广东省广州市南沙区2016-2017学年八年级下学期数学期末考试试卷及参考答案

合集下载

广东省2016-2017八年级考试数学试题

广东省2016-2017八年级考试数学试题

2016-2017年广东省八年级下学期数学考试 数学试卷 考试时间:120分钟;满分120分 一、选择题(细心选一选,每小题3分,合计24分。

) 1.下面计算正确的是( ) A . C 4(0)a a => 2. x 的取值范围是( ) A .x >2 B .x <-2 C .x ≤2 D .x ≥2 3. 下列二次根式是最简二次根式的是( ) A.21 B.2.0 C. 3 D. 8 4. 一个直角三角形的模具,量得其中两边长分别为4cm 、3cm ,则第三条边长为( ) A .5cm B .4cm C .7cm D .5cm 或7cm 5. 如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,下列结论不正确的是( ) A .DC ∥AB B .OA=OC C .AD=BC D .DB 平分∠ADC 6. 3b =-,则( ) A .b>3 B .b<3 C .b ≥3 D .b ≤3 7. 如图,平行四边形 ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( ) A.3 B.6 C.12 D.248. 等腰三角形的底边长为12,底边上的中线长为8,它的腰长为( )A 、6B 、8C 、10 D二.填空题。

(认真填一填,每小题3分,合计30分)。

9. 比较大小:10. 当x 满足 时, 11. 一只蚂蚁从长为4cm 、宽为3 cm ,高是5 cm 的长方体纸箱的A点沿纸箱爬到B 点,那么它所行的最短路线的长是____________cm 。

12. 则此三角形的面积为13. 把的根号外的因式移到根号内等于 。

14. 如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m .一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行 m .15. 任意四边形ABCD 中,点E 、F 、G 、H 分别是AD 、BC 、CD 、AB 的中点,当四边形ABCD 满足条件 时,四边形EGFH 是菱形.(填一个使结论成立的条件)16. 计算20132012⨯= 。

2016-2017学年八年级下册数学期末考试试卷(解析版)

2016-2017学年八年级下册数学期末考试试卷(解析版)

