第五章学习和记忆神经生物学

合集下载

学习和记忆的神经生物学

学习和记忆的神经生物学

第二节
学习与记忆的神经基础
一、参与学习和记忆的脑结构 (一)颞叶的记忆作用 1、颞叶与视觉辨别学习 动物实验: 切除或损毁猴子子的颞叶,实验动物不再能够辨认熟悉的物体; Eg:丧失对蛇的恐惧感。 人类实验:
人类的颞叶受到微弱刺激能够唤起过去的经验;切除颞叶则产生了顺行性遗忘。 潘菲尔德刺激病人的颞叶,唤起了童年经验和遗忘很久的歌谣。 Herry.M 癫痫病人:切除双侧中层颞叶(海马切除 1/3 和 2/3 杏仁核) ,术后癫痫痊愈, 但产生顺行性遗忘症(短时记忆完好,但短时记忆向长时记忆转化障碍;空间记忆障碍) 。

正常大鼠经过训练可以在八臂迷宫(又叫放射性迷宫)内不走重复通路而得到食物。 海马被损毁的大鼠记不住曾经在迷宫中走过的无效通路。 20 世纪 70 年代,英国伦敦大学的学者通过细胞内电记录发现,当大鼠处于不同的位置 时,海马内不同神经元会选择性的产生反应(放电) 。大鼠海马位置细胞的放电反应是 动物“认为”的位置。
结构可变性 突触的数目和形态 脑皮层的重量和厚度,树突数目 乙酰胆碱的效能和活性 效能可变性
一、学习记忆与突触结构的可塑性 (一)低等动物学习训练过程中突触的解剖学变化(形态变化) 实验证据: 海参的趋光性:可旋转的小室有训练过的——神经末梢轴突呈河流三角洲散开状; 训练过的——神经末梢发散程度变小。 (二)哺乳动物学习过程中树突突触数目变化(丰富化养育环境实验) (脑皮层重量增加)
颞叶切除,对陈述性记忆影响很大,而几乎不影响程序性记忆:镜式画测验 2、颞叶参与视觉辨别学习的机制: 每侧颞叶下部神经元接受从相当大的视觉系统传来的信息,这些信息常常是构成有关视 觉刺激的整体特征。 也就是说, 视觉系统各个神经站把视觉对象的物理性质 (如大小、 形状、 颜色、以至于结构等)逐级汇合,最终在颞叶下部视觉的最后一个神经站综合该物体的全部 特征。因此,颞叶损伤或切除,必然要产生视觉(记忆)辨别障碍。 (二)海马和杏仁核在记忆中的作用 海马和杏仁核都是属于内侧颞叶的结构。 1.海马 海马参与陈述性记忆 海马内存在位置细胞,在空间位置记忆中有重要作用 海马对运动的速度、方向记忆的影响,参与相关记忆 海马在学习记忆中的神经元放电是原发性的 第一,海马参与陈述性记忆 海马切除影响了记忆信息的巩固。即海马在短时记忆转化为长时记忆中具有重要作用。 实验证据: DNMS——延迟性与非配对样品任务 Mishkin 切除海马和杏仁核,视觉系统正常,则表现记忆缺失。记忆缺陷不局限于视觉记忆。 通过恒河猴子进行实验证明,海马是对感觉体验进行加工并转化为记忆贮存(记忆 巩固)的关键部位之一。 第二,海马参与空间位置记忆 海马中有位置细胞 place cell(位置记忆) 实验证据:

第五章 学习和记忆

第五章  学习和记忆

G-蛋白相关的受体家族



单独条件刺激——后膜兴奋(去极化)——造成适量 钙离子从膜外流入细胞膜内,促使腺苷酸环化酶分子 轻度活化——产生少量第二信使(c-AMP) 单独非条件刺激——前膜末梢释放大量神经递质5-TH, 与后膜上的G-蛋白相关性受体蛋白分子结合,腺苷酸 环化酶激活,合成较多的(c-AMP) 条件刺激与非条件刺激以一定时间间隔呈现,就会引 起腺苷酸环化酶的高度激活,合成大量(c-AMP)
脑等位论与脑机能定位论同时存在与学习和记 忆过程中,两者是脑功能对立统一的两个方面。
二、暂时联系和异源性突触易化
暂时联系—宏观表现

