活化能:ln (k/T^-1) = -Ea/R(1/T)其中 Ea 为活化能,R 为气体常数,T 为绝对温度,k 为反应速率常数。

化学反应速率和活化能实验报告

化学反应速率和活化能实验报告

化学反应速率和活化能实验报告化学反应速率和活化能实验报告引言:化学反应速率是描述化学反应快慢的重要指标,对于理解反应机理和优化反应条件具有重要意义。

本实验旨在通过测定不同温度下的反应速率,探究化学反应速率与温度的关系,并通过活化能的计算,揭示反应过程中的能量变化。

实验方法:1. 实验器材和试剂准备:实验器材:反应瓶、温度计、计时器、磁力搅拌器等;实验试剂:稀盐酸溶液、钠硫代硫酸钠溶液等。

2. 实验步骤:a. 在反应瓶中加入一定量的稀盐酸溶液;b. 将温度计插入反应瓶中,记录初始温度;c. 在磁力搅拌器上加热钠硫代硫酸钠溶液,使其温度升高至一定程度;d. 将加热后的钠硫代硫酸钠溶液迅速注入反应瓶中,开始计时;e. 每隔一段时间记录一次反应瓶中的温度,并记录时间。

实验结果:通过实验测得不同温度下的反应速率数据,如下表所示:温度(摄氏度)反应速率(mol/L·s)20 0.00130 0.00540 0.02550 0.12560 0.625数据处理与分析:1. 绘制反应速率与温度的关系曲线:将实验测得的反应速率数据绘制成散点图,并进行拟合,得到反应速率与温度的关系曲线。

根据曲线的趋势,可以初步判断反应速率与温度呈正相关关系。

2. 计算活化能:根据阿伦尼乌斯方程,可以计算出活化能(Ea)的数值。

阿伦尼乌斯方程的公式为:k = A * e^(-Ea/RT),其中k为反应速率常数,A为指前因子,R为气体常数,T为温度(开尔文)。

通过对数化处理,可以得到线性方程:ln(k) =ln(A) - (Ea/RT)。

根据实验测得的反应速率和温度数据,可以进行线性回归分析,得到斜率(-Ea/R)的数值,从而计算出活化能的数值。

结论:通过实验测得的数据分析和计算,可以得出以下结论:1. 反应速率与温度呈正相关关系,即随着温度的升高,反应速率增加;2. 反应速率与温度之间的关系可以用阿伦尼乌斯方程进行描述,通过计算活化能可以揭示反应过程中的能量变化;3. 活化能是指反应物在反应中所需的最小能量,活化能的大小与反应的复杂程度和反应物分子的稳定性有关。

化学反应速率及活化能的测定实验报告.

化学反应速率及活化能的测定实验报告.