2016-2017学年八年级下册数学期末考试试卷(解析版)一、选择题1.下列式子没有意义的是()A. B. C. D.2.下列计算中,正确的是()A. ÷ =B. (4 )2=8C. =2D. 2 ×2 =23.刻画一组数据波动大小的统计量是()A. 平均数B. 方差C. 众数D. 中位数4.在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A. 方差B. 平均数C. 中位数D. 众数5.关于正比例函数y=﹣2x,下列结论中正确的是()A. 函数图象经过点(﹣2,1)B. y随x的增大而减小C. 函数图象经过第一、三象限D. 不论x取何值,总有y<06.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. 2,3,4B. ,,C. 1,,2D. 7,8,97.若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A. 10B. 11C. 12D. 138.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是()A. 24B. 26C. 30D. 489.在下列命题中,是假命题的是()A. 有一个角是直角的平行四边形是矩形B. 一组邻边相等的矩形是正方形C. 一组对边平行且相等的四边形是平行四边形D. 有两组邻边相等的四边形是菱形10.已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx﹣3m+6将四边形ABCD 分成面积相等的两部分,则m的值为()A. B. ﹣1 C. 2 D.二、填空题11.已知a= +2,b= ﹣2,则ab=________.12.一次函数y=kx+b(k≠0)中,x与y的部分对应值如下表:那么,一元一次方程kx+b=0的解是x=________.13.如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是________.14.一组数据:2017、2017、2017、2017、2017,它的方差是________.15.考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角________个单位.16.如图所示,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于下列结论:①∠GFI=90°;②GH=GI;③GI= (BC﹣DE);④四边形FGHI是正方形.其中正确的是________(请写出所有正确结论的序号).三、解答题17.计算:(+ ﹣)× .18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD= .(1)求AD的长.(2)求△ABC的周长.19.如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF 为平行四边形.20.下表是某校八年级(1)班43名学生右眼视力的检查结果.(1)该班学生右眼视力的平均数是________(结果保留1位小数).(2)该班学生右眼视力的中位数是________.(3)该班小鸣同学右眼视力是4.5,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.21.如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.(1)求OF的长.(2)求CF的长.22.如图,在平面直角坐标系中,直线y=kx+b经过点A(﹣30,0)和点B(0,15),直线y=x+5与直线y=kx+b 相交于点P,与y轴交于点C.(1)求直线y=kx+b的解析式.(2)求△PBC的面积.23.2016年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价0.1元/半小时,骑行单价最低可降至0.1元/半小时(比如,某用户邀请了3位好友,则骑行单价为0.7元/半小时).B品牌共享单车计费方式为:0.5元/半小时,不足半小时按半小时计算.(1)某用户准备选择A品牌共享单车使用,设该用户邀请好友x名(x为整数,x≥0),该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.(2)若有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.24.下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图(1)的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图(2),把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图(3)中所示的AD处,折痕为AQ.根据以上的操作过程,完成下列问题:(1)求CD的长.(2)请判断四边形ABQD的形状,并说明你的理由.25.如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE 的面积为S2.(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.答案解析部分一、<b >选择题</b>1.【答案】B【考点】二次根式有意义的条件【解析】【解答】A、有意义,A不合题意;B、没有意义,B符合题意;C、有意义,C不合题意;D、有意义,D不合题意;故答案为:B.【分析】依据二次根式被开放数为非负数求解即可.2.【答案】C【考点】二次根式的性质与化简,二次根式的乘除法【解析】【解答】解:A、原式= = =3,A不符合题意;B、原式=32,B不符合题意;C、原式=|﹣2|=2,C符合题意;D、原式=4 ,D不符合题意;故答案为:C.【分析】依据二次根式的除法法则可对A作出判断;依据二次根式的性质可对B、C作出判断,依据二次根式的乘法法则可对D作出判断.3.【答案】B【考点】统计量的选择【解析】【解答】由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故答案为:B.【分析】方差是反应一组数据波动大小的量.4.【答案】D【考点】统计量的选择【解析】【解答】由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数.故答案为:D.【分析】决定最终的线路应改由多数人员的意见决定,故此可得到问题的答案.5.【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)=4,即图象经过点(﹣2,4),不经过点(﹣2,1),故本选项错误;B、由于k=﹣2<0,所以y随x的增大而减小,故本选项正确;C、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;D、∵x>0时,y<0,x<0时,y>0,∴不论x为何值,总有y<0错误,故本选项错误.故答案为:B.【分析】依据正比例函数的图像和性质可对B、C、D作出判断,将x=-2代入函数解析式可求得y的值,从而可对A作出判断.6.【答案】C【考点】勾股定理的逆定理【解析】【解答】A、22+32≠42,故不是直角三角形,A不符合题意;B、()2+()2≠()2,故不是直角三角形,B不符合题意;C、12+()2=22,故是直角三角形,C符合题意;D、72+82≠92,故不是直角三角形,D不符合题意;故答案为:C.【分析】依据勾股定理的逆定理进行判断即可.7.【答案】D【考点】勾股定理【解析】【解答】设斜边长为xcm,则另一条直角边为(x﹣1)cm,由勾股定理得,x2=52+(x﹣1)2,解得,x=13,则斜边长为13cm,故答案为:D.【分析】设斜边长为xcm,则另一条直角边为(x-1)cm,然后依据勾股定理列方程求解即可.8.【答案】A【考点】菱形的性质【解析】【解答】∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB= ,= ,=4,∴BD=2OB=8,∴S菱形ABCD= ×AC×BD= ×6×8=24.故答案为:A.【分析】根据菱形的对角线互相垂直且互相平分可得到AC⊥BD,且AO=OC=3,然后依据勾股定理可求得BO的长,从而可得到BD的长,最后依据菱形的面积等于对角线乘积的一半求解即可.9.【答案】D【考点】命题与定理【解析】【解答】A 、有一个角是直角的平行四边形是矩形,正确,A 不符合题意; B 、一组邻边相等的矩形是正方形,正确,B 不符合题意;;C 、一组对边平行且相等的四边形是平行四边形,正确,C 不符合题意;D 、有两组邻边相等且平行的四边形是菱形,错误,D 不符合题意. 故答案为:D .【分析】首先依据矩形的定义、正方形的判定定理、平行四边形的判定定理、菱形的判定定理判定命题的对错,从而可做出判断. 10.【答案】B【考点】待定系数法求一次函数解析式【解析】【解答】解:如图,∵A (0,0),B (10,0),C (12,6),D (2,6),∴AB=10﹣0=10,CD=12﹣2=10, 又点C 、D 的纵坐标相同, ∴AB ∥CD 且AB=CD ,∴四边形ABCD 是平行四边形, ∵12÷2=6,6÷2=3,∴对角线交点P 的坐标是(6,3),∵直线y=mx ﹣3m+6将四边形ABCD 分成面积相等的两部分, ∴直线y=mx ﹣3m+6经过点P , ∴6m ﹣3m+6=3, 解得m=﹣1. 故答案为:B .【分析】首先依据各点的坐标可确定出四边形ABCD 为平行四边形,然后可求得两对角线交点的坐标,然后由直线平分线四边形的面积可知直线经过点(6,3),最后将点(6,3)代入直线解析式求解即可. 二、<b >填空题</b> 11.【答案】1 【考点】分母有理化【解析】【解答】解:∵a= +2,b=﹣2,∴ab=(+2)(﹣2)=5﹣4=1,故答案为:1【分析】依据平方差公式和二次根式的性质进行计算即可.12.【答案】1【考点】一次函数与一元一次方程【解析】【解答】解:根据上表中的数据值,当y=0时,x=1,即一元一次方程kx+b=0的解是x=1.故答案是:1.【分析】依据表格找出当y=0时,对应的x的取值即可.13.【答案】x>0【考点】一次函数与一元一次不等式【解析】【解答】解:由题意,可知一次函数y=mx+n的图象经过点(0,2),且y随x的增大而增大,所以关于x的不等式mx+n>2的解集是x>0.故答案为:x>0.【分析】不等式的解集为当y>2时,函数自变量的取值范围.14.【答案】0【考点】方差【解析】【解答】解:该组数据一样,没有波动,方差为0,故答案为:0.【分析】方差的意义或利用方差公式进行解答即可.15.【答案】18【考点】勾股定理的应用【解析】【解答】解:∵PC=AB=30,PA=6,∴AC=24,∴BC= = =18,∴下端离开墙角18个单位.故答案为:18.【分析】根据题意可得到PC=AB=30,AC=24,然后在Rt△ABC中利用勾股定理求出CB的长即可.16.【答案】①③【考点】中点四边形【解析】【解答】解:延长IF交AB于K,∵DF=EF,BG=GE,∴FG= BD,GF∥AB,同理IF∥AC,HI= BD,HI∥BD,∴∠BKI=∠A=90°,∴∠GFI=∠BKI=90°,∴GF⊥FI,故①正确,∴FG=HI,FG∥HI,∴四边形FGHI是平行四边形,∵∠GFI=90°,∴四边形FGHI是矩形,故②④错误,延长EI交BC于N,则△DEI≌△CNI,∴DE=CN,EJ=JN,∵EG=GB,EI=IN,∴GI= BHN= (BC﹣DE),故③正确,故答案为①③.【分析】对于①,延长IF交AB于K,然后根据两直线平行同位角相等进行解答即可;对于②和④.只要证明四边形FGHI是矩形即可判断;对于③,先延长EI交BC于N,然后再证明△DEI≌△CNI,依据全等三角形的性质可得到DE=CN,EJ=JN,然后再结合中点的定义可推出GI=HN=(BC-DE).三、<b >解答题</b>17.【答案】解:原式=(6 + ﹣3 )×= ×=7.【考点】二次根式的混合运算【解析】【分析】先将各二次根式化简为最简二次根式,然后再合并同类二次根式,最后,在依据二次根式的乘法法则进行计算即可.18.【答案】(1)解:在Rt△ABD中,AD= =3(2)解:在Rt△ACD中,AC= =2 ,则△ABC的周长=AB+AC+BC=5+4+ +2 =9+3【考点】勾股定理【解析】【分析】(1)在Rt△ABD中,依据勾股定理可求得AD的长;(2)在Rt△ACD中,依据勾股定理可求得AC的长,然后再依据三角形的周长等于三边长度之和求解即可.19.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,∵,∴△AEB≌△CFD(AAS),∴AE=CF,∴四边形AECF是平行四边形.【考点】平行四边形的判定与性质【解析】【分析】首先依据四边形的性质可得AB=CD,AB∥CD,然后再证明AE∥CF,接下来,利用AAS 证得△AEB≌△CFD,依据全等三角形的性质可得到AE=CF,最后依据一组对边相等且平行的四边形是平行四边形进行证明即可.20.【答案】(1)4.6(2)4.7(3)解:不能,∵小鸣同学右眼视力是4.5,小于中位数4.7,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.【考点】中位数、众数【解析】【解答】解:(1)该班学生右眼视力的平均数是×(4.0+4.1×2+4.2×5+4.3×4+4.4×3+4.5×5+4.6+4.7+4.8×5+4.9×10+5.0×6)≈4.6,故答案为:4.6;(2)由于共有43个数据,其中位数为第22个数据,即中位数为4.7,(3)不能,∵小鸣同学右眼视力是4.5,小于中位数4.7,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.故答案为:(1)4.6;(2)4.7;(3)不能.【分析】(1)根据加权平均数公式求解即可;(2)首先将这组数据按照从小到大的顺序排列,中位数为第22个数据;(3)根据小鸣同学右眼视力是4.5,小于中位数4.7,故此可得到问题的答案.21.【答案】(1)解:∵四边形ABCD是正方形,∴BC=CD=6,∠BCD=∠ECD=90°,OB=OD,∵CE=8,∴BE=14,∵OB=OD,DF=FE,∴OF= BE=7.(2)解:在Rt△DCE中,DE= = =10,∵DF=FE,∴CF= DE=5.【考点】正方形的性质【解析】【分析】(1)由正方形的性质可知O为BD的中点,故此OF是△DBE的中位线,然后依据三角形中位线的性质解答即可;(2)在Rt△DCE中,利用勾股定理求出DE,再利用直角三角形斜边上中线等于斜边的一半求解即可. 22.【答案】(1)解:将点A(﹣30,0)、B(0,15)代入y=kx+b,,解得:,∴直线y=kx+b的解析式为y= x+15.(2)解:联立两直线解析式成方程组,,解得:,∴点P的坐标为(20,25).当x=0时,y=x+5=5,∴点C的坐标为(0,5),∴BC=15﹣5=10,∴S△PBC= BC•x P= ×10×20=100.【考点】两条直线相交或平行问题【解析】【分析】(1)将点A和点B的坐标代入直线的解析式得到关于k、b的方程组,从而可求得k、b 的值,于是可得到直线AB的解析式;(2)联立两直线解析式成方程组,通过解方程组可得出点P的坐标,由一次函数图象上点的坐标特征可求出点C的坐标,进而可得出线段BC的长度,最后利用三角形的面积公式求解即可.23.【答案】(1)解:由题意可得,当0≤x≤9且x为正整数时,y=1﹣0.1x,当x≥10且x为正整数时,y=0.1,即y关于x的函数解析式是y=(2)解:由题意可得,当0≤x≤9时,1﹣0.1x>0.5,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;当0≤x≤9时,1﹣0.1x=0.5,得x=5,则x=5时,选择A或B品牌的共享单车消费一样;当0≤x≤9时,1﹣0.1x<0.5,得x>5,则x>5且x为正整数,选择A品牌的共享单车;当x≥10且x为正整数时,0.1<0.5,故答案为:项A品牌的共享单车.【考点】二元一次方程组的应用,一次函数的应用【解析】【分析】(1)可分为0≤x≤9且x为正整数或x≥10且x为正整数两种情况列出y与x的函数关系式;(2)分为0≤x≤9;0≤x≤9;0≤x≤9;当x≥10四种情况列出关于x的方程或不等式,然后再进行求解即可.24.【答案】(1)解:∵∠M=∠N=∠MBC=90°,∴四边形MNCB是矩形,∵MB=MN=2,∴矩形MNCB是正方形,∴NC=CB=2,由折叠得:AN=AC= NC=1,Rt△ACB中,由勾股定理得:AB= = ,∴AD=AB= ,∴CD=AD﹣AC= ﹣1;(2)解:四边形ABQD是菱形,理由是:由折叠得:AB=AD,∠BAQ=∠QAD,∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠BQA,∴AB=BQ,∴BQ=AD,BQ∥AD,∴四边形ABQD是平行四边形,∵AB=AD,∴四边形ABQD是菱形.【考点】正方形的判定与性质【解析】【分析】(1)首先证明四边形MNCB为正方形,然后再依据折叠的性质得到:CA=1,AB=AD,最后再依据CD=AD-AC求解即可;(2)根据平行线的性质和折叠的性质可得到∠BAQ=∠BQA,然后依据等角对等边的性质得到AB=BQ,接下来,依据一组对边平行且相等的四边形为平行四边形可证明四边形ABQD是平行四边形,再由AB=AD,可得四边形ABQD是菱形.25.【答案】(1)解:如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.(2)解:由题意S1﹣S2= (4+x)•x﹣•(4﹣x)•x=x2(0<x<4).(3)解:①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°= ,∴S1﹣S2=x2= .②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=22.5°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN= x,∴x+x=4,∴x=4 ﹣4,∴S1﹣S2=(4 ﹣4)2=48﹣32 .【考点】正方形的性质【解析】【分析】(1)首先延长BP交DE于M.然后依据SAS可证明△BCP≌△DCE,依据全等三角形的性质可得到∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°;(2)根据题意可得到S1-S2=S△PBE-S△PDE,然后依据三角形的面积公式列出函数关系式即可;(3)分当∠PBF=30°和∠PBF=45°两种情形分别求出PC的长,最后再利用(2)中结论进行计算即可.。

