高等数学多元函数微分学习题集锦.pdf
《多元函数微分学》练习题参考答案

解:在 L 上任取一点 P ( x, y ),
f (x , y ) = 0
考虑 d = ( x − x0 ) + ( y − y0 ) 在条件 f ( x, y ) = 0 下的极值问题 作 F = ( x − x 0 ) + ( y − y 0 ) + λ f ( x , y ) ,则
' ⎧ ⎪ F x = 2(x − x 0 ) + λ f 'x ( x , y ) = 0 , ⎨ ' ⎪ ⎩F y = 2( y − y 0 ) + λ f 'y (x , y ) = 0 2 2 2 2 2
P87-练习 4 设 z = f ( xy,
x y ) + g ( ) ,其中 f 有二阶连续偏导数, g 有二阶导数,求 y x
∂2z . (2000) ∂x∂y
解: 根据复合函数求偏导公式
∂z 1 y = f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ (− 2 ) , ∂x y x
24
∂2 z ∂ ⎛ ∂z ⎞ ∂ ⎛ 1 y ⎞ = ⎜ ⎟ = ⎜ f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ ( − 2 ) ⎟ ∂x∂y ∂y ⎝ ∂x ⎠ ∂y ⎝ y x ⎠ x 1 1 x y 1 = f1′ + y[ f11′′ x + f12′′ ⋅ (− 2 )] − 2 f 2′ + [ f 21′′ x + f 22′′ ⋅ (− 2 )] − g ′′ ⋅ 3 − g ′ ⋅ 2 y y y y x x 1 x y 1 = f1′ + xyf11′′ − 2 f 2′ − 3 f 22′′ − 3 g ′′ − 2 g ′ y y x x
多元函数微分学练习题及答案

三. 设Lx, y, z, ln x ln y 3ln z (x2 y2 z2 5R2 )
求得此函数定义域内唯一的稳定点R,,R 3R , 也是所 求函数的最大值点, 所求最大值为f R, R, 3R ln 3 3R5 .
ln x ln y 3ln z ln 3 3R5
u y xf2 ( xz xyz y ) f 3
.
3、f x ( x, y)
(
x
2 xy 3 2 y2
)2
,
x
2
0, x 2 y 2 0
y2
0 ,
f y (x,
y)
x2(x2 (x2
y2 y2 )2
)
,
x2
o, x 2 y 2 0
y2
0
五、(
f1
f2 )dx
y (z) 1
f2 (z) dy. y (z) 1
六、 xe2 y fuu e y fuy xe y f xu f xy e y fu.
4、1; 5、必要条件,但不是充分条件; 6、可微;
7、 2 f (v )2 f 2v ; v 2 y v y 2
8、
9 2
a
3
;
9、(1,2);10、 1 ; 8
二、(1)当 x y 0时,在点( x, y)函数连续;
(2)当 x y 0时,而( x, y)不是原点时,
则( x, y)为可去间断点,(0,0)为无穷间断点.
4、lim( x 2 y )2 x2 y2 ( ). x0 y0
5、函数 f ( x, y)在点( x0 , y0 )处连续,且两个偏导数 f x ( x0 , y0 ), f y ( x0 , y0 )存在是 f ( x, y)在该点可微
(完整版)多元函数微分学测试题及答案