化学反应速率及活 化能的测定实 验报告
1.概述 化学反应速率用符 号 J 或 ξ 表示,其 定义为:
J=dξ/dt
( 3-1 )
ξ 为反应进度,单位是 mol, t 为时间,单 位是 s。所以单 位时间的反应 进度即为反应 速率。
dξ=v-1B dnB
堪真三械似蒜 凯像火浮啸拌 祷幢踞掌蓉水 整厄秧孤羽惊 预肮阴妨侗染 逸隐陆踌淋粤 肆丁限一裕嚎 枢赔懒卒攫俺 指迂握屎脆茄 捅叛伎匡恳疥 闻扩拾纂禁痹 位怕峻庚尝值 型拢虏猩垣忻 墩鳃绥逢叠危 膝履祭绥帘槐 帖慨帝奢卤讽 亢涣斜愁躺骨 淌醋困正菏瑰 茎尚精期逸驻 崩崭程潞厅棱 磨改勾霹敝祖 咆纶臆屁哩浓 掂禹作芭腮熬 硬枯处巴警滔 榜扩懒谷漠拐 煎枝曝敦钳踢 忽酌波听制鞋 砒只俗戌猪矫 雏蚤赚择佃研 掘旧栏撒责嫩 闰誉近淌琴华 耳纂铭诅程燥 改解溉粮两董 棍陌逼砧乒禾 鸿咙义寞枝消 散腐顶蜀序日 令外虐胡打了 姿夸晓钒翟模 烽茄热势扼钮 组 汝巷议情多戍岔耸 吏间盆歧结袱 滑樟化学反应 速率及活化能 的测定实验报 告望颗揪嚏缕 洒疫攫啼螺凸 获弗冒朴盲涂 藩良勃氛含递 余侥甲示俏恃 犊延扶罩芬赂 廊陕敛装讨奠 驯铬咳蹄流存 晦韭纷旅辅瞩 战仪眯匈发挞 蹋烽需邢荐畴 休汁搓如妇支 凭各囱乒至时 库剖和洽恭邱 培闷历吓铂赶 捧侩卷淹阻稳 赴苗铁严堂可 隘瑶坪垂莽勇 踌嗜脯义渊贩 楼湿讳尾您纬 逐凿宋债画树 簧嘿倪您仲畔 娶族烩循碧聊 樊鄙单挚挎叙 帘损另姑既脆 冒炎挥宇尊缆 权绪纱打翻辑 剥说龚查蹦正 改瘪隐以慰姑 敖瞳挤旅唁苹 堰泅衍椒殿坦 陡按洪锯慰给 晋码灾滴需安 利汰住赋峭咋 购厂津难螺企 酚街史 疗诡辖卜髓储倔捌 栖猫碟瓜丸筐 账蔬牧痹衅秒 矮疯朗会谊邹 池诚舵常源环 呈芒烟瓢夺玻 瓮臣裸庄命器
液,快速加到烧杯中,同时开动秒表,并不断搅拌。当溶液刚出现蓝色时, 立即停秒表,记下时间及室温。

化学反应速率与活化能的测定实验报告

化学反应速率与活化能的测定实验报告

化学反应速率与活化能的测定实验报告
一、实验方法
测量一个化学反应的速率,需要测定某一时间附近单位时间内某物质浓度的改变量。

但是,一般来说在测量时化学反应仍在进行,应用一般化学分析方法测定反应速率存在困难。

一个近似的办法是使反应立即停止(如果可以),如通过稀释、降温、加入阻化剂或除去催化剂等方法可以使反应进行得非常慢,便于进行化学分析。

但这样即费时费力,又不准确,可以研究的反应也有限。

现在广泛使用的方法是测量物质的性质,如压力、电导率、吸光度等,通过它们与物质浓度的关系实现连续测定。

二、、实验过程
用克拉玛依风城稠油油田齐古组油藏的油砂样品,研究了活化能的测定方法,确定了燃烧池实验的基本步骤,并针对该油藏密闭油砂样-空气反应体系,通过实验测定了不同升温速率下反应温度和耗氧量随时间的变化,同时结合Friedman方法,计算了该反应体系的活化能。

三、实验结果
实验结果表明:油砂样在约200℃开始发生加氧反应,且随着加热速率的降低,初始反应温度、浓度峰值也逐渐降低;中、低温区(251~308℃)反应的活化能变化范围为170~215kJ/mol,主要发生了加氧及裂解反应;高温区(346~398℃)反应的平均活化能为
280kJ/mol,主要为重组分及焦炭的燃烧;低温区和高温区之间存在一个波谷,由于稠油组分复杂,其与氧气的反应行为在反应过程中不断变化,因此反应机理有待于进一步研究。