2016至2017学年度八年级数学下学期期末测试卷

2016至2017学年度八年级数学下学期期末测试卷

2016~2017学年度下学期期末测试卷八年级数学(考试时间:120分钟满分:120分)一、选择题(12小题,每小题3分,共36分,在每题给出的四个选项中,只有一项是符合题目要求的,将你的结果填在括号()内)1.9的值是()A. 9B. 3C. -3D. 32.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对3.对于函数y=﹣3x是怎样平移得到y=﹣3x+3()A.向上平移3个单位长度而得到B.向下平移3个单位长度而得到C.向左平移3个单位长度而得到D.向右平移3个单位长度而得到4.在直角三角形中,两条直角边的长分别是6和8,则斜边上的中线长是( )A. 10B. 5C. 8.5D. 5.55.函数y=3x﹣4与函数y=2x+3的交点的坐标是( )A.(5,6)B.(7,﹣7)C.(﹣7,﹣17)D.(7,17)2016~2017学年度下学期期末测试卷(八年级数学)第1页(共8页)2016~2017学年度下学期期末测试卷(八年级数学)第2页(共8页)6.下列二次根式中,最简二次根式是( )A.a8 B.a5 C. D.b a a 22+7.如图,有两颗树,一颗高7米,另一颗高4米,两树 相距4米,一只鸟从一棵树的树梢飞到另一颗树的树梢, 问小鸟至少飞行了( )米A. 4B. 5C. 6D. 78.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x+3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A . y 1>y 2B . y 1>y 2>0C . y 1<y 2D . y 1=y 2 9.不能判断四边形ABCD 是平行四边形的是( ) A . AB=CD ,AD=BC B . AB=CD ,AB ∥CD C . AB=CD ,AD ∥BC D . AB ∥CD ,AD ∥BC10.一个样本的方差为S ²= ,那么这个样本的平均数为( )A . 6B .C . 5D .11.下列图形中,表示一次函数y=kx+t 与正比例函数y=ktx (k 、t 为常数,且kt ≠0)的图象的是( )xyxyxyxyooooA BCD613a 65()()()⎥⎦⎤⎢⎣⎡-++-+-25625225161x x x 第7题图2016~2017学年度下学期期末测试卷(八年级数学)第3页(共8页)12.如图,四边形ABED 和四边形AFCD 都是平行四边形,AF 和DE 相交成直角,AG=3cm ,DG=4cm ,平行四边形ABED 的面积是36㎝², 则四边形ABCD 的周长为( ) A. 49 cm B . 43 cm C . 41 cm D . 46 cm二 、填空题(本大题共6小题,每小题3分,共18分)13. 函数y=kx 的图象经过点P(3,-1),则k 的值为 . 14. 一组数据-1,0,1,2的平均值是 .15. 已知直线y =2x +8与两条坐标轴围成的三角形的面积是__________. 16. 已知菱形的两条对角线分别是6和8,则这个菱形的边长是_________. 17.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点, 若BC=18,则DE= .第17题图 第18题图18.如图,在正方形纸片ABCD 中,一边长为12,将顶点A 折叠至DC 边上的点E ,使DE=5,折痕为PQ ,则PQ 的长为 .ADB FG第12题图ABCD E三、解答题(共66分)解答应写出必要的文字说明、演算过程或推理步骤.19.(6分)计算(1)(2)20.(6分)按列表、描点、连线的要求,在同一坐标系中画出y=2x和y=2x+1的图象,请你观察两个函数的解析式及其图象,问有什么共同点和不同点?22+3()2-2+(3)(3)2016~2017学年度下学期期末测试卷(八年级数学)第4页(共8页)21.(8分)如图,长为4米的梯子搭在墙上与地面成450角,作业时调整为600角,请求出梯子的顶端沿墙面升高了多少米?第21题图22.(8分)为了了解某校1500名学生的视力情况,从中抽取一部分学生进行抽样调查,利用所得视力数据为:4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3并绘制了如下的统计图。