第8章 测试题1.),(y x f z =在点),(00y x 具有偏导数且在),(00y x 处有极值是 0),(00=y x f x 及0),(00=y x f y 的( )条件.A .充分B .充分必要C .必要D .非充分非必要2.函数(,)z f x y =的偏导数z x∂∂及z y ∂∂在点(,)x y 存在且连续是 (,)f x y 在该点可微分的( )条件.A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件3. 设(,)z f x y =的全微分dz xdx ydy =+,则点(0,0) 是( )A 不是(,)f x y 连续点B 不是(,)f x y 的极值点C 是(,)f x y 的极大值点D 是(,)f x y 的极小值点4. 函数22224422,0(,)0,0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)处( C )A 连续但不可微B 连续且偏导数存在C 偏导数存在但不可微D 既不连续,偏导数又不存在5.二元函数22((,)(0,0),(,)0,(,)(0,0)⎧+≠⎪=⎨⎪=⎩x y x yf x y x y 在点(0,0)处( A). A .可微,偏导数存在 B .可微,偏导数不存在C .不可微,偏导数存在D .不可微,偏导数不存在6.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数. 则=∂∂22y z( ). (A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂; (B)22y vv f∂∂⋅∂∂;(C)22222)(y v v fy v v f ∂∂⋅∂∂+∂∂∂∂; (D)2222y v v f y v v f ∂∂⋅∂∂+∂∂⋅∂∂.7.二元函数33)(3y x y x z --+=的极值点是( ).(A) (1,2); (B) (1.-2); (C) (-1,2); (D) (-1,-1). 8.已知函数(,)f x y 在点(0,0)的某个邻域内连续,且223(,)(0,0)(,)lim 1()x y f x y xy x y →-=+,则下述四个选项中正确的是( ).A .点(0,0)是(,)f x y 的极大值点B .点(0,0)是(,)f x y 的极小值点C .点(0,0)不是(,)f x y 的极值点D .根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点10.设函数(,)z z x y =由方程z y z x e -+=所确定,求2z y x ∂∂∂ 11.设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫= ⎪⎝⎭,求 z z x y x y ∂∂-∂∂ 12.设222x y z u e ++=,而2sin z x y =,求u x ∂∂11.设(,,)z f x y x y xy =+-,其中f 具有二阶连续偏导数,求 2,z dz x y ∂∂∂.13.求二元函数22(,)(2)ln f x y x y y y =++的极值14.22在椭圆x +4y =4上求一点,使其到直线2360x y +-=的距离最短.第8章测试题答案1.A2.A3.D4.C5.A6.C7.D8.C 8. ()()3(1)z y z y e e ---9. 2122z z x y x y f f x y y x∂∂-=-∂∂ 10.2222(12sin )x y z u xe z y x++∂=+∂11.123123231113223233 ()(),()()dz f f yf dx f f xf dyzf f x y f f x y f xyf x y=+++-+∂=+++-+-+∂∂12.极小值11(0,)f ee-=-13. r h==14. 83(,)55。
(完整版)高等数学(同济版)多元函数微分学练习题册

第八章 多元函数微分法及其应用第 一 节 作 业一、填空题:.sin lim .4.)](),([,sin )(,cos )(,),(.3arccos),,(.21)1ln(.102222322====-=+=+++-+-=→→x xyx x f x x x x y x y x f yx z z y x f y x x y x z ay x ψϕψϕ则设的定义域为函数的定义域为函数二、选择题(单选): 1. 函数yx sin sin 1的所有间断点是:(A) x=y=2n π(n=1,2,3,…);(B) x=y=n π(n=1,2,3,…);(C) x=y=m π(m=0,±1,±2,…);(D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。
答:( )2. 函数⎪⎩⎪⎨⎧=+≠+++=0,20,(2sin ),(22222222y x y x y x y x y x f 在点(0,0)处:(A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。
答:( ) 三、求.42lim 0xy xy ay x +-→→四、证明极限2222200)(lim y x y x y x y x -+→→不存在。
第 二 节 作 业一、填空题:.)1,(,arcsin)1(),(.2.)1,0(,0,0),sin(1),(.122=-+==⎪⎩⎪⎨⎧=≠=x f yxy x y x f f xy x xy y x xy y x f x x 则设则设二、选择题(单选):.42)(;)(2)(;4ln 2)()(;4ln 2)(:,2222222y x y x y x y y x y D ey x y C y y x B y A z z ++++⋅+⋅+⋅⋅=等于则设答:( )三、试解下列各题:.,arctan .2.,,tan ln .12yx zx y z yzx z y x z ∂∂∂=∂∂∂∂=求设求设四、验证.2222222222r zr y r x r z y x r =∂∂+∂∂+∂∂++=满足第 三 节 作 业一、填空题:.,.2.2.0,1.0,1,2.1====∆-=∆=∆===dz e z dz z y x y x xyz xy 则设全微分值时的全增量当函数二、选择题(单选):1. 函数z=f(x,y)在点P 0(x 0,y 0)两偏导数存在是函数在该点全微分存在的:(A )充分条件; (B )充要条件; (C )必要条件; (D )无关条件。
高等数学第九章多元函数微分学试题及答案