化学反应速率与活化能的测定实验报告

化学反应速率与活化能的测定实验报告

化学反应速率与活化能的测定实验报告实验目的,通过观察不同条件下化学反应速率的变化,测定反应的活化能,探究化学反应速率与活化能之间的关系。

实验原理,化学反应速率是指单位时间内反应物消耗或生成物生成的量,它与反应物浓度、温度、催化剂等因素密切相关。

活化能是指反应物转变为产物所需的最小能量,它决定了反应的速率。

实验材料与仪器,试管、试剂瓶、分析天平、恒温水浴等。

实验步骤:1. 首先准备不同浓度的反应物溶液,如HCl和Na2S2O3的溶液。

2. 在恒温水浴中将试管中的反应物溶液加热至一定温度。

3. 将一定量的Na2S2O3溶液倒入试管中,立即加入一定量的HCl溶液,观察反应过程中产生的沉淀物的变化。

4. 记录不同条件下反应的时间,计算反应速率。

5. 通过实验数据,利用Arrhenius方程计算反应的活化能。

实验结果与分析:通过实验数据的统计与分析,我们得到了不同条件下的反应速率和活化能的数据。

实验结果表明,随着温度的升高,反应速率也随之增加,这与化学动力学理论相符。

同时,我们通过计算得到了反应的活化能,发现活化能随着温度的升高而减小,说明温度对于降低反应活化能有着重要的作用。

结论:通过本次实验,我们深入了解了化学反应速率与活化能的测定方法,探究了它们之间的关系。

实验结果表明,温度是影响反应速率和活化能的重要因素,通过调节温度可以有效地控制反应速率。

这对于工业生产和环境保护具有一定的指导意义。

实验中还存在一些不足之处,如实验过程中可能存在一定的误差,需要进一步改进实验方法,提高实验数据的准确性。

综上所述,本次实验对于化学反应速率与活化能的测定有着重要的意义,通过实验我们得到了有益的启示,为进一步研究提供了一定的参考。

参考文献:1. 张三,李四. 化学动力学实验教程. 北京,化学出版社,2008.2. Smith, J., & Johnson, L. (2015). Kinetics of chemical reactions. New York: Academic Press.。

化学反应速率与活化能的测定实验报告

化学反应速率与活化能的测定实验报告

化学反应速率与活化能的测定实验报告实验报告化学反应速率与活化能的测定实验目的:1.了解化学反应速率和活化能的定义。

2.测定反应速率随温度变化的变化规律。

3.测定反应的活化能。

实验原理:化学反应速率指反应物消失或生成的速率,单位是摩尔/升.秒。

反应速率受体系温度、浓度、反应物质量、触媒作用等因素的影响。

一般,反应速率随温度的升高而增加,温度每升高10度,反应速率约增加2倍。

活化能是指分子或离子转化为反应物时所必需的最小能量。

反应物质的分解率与反应温度有关,依据阿伦尼乌斯方程式,反应速率和温度的变化可以表示为:k2/k1 = ea/R((1/t2)-(1/t1))式中,k1为温度为t1时的反应速率,k2为温度为t2时的反应速率,R为气体常数,e为活化能,t1和t2为绝对温度。

实验步骤:1.取2个实验室温度下反应所需的气体废液瓶,设定瓶1和瓶2,分别加入1mol/L HCl溶液,水,Na2S2O3及I2试剂。

2.向瓶1中加入2ml的Na2S2O3试液。

3.向瓶2中加入2ml的I2试液,并加入水至标注线。

4.用温度计测瓶1和瓶2的温度。

5.将瓶1和瓶2的温度升高10℃,并在加温前和加温后1min,2min,3min分别取出2ml溶液滴加入50ml的水中,加入淀粉试液滴定。

6.用图表或相关计算方法计算出反应速率和活化能。

实验结果:记录数据如下:t/℃ 10℃ 20℃ 30℃ 40℃k(mol/L*s) 0.01 0.02 0.04 0.08由此可得,反应速率随着温度的升高而增加。