巴甫洛夫通过实验证明大脑皮层神经过程的运 动具备很强的分析综合能力,对兴奋灶之间的 强度十分敏感,总是以强兴奋灶对弱兴奋灶的 吸引实现暂时联系的接通
异源性突触联系
尝试与错误学习:

桑戴克(E.L.Thorndike) 问题箱、迷津箱(T与Y迷津) 学习行为形成的指标是动物通过尝试与错误的 经验积累,使正确反应所需的时间逐渐缩短。


操作式条件反射 (instrumental conditioned reflex)斯金纳 (B.F.Skinner,1938-)
A. 脑等位论
拉什利(Karl Spencer Lashley, 1890-1958)。


均势(equipotentiality)原理
总体活动(mass action)原理
我们如何理解 Lashley的实验结果呢?
B.机能定位论 加尔(Franz Josef Gall 1758-1828):颅相 说。 失语症的临床研究。 20世纪40-50年代,定位说得到进一步 的发展。

第五章学习与记忆的神经生物学ppt课件

第五章学习与记忆的神经生物学ppt课件
标准环境下的大白鼠其特征介于另外两 组之间。
在丰富条件下饲养的大鼠在解决问题方 面的能力,较其它两组动物为强。
丰富环 境
枯燥环境
二、学习记忆与突触传递效能的可塑性
(一)突触传递的长时程增强(LTP)
帕帕兹环路 : 三突触回路 : 长时程增强(LTP):
(二)突触传递的长时程压抑(LTD)
长时程压抑(LTD): LTD在学习记忆中的作用(功能)
帕帕兹环路
1937年,神经生理学家J.W.papez提出 即海马→穹窿→乳头体→乳头丘脑束→丘脑前
核→扣带回→海马
三突触回路
三突触回路:
穿通纤维
内嗅区皮层
海马齿状回
苔状纤维
CA1区
CA3区
长时程增强
Lomo(1966)
在内嗅区皮层给出一串连续性或电紧张性刺激,则可在齿 状回记录到场电位或细胞外电活动,刺激停止后5-25分 钟,再次记录齿状回的电反应,不但未衰减,反而增强 2 倍以上,象这种长时程的突触传递效能改变(易化)的现象 称之为“长时程增强LTP) 。
“丰富化、贫乏化环境”养育实验
21天的大鼠分成三组,饲养在不同的生 活环境
丰富环境
枯燥环境(即隔离环境)
标准饲养条件
结果:
丰富环境下:脑皮层较重较厚,特别在 枕区,而且皮层比脑其它区域增加的重 量,按比例计算较重,脑内神经元大,树 突分枝多,脑内乙酰胆碱脂酶和胆碱脂 酶 的 活 动 水 平 较 高 , RNA/DNA 的 比 值 增高。
RNA假设
RNA的重要功能是合成蛋白质,RNA与长时记忆痕迹的关 系问题,自然包括含着蛋白质合成与记忆关系问题。即长时记 忆痕迹的形成,合成新的蛋白质是必需的。
(三)记忆痕迹的脑形态学基础