初中数学 广东省广州市南沙区八年级数学下学期期末测试考试题考试卷及答案

初中数学 广东省广州市南沙区八年级数学下学期期末测试考试题考试卷及答案

xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:代数式,,,中分式的个数是()A. 1 B. 2 C. 3 D.4试题2:不改变分式的值,下列变化正确的是()A. B. C. D.试题3:下列各点中,在函数的图像上的是(A. (-2,1)B. (2,1)C.(2,-2)D.(1,2)试题4:下列各组线段中,能构成直角三角形的是()A.2,3,4 B.3,4,6 C. 5,12,13 D. 4,6,7试题5:在□ABCD中,∠A=80°,∠B=100°,则∠C等于()A. 60°B. 80°C. 100°D.120°试题6:下列计算正确的是()A.B. C.D.试题7:下列四边形中,对角线相等且互相垂直平分的是()A.平行四边形 B.正方形 C.等腰梯形 D.矩形试题8:一组数据 -1,-2,3,4,5,则该组数据的极差是()A. 7B. 6C. 4D. 3试题9:下列命题的逆命题是假命题的是()A.两直线平行,同位角相等B.平行四边形的对角线互相平分C.菱形的四条边相等D.正方形的四个角都是直角试题10:如图1,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是()A. x<-1B. x>2C. x<-1或0<x<2 D. -1<x<0或x>2试题11:若分式有意义,则x的取值范围是 .试题12:随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:,,,,则小麦长势比较整齐的试验田是 .(填“甲”或者“乙”)试题13:分式方程的解是 .试题14:如图:矩形ABCD的对角线相交于点O,AB = 4cm,∠AOB=60°,则AD= cm.试题15:如图,P是反比例函数图象在第二象限上的一点,E、F分别在x轴,y轴上,且矩形PEOF的面积为8,则反比例函数的表达式是 .试题16:先化简再求值,,其中=.试题17:)下图5是某篮球队队员年龄结构直方图,根据图中信息解答下列问题:(1)该队队员年龄的平均数;(2)该队队员年龄的众数和中位数.试题18:,CD=12m,DA=13m,求该四边形菜地ABCD的面积.如图6所示有一块四边形草地ABCD,∠B=90°, AB=4m,BC=3m某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?试题20:如图7,△ABC中,已知∠BAC=45°,AD⊥BC于D.(1)分别以AB 、AC为对称轴,画出△ABD 、△ACD的轴对称图形,D点的关于AB、AC对称点分别为E、F,延长EB、FC 相交于点G;(2)求证四边形AEGF是正方形.试题21:如图8所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的总蓄水量;(2)写出此函数的解析式;(3)若要6 h排完水池中的水,那么每小时的排水量应该是多少?试题22:如图9,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.(1)试探索四边形EGFH的形状,并说明理由;(2)当点E运动到什么位置时,四边形EGFH是菱形?并加以证明;(3)若(2)中的菱形EGFH是正方形,请探索线段EF与线段BC的关系,并证明你的结论.试题23:如图10,一次函数与反比例函数()的图像相交于点P,PA⊥x轴于点A, PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、D,且,.(1)求点D的坐标及BD的长;(2)求一次函数与反比例函数的解析式;(3)点是反比例函数的图像上的一个动点,过点作⊥轴于点,是否存在点使得四边形的面积大于12且与以为顶点的四边形的面积相等,若存在,求点坐标;若不存在,请说明理由.试题1答案:B试题2答案:C试题3答案:A试题4答案:C试题5答案:B试题6答案:C试题7答案:B试题8答案:A试题9答案:D试题10答案:C试题11答案:试题12答案:甲试题13答案:试题14答案:试题15答案:试题16答案:解:原式==当时,原式=试题17答案:解:(1)岁(2)众数是21岁,中位数是21岁试题18答案:解:连接AC∵∠B=90°,AB=4m,BC=3m,∴AC=∵CD=12m,DA=13m,∴∴∠ACD=90°∴,∴试题19答案:解:设该厂原来每天加工x个零件,依题意得:解得:x=50经检验x=50是原方程的解.答:设该厂原来每天加工50个零件.试题20答案:解(1)画对一个轴对称得一分,延长EB、FC相交于点G得1分,共3分(2)证明由题意可得:试题21答案:解(1)由题意可得当t=12时,V为4000,所以总蓄水量为12×4000=48000 m3(2)解析式为(3)当t=6时,代入解得V=8000,所以每小时的排水量为8000 m3试题22答案:解(1)四边形EGFH是平行四边形证明:∵G、F、H分别是BE、BC、CE的中点,∴GF∥EH,GF=EH∴四边形EGFH是平行四边形(2)当点E是AD的中点时,四边形EGFH是菱形证明:∵四边形ABCD是等腰梯形,∴AB=CD,∠A=∠D∵AE=DE∴△ABE≌△DCE∴BE=CE∵G、H分别是BE、CE的中点∴EG=EH又由(1)知四边形EGFH是平行四边形∴四边形EGFH是菱形(3)EF⊥BC,EF=BC证明:∵四边形EGFH是正方形∴EG=EH, ∠BEC=90°∵G、H分别是BE、CE的中点∴EB=EC∵F是BC的中点∴EF⊥BC,EF=BC用其它证明方法也得分,过程略。

16年广州市南沙区八年级下册期末测试卷(优选.)