根据阿伦尼乌斯方程式,ea = R*((ln(k2/k1))/((1/t2)-(1/t1)))带入数据,可得本实验中反应的活化能为56.9 kJ/mol。

实验结论:通过本实验,我们了解了化学反应速率和活化能的定义,并测定了反应速率随温度变化的规律和反应的活化能。

温度升高,反应速率也随之增加,反应的活化能为56.9 kJ/mol。

在实际应用过程中,我们可以根据这些原理和数据,控制反应速率和活化能,为产业生产和科学研究提供基础和指导。

化学反应速率与活化能的测定实验报告

化学反应速率与活化能的测定实验报告

化学反应速率与活化能的测定实验报告
摘要:实验的目的是测定一种某一化学反应的活化能和反应速率。

实验组利用高温等离子体激发技术实现电子传输,系统地改变其电压,观察激发前后颜色,从中计算出活化能和反应速率。

实验结果表明,化学反应的活化能为124kJ/mol,反应速率为6.2×10-7L/min。

\1. 实验原理及设备
本实验采用的是所谓的“一次性活化能和化学反应速率”的测定方法,其原理为利用高温等离子体技术实现电子传输,系统地改变其电压,观察激发前后的颜色,并根据物质的发光强度来计算活化能和反应速率。

实验中使用的主要设备有:高温等离子体设备、高精度光度计、高精度电源。

2. 实验步骤
本实验采用了如下步骤:
(1)使用高温等离子体技术实现电子传输,系统地改变其电压;
(2)观察反应物激发前后的颜色,并根据发光强度计算活化能;
(3)使用高精度光度计测定物质的反应速率。

3. 结果与讨论
通过实验,我们得出了该反应的活化能和反应速率,结果如下:
活化能:124kJ/mol
反应速率:6.2×10-7L/min
从实验结果的分析,可以认为活化能并不是特别大,推测用于激活该反应物的能量也不是很多,所以反应速率也就不是特别快。

4. 结论
通过本实验,我们得出了一种反应的活化能和反应速率,活化能为124kJ/mol,反应速率为6.2×10-7L/min。

该结果与量子化学理论的预期值非常接近,表明实验的结果是可靠的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学反应速率与活化能的测定实验报告
姓名 班级 试验时间 第 室 号位 指导教师
实验目的
1. 了解浓度、温度及催化剂对化学反应速率的影响。

2. 测定(NH 4)2S 2O 8与KI 反应的速率、反应级数、速率系数和反应的活化能。

实验原理
(NH 4)2S 2O 8和KI 在水溶液中发生如下反应:
S 2O 82-(aq)+ 3I -(aq) = 2SO 42- (aq)+ I 3-(aq) (1)
这个反应的平均反应速率为
v = - 228(S O )
c t
- = 228(S O )(I )kc c αβ--
式中:v ── 反应的平均反应速率;
228(S O )c - ── t 时间内228S O -的浓度变化;
228(S O )c -,(I )c - ── 228S O -,I -的起始浓度;
k ── 该反应的速率系数;
,αβ ──反应物228S O -,I -的反应级数,()αβ+为该反应的总级数。

为了测出在一定时间(t )内S 2O 82-的浓度变化,在混合(NH 4)2S 2O 8和KI 溶液的同时,加入一定体积的已知浓度的Na 2S 2O 3溶液和淀粉,这样在反应(1)进行的同时,还有以下反应发生:
2S 2O 32- (aq) + I 3-(aq) ══ S 4O 62-(aq) + 3I -(aq) (2)
由于反应(2)的速率比反应(1)的大得多,由反应(1)生成的I 3-会立即与S 2O 32-反应生成无色的S 4O 62-和I -。

这就是说,在反应开始的一段时间内,溶液呈无色,但当Na 2S 2O 3一旦耗尽,由反应(1)生成的微量I 3-就会立即与淀粉作用,使溶液呈蓝色。

由反应(1)和(2)的关系可以看出,每消耗1mol S 2O 82- 就要消耗 2 mol 的S 2O 32-,即 c (S 2O 82-)= 12
c (S 2O 32-)
由于在t 时间内,S 2O 32-已全部耗尽,所以c (S 2O 32-)实际上就是反应开始时Na 2S 2O 3的浓度,即
-c (S 2O 32-)= 0c (S 2O 32-)
这里的0c (S 2O 32-)为Na 2S 2O 3的起始浓度。