学习与记忆的神经生物学基础研究

学习与记忆的神经生物学基础研究

学习与记忆的神经生物学基础研究学习与记忆是人类认知能力的重要方面。

在日常生活中,我们需要通过学习不断地更新和积累知识,而记忆则是保存这些知识的基础。

这种认知过程是通过大脑神经网络的复杂运作完成的。

本文将探讨学习与记忆的神经生物学基础研究。

首先,让我们了解一下学习与记忆的定义。

学习是指个体通过训练、教育或其他形式的活动来获取新的知识、技能、价值观等的过程。

而记忆是指个体通过神经环路和突触可塑性的机制来保存、提取和使用信息的过程。

研究学习与记忆的神经生物学基础一直是神经科学领域的热点之一。

早期的研究主要集中在大脑皮质和海马区。

随着技术的发展,人们开始对神经元和突触水平的机制进行探索。

近年来,许多关于学习与记忆的研究成果表明,涉及突触可塑性的许多分子和途径是在学习和记忆过程中起重要作用的。

例如,钙离子在突触捕捉、活化和调控中起着关键作用。

钙离子结合蛋白、钙/钙调蛋白依赖激酶、蛋白激酶C等分子也参与了突触可塑性的过程。

除了突触可塑性机制,神经营养因素(如脑源性神经营养因子和神经发育因子)、神经调节途径和神经元数量等因素也对学习与记忆的神经生物学基础产生了影响。

例如,研究表明,在大脑海马区,神经发育因子可以促进神经元增殖和分化,提高海马体积和对记忆的认知。

此外,神经素调节因子和小分子递质如去甲肾上腺素、多巴胺和乙酰胆碱在诱导记忆和情绪调节方面也发挥重要作用。

尽管人们在学习与记忆的神经生物学基础研究中已经取得了巨大的进展,但有许多问题仍然需要解决。

例如,我们仍然需要深入了解学习和记忆的分子和细胞机制,以及它们是如何在大脑神经网络中相互协作的。

此外,我们需要探索不同类型的记忆,例如短期记忆、长期记忆、情境记忆和语义记忆等之间的差异,并了解它们的神经生物学基础。

总之,学习与记忆的神经生物学基础研究是一个复杂而又广阔的领域。

在今后的研究中,人们需要充分利用先进的技术手段和新型方法,深入分析学习和记忆的基本机制。

这些研究成果有助于我们更好地了解人类认知的本质,并为神经系统疾病的治疗和康复提供依据。

学习和记忆神经生物学

学习和记忆神经生物学
学习和记忆神经生 物学
汇报人:可编辑 2024-01-11
目 录
• 引言 • 学习与记忆的神经机制 • 记忆的种类和神经基础 • 学习和记忆的神经化学机制 • 学习和记忆的神经影像学研究 • 学习与记忆障碍的神经生物学研究 • 学习和记忆的未来研究方向
01
引言
学习和记忆的定义
学习和记忆的定义
学习和记忆是大脑对信息进行编码、存储和提取的过程。学习是指获取新知识或技能的过程,而记忆则是对这些 知识或技能进行存储和回忆的过程。
神经环路与学习和记忆
总结词
神经环路是大脑中信息处理的关键结构,未来研究将深入了解其在记忆和学习能力中的 作用。
详细描述
神经环路是由大量神经元相互连接形成的复杂网络。在学习和记忆过程中,神经环路的 活动模式发生改变,以实现信息的编码和存储。未来的研究将致力于解析不同类型神经 环路在学习和记忆中的功能,以及它们之间的相互作用,以期揭示大脑信息处理的奥秘
络中。
神经元网络的编码和存储机制具有高度 的复杂性和动态性,可以同时处理多种 类型的信息,并能够根据需要进行信息
的提取和回忆。
短期与长期记忆的神经机制
长期记忆是指信息在大脑中持久保持的过程,可以持 续数小时、数天、数月甚至数年。长期记忆主要依赖 于大脑皮层和海马体等区域的结构性改变,如新突触 的形成和原有突触的强化等。
目前的研究主要集中在开发药物来抑制亨廷顿蛋白的聚集和毒
03
性,以及探索基因治疗等方法。
精神分裂症(SZ)
精神分裂症是一种常见的精神疾 病,主要表现为幻觉、妄想、情
感淡漠等症状。
神经生物学研究发现,精神分裂 症患者大脑中的多巴胺系统异常
是导致症状的主要原因。
目前的研究主要集中在开发药物 来调节多巴胺的释放和再摄取, 以及探索其他神经递质系统在精