16年广州市南沙区八年级下册期末测试卷(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改
一、语法选择(共 15 小题;每小题 1 分,满分 15 分)A little boy wanted to meet God, so he started his trip with some cakes and orange juice. 1 his way, he saw an old woman sitting in the park. The boy 2 down next to her. The old lady looked 3 , so he offered her a cake. She accepted it thankfully and smiled at him. Her smile was 4 pretty that the boy wanted to see it again, so he gave her 5 cake and a bottle of orange juice. Once again she smiled at him. 6 happy the boy was ! They sat there all afternoon eating and smiling, 7 they never said a word. As it grew dark, the boy got up 8 . 9 he left, he gave her a hug. And her biggest smile 10 to him, too.
When the boy 11 home, his mother saw the look of joy on his face. She asked him, “ 12 made you so happy?” he replied, “I had lunch with God. She’s got the most beautiful smile I’ve ever seen!” The old woman also returned to her home 13 . His son asked, “Mother, why are you so happy?” She answered, “I ate cakes in the park with God. You know, he’s14 than I expected. I’m looking forward to 15 him again.”1. A. In B. On C. By D. With
2. A. was sitting B. sits C. sat D. sit3. A. hungry B. hungrily C. hunger D. hungrier4. A. very B. too C. quite D. so5. A. the other B. another C. other D. others6. A. How B. How a C. What a D. What7. A. and B. so C. but D. or8. A. left B. to leave C. leaving D. leaves9. A. Before B. After C. Until D. Since10. A. gave B. was given C. gives D. give11. A. got to B. got C. reaches D. arrived in12. A. Which B. Where C. What D. Why13. A. happily B. happy C. happier D. happiness14. A. more young B. much younger C. more younger D. the youngest15. A. meet B. met C. meeting D. meets二、完形填空(共 10 小题;每小题 1.5 分,满分 15 分)The first robots were 16 in the 1920s. Robots have been in many American 17 . In some films, they are stronger, faster and even cleverer than people.In real life, robots are mainly used in factories. They do some dangerous and 18 jobs for humans.Robots also helped the 19 people, for example, blind people. Today many blind people have a guide dog to help them. In the future, guide dogs might be 20 dogs. One kind of robot guide dog has wheels. It moves 21 the owner. It is very clever. It knows how fast its owner walks. The owner 22 a special belt. This belt sends instructions to the owner from the dog, such as “Stop here”, “Turn left” or“turn right.”Robots are also 23 in American hospitals. They can do simple jobs. At one hospital, for example, a robot takes 24 from the kitchen to patients’ rooms. It never gets lost because this robot has a map of the hospital in its electronic brain.Though robots can help people in many different ways, they will never 25 humans.16. A. invented B. found C. took D. brought17. A. pictures B. schools C. films D. companies18. A. important B. difficult C. easy D. clever19. A. careful B. weak C. disabled D. common20. A. toy B. police C. robot D. rescue21. A. behind B. in front of C. far away from D. in22. A. wears B. discovers C. makes D. buys23. A. paid B. made C. invented D. used24. A. meals B. tools C. clothes D. medicine25. A. care for B. take the place of C. play against D. close to三、阅读(共两节,满分35 分)第一节阅读理解(共20 小题;每小题1.5 分,满分30 分)(A)I didn’t think the passion(激情) was important for my life until that day.One day I went out with my mum. I was bored. Then, as my mum stopped at a red light, someone on the side of the road caught my eye. It was a man wearing old clothes. He was homeless. That didn’t interest me, for I had seen many like him before.But in some way he was different. This man was not sad to sit there. He had a radio in his hand and was dancing happily to the music. The radio seemed to be the most important thing.“Mum, why does that man have a radio even though he’s homeless?” I asked.“He bought it,” she answered. I was still puzzled.“But if he’s homeless, why doesn’t he use the money to buy food or clothes? He wasted it on something he doesn’t need.”“Well, Sarah, sometimes food and clothes aren’t the most important things. We needhappiness, too.”That man must care enough about music to buy a radio instead of food or clothes. I soon realized that happiness is the key to life. Without it, there’s nothing to look forward to. A passion gives a person the happiness they need to keep going. We all need a passion.26. That man didn't interest me at first because ___________.A. he was homeless.B. he was in old clothes.C. he was not sad to sit there.D. I had seen many like him before.27. The radio could make the homeless people ______________.A. happyB. sadC. hungryD. bored28. What does the underlined word "it" refer to?A. foodB. clothesC. moneyD. radio29. Why did the homeless man buy a radio?A. Because he had much money.B. Because he needn't have food or home.C. Because he cared enough about music.D. Because the radio was too cheap.30. Which of the following is NOT true?A. The happiness is the key to life.B. Food and clothes are part of life.C. The passion is very important in our life.D. People should buy a radio instead of food and clothes.(B)Kobe Bryant, a super basketball star, announced that he would retire at the end of the 2015-16 season through a letter poem. In the letter, he recalled his life of basketball.Kobe Bryant was born with basketball already in his blood. His dad was a former NBA star. When Kobe was six years old, his dad started playing basketball in Europe, so his family moved to Italy. The family stayed there for seven years. While living in Italy, Kobe started playing basketball.The family moved back to the United States when Kobe was 13 and he started playing highschool basketball. When Kobe finished high school, he thought he was already good enough to play in the NBA. Although he didn’t go to college, Kobe was a quick learner on the courts of the NBA. He played in the NBA All-Star Game for the first time in 1998 and by 2000, Kobe had developed into one of the best basketball players. Kobe and Shaquille O'Neal teamed up to lead the LA Lakers to three NBA Championship Titles from 2000 to 2002.In 2003, Kobe was caught by the police. In 2004, the case against Kobe was dropped. Thatyear, O'Neal was traded to the Heat. Though the Lakers didn't play well in the next few years, the 2007-2008 season is when the LA Lakers finally went on to have the best record of any team.Kobe had won 17 NBA All-Stars Selections, five NBA Championships with the Lakers, two Olympic gold medals. His retirement from basketball made his fans very sad.31. According to the underlined sentence in the second paragraph, the writer means _____.A. Kobe's blood was special when he was bornB. all of Kobe's family members are basketball playersC. Kobe liked to play with a basketball as a babyD. Kobe was born to be a basketball player32. We can infer from the third paragraph that _____.A. the Lakers won the NBA Championship in 2001.B. in 1998, Kobe became one of the best basketball players.C. the LA Lakers have won three NBA Championship Titles till now.D. Kobe was confident about his playing before high school.33. What is the right order of the following events?a. Shaq was traded to the Heat.b. Kobe was caught by the police.c. Kobe's family moved to Italy.d. Kobe played in the NBA All-Star Game for the first time.e. Kobe retired from basketball.A. c-b-e-a-dB. c-d-b-a-eC. c-a-b-d-eD. e-d-c-a-b34. Kobe Bryant had won ___________ NBA Championships with the Lakers.A. 17B. 2C. 5D.1335. The writer wrote the passage to _____.A. give us a brief introduction of KobeB. tell us how to become a basketball starC. give us some news about the NBAAll-Star GameD. introduce the LA Lakers(C)People use their mouths for many things. They eat, talk, shout and sing. They smile and kiss. In the English language, there are many expresions using the word “mouth”. But some of them are not so nice.For example, if you say bad things about a person, the person might protest and say “Do not bad mouth me”.Sometimes when one person is speaking, he says the same thing that his friend was going to say. When this happens, the frie nd might say, “You took the words right out of my mouth!” Sometimes a person has a bad or unpleasant experience with another person. He might say that experience “left a bad taste in my mouth”. Or the person has possibly had a very frightening experience, like being chased by an angry dog. She might say, “I had my heart in my mouth”.Some people have lots of money because they were born into a very rich family. There is an expresion for this, too. You might say such a person “was born with a silver spoon in his mouth”. This richperson is the opposite of a person who lives from “hand to mouth”. This person is very poor and only has enough money for the most important things in life, like food.36. When a man says "I had my heart in my mouth", usually he means he was ___________.A. excitedB. frightenedC. surprisedD. satisfied37. Your best friend Tony said what you were going to say, you might say,"_____________".A. You were born with a silver spoon in your mouth.B. You really put my foot in my mouth.C. You really left a bad taste in my mouth.D. You took the words right out of my mouth.38. What does the underlined word "chase" mean in Chinese?A. 追赶B.戏耍C.喂食D.陪伴39. A person who lives from "hand to mouth" is very ________________.A. happyB. healthyC. poorD. rich40. Which of the following might be the best title for this passage?A. Different Uses of MouthB. People and Their MouthsC. Expresions about MouthD. The Importance of Mouth(D)41. When was the film Captain America : Civil War first on in China?A. May 6B. May 7C. May 9D. May 1542. How much is the investment to the Shanghai Disney Theme Park?A. ¥5.5 billionB. ¥34 billionC. $34 billionD. $5.5 million43. How old was Song Joong-ki when he played the leading role in Descendants of the Sun?A. 29B. 31C. 33D. 3444. Which of the following is NOT the reason for refusing to have a second child according to the website?A. It will cost too much money.B. Mothers don’t have enough energy.C. The first child won’t feel lonely.D. It will affect their careers.45. What can we learn from the website?A. Song Joong-ki served in the army after he played the leading role in Descendants of the Sun.B. The Disney Theme Park in Beijing opened.C. Wang Juan doesn’t plan to have two children because of the age and health.D. The film Captain America : Civil War earned 389 million yuan in China till May 15.第二节阅读填空(共5 小题;每小题1 分,满分5 分)阅读短文及文后选项,选出可以填入空白处的最佳选项。