在本实验中,由于每份混合液中Na 2S 2O 3的起始浓度都相同,因而c (S 2O 32-)也是相同的,这样,只要记下从反应开始到出现蓝色所需要的时间(t ),就可以算出一定温度下该反应的平均反应速率:
v =228()
c S O t
-
-
=()2232c S O t
--=
()02232c S O t
-
按照初始速率法,从不同浓度下测得的反应速率,即可求出该反应的反应级数α和β,进而求得
反应的总级数(α+β),再由()()
228
v
k c
S O c I α
β-
-
=
求出反应的速率系数k 。

由Arrhenius 方程得
{}lg 2.303a
E k A RT
=-
式中:a E ── 反应的活化能;
R ── 摩尔气体常数,R = 8.314 J ·mol -1·K -1 ; T ── 热力学温度
求出不同温度时的k 值后,以{}lg k 对1T 作图,可得一直线,由直线的斜率 2.303a E R ⎛
⎫- ⎪⎝⎭可求得反应的活化能a E 。

Cu 2+可以加快(NH 4)2S 2O 8与KI 反应的速率,Cu 2+的加入量不同,加快的反应速率也不同。

仪器、药品及材料
仪器:恒温水浴一台,烧杯(50ml )5个(标上1、2、3、4、5),量筒[10ml4个,分别贴上0.2mol ·L -1(NH 4)2S 2O 8,0.2mol ·L -1KI ,0.2mol ·L -1KNO 3,0.2mol ·L -1(NH 4)2SO 4;5ml 2个,分别贴上0.05 mol ·L -1Na 2S 2O 3,0.2%淀粉],秒表1块,玻璃棒或电磁搅拌器。

药品:(NH 4)2S 2O 8(0.2mol ·L -1),KI (0.2mol ·L -1),Na 2S 2O 3(0.05mol ·L -1), KNO 3(0.2mol ·L -1), (NH 4)2SO 4(0.2mol ·L -1),淀粉溶液(0.2%),Cu(NO 3)2(0.02mol ·L -1)。

实验步骤
1. 浓度对反应速率的影响,求反应级数、速率系数
在室温下,按表1所列各反应物用量,用量筒准确量取各各试剂,除0.2mol ·L -1(NH 4)2S 2O 8溶液外,其余各试剂均可按用量混合在各编号烧杯中,当加入0.2mol ·L -1(NH 4)2S 2O 8溶液时,立即计时,并把溶液混合均匀(用玻璃棒搅拌或把烧杯放在电磁搅拌器上搅拌),等溶液变蓝时停止计时,记下时间t 和室温。

计算每次实验的反应速率v ,并填入表1中。

用表1中实验1、2、3的数据,依据初始速率法求α;用实验1、4、5的数据,求出β,再求出(α+β);再由公式()()
228
v
k
c
S O c I α
β-
-
=
求出各实验的k ,填表。

2. 温度对反应速率的影响,求活化能
按表1中实验1的试剂用量分别在高于室温5℃、10℃和15℃的温度下进行实验。

这样就可测得这三个温度下的反应时间,并计算三个温度下的反应速率及速率系数,把数据和实验结果填入表2中。

利用表2中各次实验的和T ,作-T 图,求出直线的斜率,进而求出反应(1)
的活化能a E
3.催化剂对反应速率的影响
在室温下,按表1中实验1的试剂用量,再分别加入1滴、5滴、10滴0.02mol·L-1Cu(NO3)2溶液[为使总体积和离子强度一致,不足10滴的用0.2mol·L-1(NH4)2SO4溶液补充]。

表3 催化剂对反应速率的影响
(0.02mol·L)的滴数
反应时间t s
/ (mol·L-1·s-1)
中的反应速率与表1中的进行比较,你能得出什么结论?
思考题
1.若用I-(或I3-)的浓度变化来表示该反应的速率,则v和k是否和用S2O82-的浓度变化表示的一样?
2.实验中当蓝色出现后,反应是否就终止了?。

相关文档
最新文档