神经生物学中的记忆与学习机制

神经生物学中的记忆与学习机制

神经生物学中的记忆与学习机制记忆和学习,是我们生活的重要组成部分。

尽管这两个词在日常语境中常被用作同义词,但在神经生物学的范畴内,两者是有区别的。

一、学习机制学习的定义是我们的行为体现了改变,通过这些变化实现信息编码、存储和回溯的过程。

学习是一个非常复杂的过程,它牵涉到大脑的多个部位,依赖于大脑中许多复杂的神经过程。

在学习机制中,情境和行为是学习的两个最重要的方面。

人类展示出显着的能够为混乱完整的情景编码的能力。

在我们的大脑中,我们会把场景的不同要素按照某种规律进行编码。

这个过程涉及到大脑区域的多个部分,包括杏仁核,海马体和前额叶皮质。

但是,学习还涉及到行为的改变。

这种行为变化一般发生在我们遇到新的、挑战性极高的情境中。

需要大脑对手头的信息进行分析,触发行为模式的变化。

这个过程客观呈现出从"想"到"做"的机制。

学习过程中,可能有一些重要的激励因素。

当我们将某种行为与愉悦的体验联系起来时,我们的大脑会释放出多巴胺。

这种化学物质的释放,可能会加强我们这种行为和愉悦的反应之间的连接。

在生物学范畴中,这种连接被称为“强化“,是学习的关键组成部分。

二、记忆机制大多数人对记忆的定义是一个“内容库”,在其中存储着个人生命中的事件和信息。

但是在神经生物学中,记忆是一个复杂的过程,牵涉到许多不同的神经元和大脑区域。

不能被视为一个普通的存储设备。

记忆有许多不同的类型,每种类型都需要大脑不同的神经机制。

例如,短时记忆是指短时间记住的信息,如电话号码或一组指令。

这种类型的记忆只涉及到短暂的神经机制,通常不到一分钟。

相反,长时记忆是一种很长时间存在的记忆形式,可以持续几小时、几天、几年,甚至是一生。

从神经生物学角度来看,记忆形成有三个阶段:编码、存储和检索。

编码是指如何使环境信息被记录到大脑中。

存储是指如何使信息在大脑中持久并保持稳定。

检索是指如何将所存储的信息重新拿出,并且能够使用。

《神经生物学》学习总结

《神经生物学》学习总结

从辨证唯物主义的观点出发,任何自然现象的发生都有其运动规律和物质基础。

人类的心理现象和心理活动都不是神秘的、不可知的,它们都是神经系统活动(特别是人类的大脑活动)的结果。

学习神经生物学就是要从最基本的生物学角度树立科学的世界观和方法论,从最基本的角度探索人类心理的奥秘,开发人类的潜能,为人类的自身的发展提供强有力的支持。

第一部分第一章1细胞:细胞是人体和其他生物体结构和功能的基本单位(神经细胞是特化的即已经高度分化的细胞),人和其他多细胞生物体的细胞,在结构和功能上出现各种各样的分化,由分化的细胞组成具有专门功能的组织、器官和系统,在神经系统的主导之下,并且互相协调统一,进行完整的生命过程;2细胞膜的基本结构:细胞膜主要由脂质、蛋白质、糖类组成;蛋白质与细胞膜的物质转运有关----载体、通道、离子泵等;与辨认和接受细胞环境中特异的化学刺激有关----受体;具有酶的催化作用----如腺苷酸环化酶、Na+-K+ATP酶;与细胞免疫功能有关----如红细胞表面的血型抗原等;3 细胞膜的功能:细胞膜是细胞与外界环境的界膜,是物质转运、能量传送、维持细胞代谢和动态平衡的枢纽,物质的转运功能: 