广州市南沙区八年级下学期期末学业水平测试数学试题(WORD版)

广州市南沙区八年级下学期期末学业水平测试数学试题(WORD版)

南沙区2015 -2016学年第二学期八年级期末学业水平测试数学第一部分选择题(共32分)一、选择题(本大题共10小题,每小题2分,满分20分。

在每小题给出的四个选项中只有一项是符合题目要求的。

)1.下列二次根式中,最简二次根式是(※)。

A.13 B. 0.3 C. 3 D. 202.下列各式成立的是(※)。

3.如图,在菱形ABCD 中,下列结论中错误的是(※)。

A. ∠1 =∠2B. AC⊥BDC. AB=ADD. AC=BD4.在某校“我的中国梦”演讲比赛中,有9 名学生参加决赛,他们决赛的最终成绩各不相同。

其中一名学生想要知道自己能否进入前5 名,不仅要了解自己的成绩,还要了解这9 名学生成绩的(※)。

A. 平均数B. 中位数C. 众数D. 方差5.下列四个选项中,不是y 关于x 的函数的是(※)。

6.在下列长度的各组线段中,不能构成直角三角形的是(※)。

A. 3,4,5B.5,1213, C. 1,3,2 D. 4,5,417.下列函数中,y 随x 的增大而减少的函数是(※)。

A. y=2x +8B. y=3x-2C. y =-2 -4xD. y =4x8.顺次连接一个矩形各边的中点,得到的四边形一定是(※)。

A. 菱形B. 矩形C. 正方形D. 梯形9.2016 年5 月22 日10 时5 分,西藏日喀则市定日县发生5.3 级地震,该县部分地区受灾严重,我解放军某部火速向灾区救援,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们离出发地的距离S(千米)与行进时间t(小时)的函数大致图象,你认为正确的是(※)。

10.如右图,点O(0,0),A(0,1)是正方形OAA1B 的两个顶点,以OA1 对角线为边作正方形OA1A2B1,再以正方形的对角线OA2 作正方形OA1A2B1,……,依此规律,则点A8 的坐标是(※)。