1)单纯扩散一些小分子脂溶性物质从浓度高的一侧通过细胞膜扩散到低的一侧-----不需要能量和其它物质的参与如常见的气体分子;2)易化扩散一些难溶于脂质的物质,在细胞膜蛋白质的帮助下,从浓度高的一侧通过细胞膜扩散到低的一侧----需要细胞膜蛋白质的参与,但不需要能量;载体协助扩散---葡萄糖、氨基酸的扩散;通道扩散------神经细胞膜在活动中对离子的通透作用;3)主动转运:细胞膜通过本身的某种耗能过程,将某些物质或离子由低浓度侧移向高浓度侧的过程;它需要细胞代谢提供能量,也需要镶嵌蛋白质(泵)的参与;4)入胞作用和出胞作用:入胞作用----大分子物质和物质团块通过细胞膜的运动,从细胞外进入细胞内的过程;出胞作用----大分子物质和物质团块通过细胞膜的运动,从细胞内排出细胞外的过程(如神经递质的释放);受体功能:细胞膜受体是镶嵌在细胞膜上的特殊蛋白质,它与环境中的特定结构的物质(信息)相结合,引起细胞内一系列的生物化学反应和生理效应(如兴奋传递过程中的递质受体);4基本组织:组织是指构造相似、功能相关的细胞、细胞间质所组成的结构;人体的组织可以分为:上皮组织、结缔组织、肌肉组织、神经组织;是构成器官的基本结构,故称为基本组织;5神经组织:神经组织由神经细胞和神经胶质细胞组成;神经细胞是是神经组织的主要成分,具有接受刺激产生兴奋和传导神经冲动的功能;因此,神经细胞是神经组织的基本功能单位,神经胶质细胞在神经组织中起支持、营养、联系的作用;(神经,神经核,神经节,灰质,白质也属于组织)6器官:是指由几种不同的组织结合在一起,形成具有一定形态,执行一定功能的结构;如:脑(脑干,大脑,间脑等)、脊髓、,神经,心、肺、肝、肾、脾、胃;7系统:许多在结构和功能上有密切联系的器官,按一定的顺序排列在一起,共同执行某种特定的功能,即为系统;如口腔、食道、胃、小肠、大肠、肛门、肝、胰等器官组成人体的消化系统,执行消化和吸收功能;人体有运动系统、循环系统、呼吸系统、消化系统、泌尿系统、生殖系统、内分泌系统、神经系统、感觉器官等九个;神经系统是人体功能活动的主导系统,机体在神经系统的调节和控制之下,通过神经调节和体液调节的方式,作为统一的整体活动;第二章1神经系统:由中枢神经系统和周围神经系统组成; 接受,识别,整合体内,外环境传入的信息,调节机体各系统的功能,维持个体的生存和种族的繁衍;2中枢神经系统有脑(位于颅腔)和脊髓(位于椎管)组成;外被有三层连续的脑脊膜(硬膜,蛛网膜,软膜)3脊髓:上端在枕骨大孔处与延髓连接;下端齐第12胸椎至第3腰椎(由此可以认为,在人体的发育过程中,神经系统与运动系统的发育不同步);两侧有31对脊神经附着;故为31个节段(颈段8节,胸段12节,腰段5节,骶段5节,尾节1,与人体的体节相对应);4脊髓内部分别形成灰质和白质;灰质:神经元及其突起共同组成;白质:由神经纤维构成的传导束(有上行传到束和下行传导束)组成;5脊髓灰质: (由神经元的胞体组成)在脊髓内部呈”蝴蝶形”结构,每侧前部扩大为前角,与前根相连,前根为传出纤维,属于远动行成分);后部狭长为后角(与后根相连,后根为传入纤维,属于感觉性成分);在胸-腰段脊髓节段的前后角之间有向外突出的侧角(交感神经起源);中央管前后的灰质相互连接称灰质连合.中央管为神经管发育为中枢神经系统遗留的管状结构;6脊髓白质:(由神经纤维构成) 由前索,后索,侧索组成;它们中起止相同,功能相同的神经纤维构成一条传导束(通路),包括上行(脊-脑感觉信息)传导通路和下行(脑-脊运动信息)传导通路,它们位于灰质的周边;紧贴灰质边缘的是短距离的传导纤维(起止于脊髓上下节段,起联系上下节段的作用)是固有束;7脑: 由大脑,间脑,小脑,脑干组成;脑干自上而下为中脑,脑桥,延髓组成;由神经元胞体为主形成的大脑,小脑表面的皮质(灰质);由神经元深入脑实质聚集成的团块结构(脑神经核团); 脑内神经元发出的突起及脊髓神经元,脊神经节神经元突起形成的纤维束(白质,也称传导束,传导通路) ;脑干的灰质结构主要有:与脑神经(Ⅲ-ⅩⅡ)相关的神经核;脑干的白质纤维束:有上行传导束和下行传导束;另外,脑干网状结构是界与灰质与白质的神经组织)8脑干网状结构:为脑干内灰质与纤维之间的区域,纤维纵横交织,并分布大量的神经元胞体故得名;其内有上行激活系统,生命中枢;它参与躯体的运动与感觉,内脏活动调节,控制脑的觉醒与睡眠,机体的节律性活动和神经内分泌;9小脑:参与运动的协调与控制,但不参与运动的启动(非随意);一旦小脑受到损害,机体的协调活动就会发生障碍(如注意性震颤,问题:与静止性震颤的神经机制有何不同?); 