2016-2017学年第二学期期末考试八年级试题及答案

2016-2017学年第二学期期末考试八年级试题及答案

2016—2017学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分30分. 1.要使二次根式5+x 在实数范围内有意义,则x 必须满足 A.x ≥5B.x ≥-5C.x > 5 D .5-≠x2.下列计算正确的是A .662-=-)(B .4972=-)( C .312314= D .2312=÷ 3.△ABC 中,AB=AC ,AD 平分∠BAC 交BC 于点D ,若AB =5,AD =3,则BC 的长为 A .5B.6C.8D.104.如图,在□ABCD 中,下列结论中错误的是 A .∠1=∠2 B. ∠BAD =∠BCD C .AB =CD D. AC ⊥BD5.□ABCD 的对角线AC ,BD 相交于点O ,再添加下 列一个条件,仍不能判定四边形ABCD 是矩形的是A.AB =ADB. OA =OBC. AC =BDD.DC ⊥BC(第4题图)B6.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是A.255分B. 86.5分C.85.5分D. 84.5分7.菲尔兹奖是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.则这56个数据的中位数落在A.第一组B.第二组C.第三组D.第四组 8.一次函数y =4x ,y =﹣7x ,y =x 54-的共同特点是 A. 图象都过原点B. 图象位于同样的象限C. y 随x 增大而增大D. y 随x 增大而减小9.若正比例函数y =(1﹣4m )x 的图象经过点A (1x ,1y )和点B (2x ,2y ),当21x x < 时,21y y >,则m 的取值范围是 A. m >0B. m <0C. 41>m D. 41<m 10.如图,正方形ABCD 中,AB =6,点E 在边CD 上, 且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3. 其中错误的结论是 A. ①B. ②C. ③D. ④第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分.13.如果将直线y =﹣2x 向上平移4个单位,那么平移后的直线与坐标轴围成的三角形面积 为 .14.直线1y x =+与直线22y x =-+的交点坐标是 .(第10题图)EB15.小东早晨从家骑车到学校,先上坡后下坡,行驶的路程y (千米)与所用的时间x (分)之间的函数关系如图所示,若小东返回时上、下坡的速度仍保持不变,则他从学校骑车回家用的时间是 分.16.如图,在矩形ABCD 中,DE ⊥AC ,∠ADE =21∠CDE ,则∠BDC 的度数是 .17.一个平行四边形的一条边长是9,两条对角线的长分别是12和,则这个平行四边 形的面积是 . 18.如图,在四边形ABCD 中,E 是AB 上的一点,△ADE 和△BCE 都是等边三角形,点P 、Q 、M 、N 分别为AB 、BC 、CD 、DA的中点,则四边形MNPQ 是 形.三、解答题:本大题共6个小题,满分46分. 解答时请写出必要的演推过程.19.计算:)()(322245.06-⨯-. 20.如图,△ABC 中,AB =AC ,B C =20,D 为AB 上一点,且CD =16,BD =12,求AC 的长. 21.学校想从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下, 两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83; 乙:88,79,90,81,72. 请回答下列问题:(1)甲成绩的平均数x 甲= ,乙成绩的平均数是x 乙= ; (2)分别计算出甲、乙两名同学成绩的方差;(3)综合两人成绩的平均数与方差,你认为选拔谁参加比赛更合适,并说明理由.(第15题图) 分A B(第16题图)(第20题图) BC (第18题图) P A E B22.汽车出发前油箱有油50L ,行驶若干小时后,在加油站加油若干升.从出发后,油箱中剩余油量y (L )与行驶时间t (h )之间的关系图象如图所示. (1)汽车行驶 h 后加油,中途加油 L ; (2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;(3)已知加油前、后汽车都以70km/h 匀速行驶,如果加油站距目的地210km ,那么要到达目的地,油箱中的油是否够用?请说明理由.23.如图,直线34y x =+与x 轴、y 轴分别交于点A 、B ,动点P 从点A 出发,以每秒1个单位的速度沿AB 向终点B 运动,同时动点Q 从点O 出发,以每秒0.8个单位的速度沿OA 向终点A 运动,过点Q 作QC ∥AB 交y 轴于点C .设运动时间为t (0<t <5)秒,问在运动过程中,四边形APCQ 是何种特殊的四边形?并证明你的结论. 24.四边形ABCD 是菱形,∠B =60°,点E ,F 分别在BC ,DC 上,连接AE ,EF ,AF . (1)如图24-1,若∠EAF =60°,求证:△AEF 是等边三角形;(2)如图24-2,若∠AEF =60°,判断此时的△AEF 是不是等边三角形?并说明理由.(图24-1)(图24-2)(第23题图)2016—2017学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11. 5; 12.10; 13. 4; 14. 14(,)33;15.42; 16. 30°; 17. 18. 菱. 三、解答题:(共46分)19. )()(322245.06-⨯- =)()(63262226-⨯- ………………………………………… 3分=634226⨯-)( ………………………………………… 4分=3348-. ………………………………………… 6分 20. 解:∵40016122222=+=+CD BD ,4002022==BC , ………… 1分∴222BC CD BD =+,∴△DBC 是直角三角形,且∠BDC =90°, ………………………… 2分 ∴∠ADC =90°,∴222AC CD AD =+, ………………………………………… 3分 ∴设AD =x ,则AC =AB =12+x ,可得方程222)12(16x x +=+, …… 5分解方程得314=x , ………………………………………… 6分 ∴35031412=+=AC . ………………………………………… 7分 21.解:(1)83,82; ……………………………………………… 2分………5分(3)选拔甲参加比赛更合适. …………………………………………………6分∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.…………………………………………………7分22.解:(1)3, 31;…………………………………………………2分(2)设函数关系式为y kt b=+,………………………………………………3分∵函数图象过点(0,50)和(3,14),∴50,314bk b=⎧⎨+=⎩,………………………………………………4分解得12,50kb=-⎧⎨=⎩,∴所求函数关系式是1250y t=-+;…………………………5分(3)油箱中的油够用.………………………………………………………6分∵汽车加油前行驶了3小时,行驶了3×70=210(km),用去了50﹣14=36升油,而目的地距加油站还有210km,∴要达到目的地还需36升油,而中途加油31升后有油45升,即油箱中的剩余油量是45升,多于36升,所以够用.因此,要到达目的地,油箱中的油够用.……………………………………8分23.解:四边形APCQ是平行四边形.…………………………………………1分证明:由题意可知AP=t,OQ=0.8t,∴Q(﹣0.8t,0),……………………2分∵AB ∥CQ ,∴可设直线CQ 解析式为34y x b =+,…………………………3分 把Q 点坐标代入可得30(0.8)4t b =⨯-+, ………………………………………4分 解得b =0.6t ,∴直线CQ 的解析式30.64y x t =+,……………………………………………5分 ∴OC =0.6t , ……………………………………………6分 在Rt △COQ 中,由勾股定理可得CQt , ………………7分 ∴CQ =AP ,又CQ ∥AP ,∴四边形APCQ 是平行四边形. …………………………………………8分 24.(1)证明:连接AC .∵四边形ABCD 是菱形,∠B =60°,∴AB =BC =CD =AD ,∠D =60°, ………………………………………………1分 ∴△ABC 和△ACD 都是等边三角形, ………………………………………2分 ∴AB =AC ,∠BAC =60°,∠ACD =60°,∴∠B =∠ACF ,…………………………………………………………3分 ∵∠BAC =60°,∠EAF =60°,∴∠BAE =∠CAF ,∴△BAE ≌△CAF , ………………………………………………………4分 ∴AE =AF ,又∠EAF =60°,∴△AEF 是等边三角形.………………………………………………………5分(答案图24-1)(答案图24-2)DB(2)此时的△AEF是等边三角形.……………………………………………6分理由:在AB上截取AG=EC,连接GE.……………………………………7分∵四边形ABCD是菱形,∠B=60°,∴AB=BC,∠C=120°,又AG=EC,∴BG=BE,又∠B=60°,∴△BGE是等边三角形,∴∠BGE=60°,∴∠AGE=120°,∴∠AGE=∠C.……………………………………………………8分∵∠AEC是△BGE的外角,∴∠AEC=∠B+∠GAE,即∠AEF+∠FEC =∠B+∠GAE,又∠B=60°,∠AEF=60°,∴∠GAE=∠FEC,又AG=EC,∠AGE=∠C,∴△AGE≌△E CF,……………………………………………………9分∴AE=EF,又∠AEF=60°,∴△AEF是等边三角形. ……………………………………………………10分。

2017八年级下数学期末试题及答案

2017八年级下数学期末试题及答案

2016-2017学年第二学期末质量检测试题数学(八年级)一、选择题:本大题共10小题,每小题3分,共30分.在每小题所给的4个选项中,只有一项符合题目要求的,请将代表正确选项的字1A .8 B .-8 C .-4 D .4 2.在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形 C.有一组邻边相等的平行四边形是菱形 D .对角线互相垂直平分的四边形是正方形3.已知一次函数b x y +=的图像经过第一、三、四象限,则b 的值可以是( ) (A )-1; (B )0; (C )1; (D )2.4.某个公司有15名工作人员,他们的月工资情况如下表.则该公司所有工作人员的月工资的平均数、中位数和众数分别是A .520,2 000,2 000B .2 600, 800,800C .1 240,2 000,800D .1 240,800,800 5.若菱形的周长为8,高为1,则菱形两邻角的度数比为( ) A.3:1 B.4:1 C.5:1 D.6:1 6.一次函数,若y 随x 的增大而增大,则k的值可以是( )(A )1 (B )2 (C )3 (D )4 7.若在实数范围内有意义,则x 的取值范围是( )A . x <3B .x≤3C . x >3D .x≥38.下列计算结果正确的是:(A)(B) (C) (D)9. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是 ( ) A.12 B. 24 C. 312 D. 31610. 爷爷每天坚持体育锻炼,某天他慢跑离家到中山公园,打了一会儿太极拳后搭公交车回家。