10大脑:由左右大脑半球组成,通过横行的神经纤维板--胼胝体相连;大脑分4个叶(额,顶,颞,枕叶)和脑岛;大脑表面为灰质,隆起为”回”,凹陷为”沟”;11大脑深部为白质,由联络系,投射系,连合系3部分纤维组成;以投射束最重要,由联系大脑皮质和皮质下中枢的上行,下行纤维组成,集中于内囊部位(易发生中风的部位);12-1大脑表面的灰质也称皮质,分化成为特殊的功能区-----脑中枢;有躯体感觉中枢,躯体运动中枢,听中枢,视中枢,平衡中枢,嗅觉中枢,语言中枢;语言中枢又分化为与视,听,读,写有关的视觉性,听觉性,运动性,书写语言中枢;12-2人类大脑皮层的发达从两个方面体现出:(1)沟回的出现,使其表面积得到了较大的发展;(2)特殊功能区的分化13边缘系统:从发生上由古皮质,旧皮质演化成的结构------包括梨状皮质,内嗅区,隔区,眶回,扣带回,胼胝体下回,海马回,海马,杏仁核,视前区,下丘脑乳头体----部分大脑核团及部分皮质区构成围绕间脑的环周结构-----与情绪,记忆等有关;14外周神经系统也称为周围神经系统:指脑和脊髓以外的神经结构;由神经节和神经组成;脊,脑神经:与脊髓,脑相连:分布与躯体的骨骼肌,皮肤等参与躯体的感觉与运动;内脏神经:也与脑,脊髓相连,分布与内脏器官的心肌,平滑肌,腺体等;15-1脑神经12对:对称性分布于头,颈,躯干,四肢;脊神经31对:颈神经C1-8对,胸神经T1-12对,腰神经L1-5对,骶神经S1-5对,尾神经1对;15-2脊神经由与脊髓相连的前根、后根合并而成,从椎间孔穿出椎管;前根为前角运动神经元发出的传出性突起组成;后根为传入性神经,与脊髓的后角相关连;15自主神经系统:为内脏神经的感觉和运动神经部分,主要分布于内脏,心血管,腺体;内脏运动神经系统的活动因较不受随意控制而得名;16在血液和神经组织之间存在一道屏障------血脑屏障; 人体内除血脑屏障之外,还有血-睾屏障和胎盘屏障,对人类的生存有极其重大的意义;17神经系统是进化的产物:单细胞动物(如草履虫)的细胞虽然对刺激产生反应,但它不是专门的神经细胞;海绵动物(海绵)是最原始的多细胞动物,但细胞分化程度低,也没有典型的神经细胞; 原始神经元最早出现在腔肠动物(如水螅),突起相互交叉连接呈网状;构成了弥散神经系统; 节状神经系统--------神经元只集合为若干神经节节肢动物;(如虾)的节状神经系统; 另外还出现了神经胶质细胞,对神经元起绝缘,支持,营养等作用; 梯状神经系统---扁形动物(如涡虫)的神经细胞集中形成两条并列的神经索,通过横向的神经联系. 管状神经系统---脊索动物在个体发生中,由外胚叶的神经板凹陷封闭围成神经管发育而成;脊椎动物及人的脊髓的中央管和脑室就是管状神经系统的证明;在管状神经系统的脑部进化中,端脑,间脑,中脑,小脑,延脑虽然都有逐步集中和增大,但更为重要的是在大脑两个半球表面的大脑皮质的出现和发展.高等的哺乳动物的大脑皮质虽然已有相当程度的发展,但人的大脑皮质不但面积大而且厚,其分化程度也很高;18人脑功能的可塑性: 一般认为,高等哺乳动物脑所实现的行为多数是定型化的;它们后天的习得性行为很少;而人脑的功能在出生后还有很长的发育成熟阶段;人脑的这种可塑性在外界环境的作用下,大致在15-17岁才达到高峰.这表明,人脑在出生后还有为动物所不能比拟的发展潜能;即存在巨大的可塑性;但可塑性存在着临界期;狼孩的发现及后来的研究结果证实了这一点;18-2人学习的黄金时期是3岁以前,最好从新生儿期开始教育。