下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是( )二、填空题:本大题共7小题,每小题3分 共21分.请将答案直接填在题中的横线上.11.若20n 是整数,则正整数n 的最小值为________________.12.一次函数y =2x +3的图象沿y 轴向下平移2个单位,所得图象的函数解析式是____________________________.13. 随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:13=甲x ,13=乙x ,5.72=甲S ,6.212=乙S ,则小麦长势比较整齐的试验田是 (填“甲”或“乙”). 14. 如图所示,有一张一个角为600的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是_____________15.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y=-3x +b 上,则y 1,y 2,y 3的大小关系是________________________.16如图,一棵大树在离地面9米高的B 处断裂,树顶A 落在离树底部C 的12米处,则大树数断裂之前的高度为__________________17. 我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图” (如图①).图②由弦图变化得到,它是由八个第16题全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1、S2、S3,若S1+S2+S3=10,则S2的值是______________.三、解答题:本大题共9小题,共69分.从本大题开始各解答题应写出文字说明、证明过程或计算步骤.18.(本题满分12分)计算.(1)(2)19.(本题满分6分)我们学习了四边形和一些特殊的四边形,右图表示了在某种条件下它们之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省广州市南沙区2016-2017学年八年级下学期数学期末考试试卷
一、选择题
1. 若
有意义,则x的取值范围是( )
A . x>1 B . x≥1 C . x>﹣1 D . x≥﹣1
2. 下列计算正确的是( )
A . 2 ×3 =6 B . + = C . 3 ﹣ =3 D . =
3. 以下列各组数为边长首尾相连,能构成直角三角形的一组是( ) A . 2,3,4 B . 1,2, C . 5,12,17 D . 6,8,12 4. 直角三角形中,两直角边长分别是9和12,则斜边上的中线是( ) A . 30 B . 15 C . D .
A . (0,﹣1) B . (0,﹣2) C . (0,﹣3) D . (0,﹣4)
二、填空题
11. 将直线y=2x向下平移3个单位,得到的直线应为________.
12. 实数a在数轴上的位置如图所示,则
=________.
13. 某校规定学生期末综合成绩由三部分组成:期末考成绩占50%,期中考成绩占20%,平时成绩占30%,甲同学某学 期的期末考成绩为96分,期中考成绩为85分,平时成绩为90分,则甲同学该学期的期末综合成绩为________分.
22. 如图,四边形ABCD是菱形,对角线AC、BD相交于点O,分别延长OB,OD到点E,F,使BE=DF,顺次连接A、 E、C、F各点.
(1) 求证:∠FAD=∠EAB. (2) 若∠ADC=130°,要使四边形AECF是正方形,求∠FAD的度数. 23. 小明和小红两人周末去爬山,小红先出发,中间休息了一段时间,然后按休息前的进度继续前进,最后比小明迟到 达山顶.设他们俩从山脚出发后所用的时间t(分钟)与所走的路程S(米)之间的函数关系如图所示:
5. 如图,在平面直角坐标系中,A(0,0)、B(4,0)、D(1,2)为平行四边形的三个顶点,则第四个顶点C的坐
标是( )
A . (2,5) B . (4,2) C . (5,2) D . (6,2) 6. 一次函数y=﹣x+1的图象不经过的象限是( )
A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 7. 甲、乙两名同学在参加今年体育中考前各作了5次1分钟跳绳测试,两人的平均成绩相同,所测得成绩的方差分别是 S甲2=2.4,S乙2=5.2,那么( ) A . 甲的成绩更稳定 B . 乙的成绩更稳定 C . 甲、乙的成绩一样稳定 D . 不能确定谁的成绩更稳定 8. 如图,菱形ABCD的边长为5,∠ABC=120°,则此菱形ABCD的面积是( )
A . 20 B . 25 C .
D . 25
9. 如图,正方形ABCD的边长为4,现有一动点P从点A出发,沿A→B→C→D→A的路径以每秒1个单位长度的速度匀 速运动,设点P运动的时间为t,△APB的面积为S,则下列图象能大致反映S与t的函数关系的是( )
A.
B.
C.
D.
10. 如图,直线y= x﹣4分别与x轴、y轴交于点A和点B,点C、D分别是线段OA、AB的中点,点P为OB上一动点,当 PC+PD取最小值时点P的坐标是( )
8
7
6
5
4
3
2
2
5
7
9
3
回答下列问题:
(1)
测试记录中,篮球定点投篮进球数的众数是个,中位数是个.
(2)
求本次测试的人均进球数.
20. 如图,在平面直角坐标系xOy中,直线y1=﹣x+b过点A,且与直线y2=x+3相交于点B(m,2),直线y2=x+3与x轴相 交于点C.
(1) 求m的值. (2) 求△ABC的面积. (3) 根据图象,直接写出关于x的不等式﹣x+b>x+3的解集. 21. 为了推广城市绿色出行,南沙区交委准备在蕉门河沿岸东西走向AB路段建设一个共享单车停放点,该路段附近有 两个广场C和D,如图所示,CA⊥AB于A,DB⊥AB于B,AB=3km,CA=2km,DB=1.6km,试问这个单车停放点E应建 在距点A多少km处,才能使它到两广场的距离相等.
三、解答题
17. 计算:
(1)
﹣+

(2) ( ﹣2)2.
18. 如图,四边形BFCE是平行四边形,点A、B、C、D在同一条直线上,且AB=CD,连接AE、DF.求证:AE=DF

Hale Waihona Puke 19. 某校八年级部分学生利用课外活动时间,积极参加篮球定点投篮的训练,训练结束后进行一次测试,记录如下表:
进球数(个) 人数
(1) 根据图象小明登山的速度为米/分,小红的登山速度为米/分. (2) 求出BC段图象的函数关系式,并写出自变量的取值范围. (3) 小明到达山顶后,小红还有多少米到山顶? 24. 如图,四边形OABC为矩形,A点在x轴上,C点在y轴上,矩形一角经过翻折后,顶点B落在OA边的点G处,折痕
为EF,F点的坐标是(4,1),∠FGA=30°.
21. 22.
23. 24.
14. 已知点M(1,a)和点N(2,b)是一次函数y=﹣ x﹣1的图象上的两点,则a________b(填“>”或“=”或“<”)

15. 如图,在矩形ABCD中,对角线AC、BD相交于点O,点E在OC边上,且AB=BE,若∠CBE=20°,则∠COD=___ _____.
16. 如图,已知在正方形ABCD外取一点E,连接CE、BE、DE.过点C作CE的垂线交BE于点F.CE=CF=1,DF= .下列结论:①△BCF≌△DCE;②EB⊥ED;③点D到直线CE的距离为2;④S四边形DECF= + .其中正确结论的序 号是________.
(1) 求B点坐标. (2) 求直线EF解析式. (3) 若点M在y轴上,直线EF上是否存在点N,使以M、N、F、G为顶点的四边形是平行四边形?若存在,求N点的坐标;
若不存在,请说明理由.
参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.
16. 17. 18. 19. 20.
相关文档
最新文档