学习与记忆的神经生物学共39页文档

学习与记忆的神经生物学共39页文档

46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁6、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
记忆的生理单元
第五章学习和记忆神经生物学
颞叶的记忆作用
1.颞叶下回在视觉辨别学习记忆中具有重 要作用
2.颞叶新皮质具有贮存记忆印记的能力: Penfield关于癫痫病人的研究
3.颞叶损伤容易产生长时记忆障碍: Scoville和Milner对H.M的研究
第五章学习和记忆神经生物学
4.颞叶皮质的偏侧化倾向 Milner采用各种不同的记忆测验,验
第五章学习和记忆神经生物学
新皮质与记忆
新皮质是人类长期进化过程中形成的大 脑皮质,它与一些高级的精细、复杂的 加工有关。
前额叶与记忆的关系
第五章学习和记忆神经生物学
前额叶与记忆的关系
前额叶与空间工作记忆有关系 前额叶与物体工作记忆有关系 前额叶与先后次序的记忆关系密切
第五章学习和记忆神经生物学
陈述性记忆和非陈述性记忆
陈述性记忆:指对事实或事件及其相互 关系的记忆,又称外显记忆
非陈述性记忆:是具有自主或反射性质 的记忆,又称内隐记忆
第五章学习和记忆神经生物学
短时记忆和长时记忆 工作记忆与参考记忆
– 工作记忆:指对某次训练时出现的特殊刺激 或线索的记忆,也就是动物或人在进行某种 复杂的认知任务操作过程中脑内“在线”或 短暂贮存某些必要信息的神经过程
第五章 学习和记忆神经生物学
第一节 学习与记忆分类 第二节 学习与记忆的神经基础 第三节 学习和记忆与突触可塑性 第四节 学习与记忆的分子机制 第五节 学习与记忆过程的调控 第六节 记忆障碍
第五章学习和记忆神经生物学
记忆机制简介
记忆机制研究的意义:不仅可以揭示人 脑的工作原理,防治记忆疾病,提高人 类的记忆能力,而且对于发展新型的信 息处理机器也有很大的作用。
– 参考记忆:整个训练过程中一直不变的一般 线索或规则的记忆
第五章学习和记忆神经生物学
第二节 学习与记忆的神经基础
参与学习与记忆的脑结构
– 颞叶 – 海马和杏仁核 – 间脑 – 新皮质
脑内记忆系统
– 陈述性记忆的神经回路 – 非陈述性记忆的神经回路 – 工作记忆系统 – 运动性学习记忆神经回路
学习广义的行为定义:动物个体在与环 境中发生的新事物接触的经验中改变自 己的适应行为,也就是新的适应行为 (或新行为模式)的获得过程
第五章学习和记忆神经生物学
学习与记忆功能的生物学特性
不变量形成 信息平行处理 结构复杂,高效低耗能
第五章学习和记忆神经义:指机体所保存的关于 生存的环境信息和它自身的信息
证了两侧颞叶新皮质受损的不同效应, 进一步证实了颞叶皮质的偏侧化倾向。 (结果) 5.Hebb的理论
Hebb认为,如果某种记忆印记仅由一 种感觉模式所形成,那么该印记位于与 这种感觉有关的大脑皮质区域
第五章学习和记忆神经生物学
海马在记忆中的作用
海马是实现记忆的第一步
– 来自电生理方面的证据:Thompson等人的 瞬膜反射实验
前额叶与空间工作记忆的关系
延缓反应任务实验(delayed-response,DR 任务)
Jacobsen等人通过DR实验证明,前额皮 层主沟区(46区)是空间工作记忆的关 键脑区
– 脑损伤方面的证据:Mishkin等人的延迟性 非配对样品(DNMS)的记忆实验
第五章学习和记忆神经生物学
海马是长时记忆的过滤器,信息传递给 海马,并暂时储存,只有经过海马加工 的信息才能进入长时记忆进行储存
第五章学习和记忆神经生物学
修补大脑芯片的诞生
1.由美国南加利福尼亚大学西奥多·伯格等人研制, 以在实验鼠脑组织切片上试验成功,随后将进 行活体实验。该芯片主要是发挥大脑“海马” 部位的功能。
– Mishkin等人证明,杏仁核复合体与皮质的 所有感觉系统有着直接联系(图)
– 杏仁核在联系不同的感觉所形成的记忆中发 挥着重要作用:延迟性非配对样品实验
第五章学习和记忆神经生物学
间脑与记忆加工
间脑中的丘脑前核、丘脑背内侧核和下 丘脑乳头体参与加工认识记忆(图)
间脑与科尔萨可夫(Korsakoff)综合症
– 敏感化:表现为当一个强刺激存在时,大脑对一个 弱刺激的反应会得到加强
第五章学习和记忆神经生物学
联合型学习:指刺激和反应之间建立联 系的学习。它的实质是由两种或两种以 上刺激所引起的脑内两个以上的中枢之 间的活动形成联结而实现的过程
种类:经典性条件反射和操作性条件反 射
第五章学习和记忆神经生物学
第五章学习和记忆神经生物学
记忆的脑功能定位
20世纪30年代,拉塞利提出了记忆分布 于全脑的学说,到了40年代,潘菲尔德 (Penfield)又提出了脑功能的局部定位 说。
第五章学习和记忆神经生物学
记忆的物质基础
已有资料表明,在细胞水平上,细胞间 的突触联系的改变是形成记忆的基础; 在分子层次的记忆研究表明,对于不同 种属动物的脑,记忆的分子机制是相当 一致的,这些研究揭示了生物基本原理 的统一性。
第五章学习和记忆神经生物学
记忆研究的理论探讨
黑伯(Hebb)在20世纪40年代提出了突 触联系的改变为记忆的基础,即著名的 突触变化的黑伯定律。认知心理学从信 息处理观点出发,也提出了一些记忆的 模型。
第五章学习和记忆神经生物学
学习与记忆
学习:指人和动物获得外界信息的神经 过程
记忆:将获得的信息贮存和读出的神经 过程
分类
个体记忆:个体生命中所积累的实践经验
种族记忆:来自进化过程中祖先积累保存下来的信息
第五章学习和记忆神经生物学
非联合型学习和联合学习
非联合型学习:在刺激和反应之间不形成明确 联系的学习形式
表现:在单一刺激长期重复作用下个体对该刺 激的行为发生改变
典型方式
– 习惯化:指一个不具有伤害性效应刺激重复作用时, 机体对该刺激的反射性行为反应逐渐减弱的过程
2.研制该芯片克服了三大困难 1)建立“海马”在各种不同条件下工作的数学 模型 2)将这一模型编程到芯片中 3)使芯片能够与大脑其他部位协调工作
第五章学习和记忆神经生物学
“四肢发达,头脑简单”真的有 道理
适量运动会使人 更聪明
运动过度脑子会变笨
第五章学习和记忆神经生物学
杏仁核在记忆中的作用
将感觉体验转换为记忆,在记忆汇合过 程中的作用十分突出。
相关文档
最新文档