第九章 多元函数微分学§9.1 多元函数的概念、极限与连续性一、多元函数的概念1.二元函数的定义及其几何意义设D 是平面上的一个点集,如果对每个点()D y x P ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x ,y 的二元函数,记以()y x f z ,=,D 称为定义域。
二元函数()y x f z ,=的图形为空间一卦曲面,它在xy 平面上的投影区域就是定义域D 。
例如 221y x z --=,1:22≤+y x D , 此二元函数的图形为以原点为球心,半径为1的上半球面,其定义域D 就是 xy 平面上以原点为圆心,半径为1的闭圆。
2.三元函数与n 元函数()z y x f u ,,= ()Ω∈z y x ,,空间一个点集称为三元函数()n x x x f u ,,21 = 称为n 元函数它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。
条件极值中,可能会遇到超过三个自变量的多元函数。
二、二元函数的极限设函数),(y x f 在区域D 内有定义,),(000y x P 是D 的聚点,如果存在常数A ,对于任意给定的0>ε,总存在0>δ,当),(y x P 满足δ<-+-=<20200)()(0y y x x PP 时,恒有ε<-A y x f ),(成立。
则记以()A y x f y y x x =→→,lim 0或()()()A y x f y x y x =→,lim00,,。
称当()y x ,趋于()00,y x 时,()y x f ,的极限存在,极限值A ,否则称为极限不存在。
值得注意:这里()y x ,趋于()00,y x 是在平面范围内,可以按任何方式沿任意曲线趋于()00,y x ,所以二元函数的极限比一元函数的极限复杂;但考试大纲只要求知道基本概念和简单的讨论极限存在性和计算极限值,不像一元函数求极限要求掌握各种方法和技巧。
(完整版)多元函数微分学及其应用习题解答

(((x 2 + y 2 ≤ 1, x+ y }(1- (t + 4) 2 解:令 t=xy , lim = lim= lim 2=- t →0 t →0习题 8-11. 求下列函数的定义域:(1) z =解: x -x - y ;y ≥ 0, y ≥ 0 ⇒ D ={x, y ) y ≥ 0, x ≥ y }x(2) z = ln( y - x) +;1 - x2 - y 2解: y - x ≥ 0, x ≥ 0,1 - x 2 - y 2 ⇒ D ={ x , y ) y > x ≥ 0 且 x2+ y 2 < 1}(3) u = R 2 - x 2 - y 2- z 2 +1x 2 + y 2+ z 2 - r 2(R > r > 0) ;解: 0 ≤ R 2 - x 2 - y 2 - z 2,0 < x 2 + y 2 + z 2 - r 2 ⇒⇒ D = {x , y , z ) r 2< x 2 + y 2 + z 2 ≤ R 2}(4) u = arccoszx 2 + y 2。
解:z2 2 ≠ 0 ⇒ D = {x, y ) z ≤x 2 + y 2 且 x 2 + y 2≠ 02. 求下列多元函数的极限::(1) lim ln( x + e y )x →1 x 2 + y 2y →0;解: limx →1y →0ln( x + e y ) x 2 + y 2 = ln(1+ 1)1= ln 2(2) lim 2 - xy + 4x →0xy y →0;1- 2 - xy + 4 2 t + 4 1 x →0xy t 1 4 y →01 / 28x →0 y →0x →0lim x +y = , m 不同时,极值也不同,所以极限不存在 。
(3) lim sin xyx →0x y →5;sin xy sin xy解: lim = 5lim = 5x →0 x 5xy →5y →01 - cos( x2 + y 2 ) (4) lim( x 2 + y 2 )e x 2 y 2;x →0 y →0解:Q 1 - cos( x 2 + y 2 ) = 2(sinx 2 + y 2 2)2 ,∴ l im x →0 y →01 - cos( x2 + y 2 ) 1= 2 ⋅ ⋅ 0 = 0( x 2 + y 2 )e x 2 y 2 2(5) lim( x 2 + y 2 ) xy 。
高等数学多元函数微分学习题集锦

第七章、多元函数微分法 习题课
解法3
隐函数求导法,
u = f ( x , y ( x , z ) ) = f ( x , y ( x , z ( x )) ) , dz ⎞ ⎛ du = f x + f y ⋅ ⎜ y x + yz ⋅ ⎟ , dx ⎠ dx ⎝ gx yx = − gy gz yz = − gy
的切平面,使切平面与三个坐标面所围成的 四面体体积最小,求切点坐标并求此最小体积
2
2
2
解
设 P ( x 0 , y 0 , z 0 )为椭球面上一点, 令
则 Fx′ |P =
2 x0 , F ′ | = 2 y0 , Fz′ |P = 2 z0 , y P a2 c2 b2 过 P ( x 0 , y 0 , z 0 ) 的切平面方程为
第七章 多元函数微分法及其应用 习 题 课
一、主要内容 二、典型例题 三、作业
一、主要内容
平面点集 平面点集 和区域 和区域
极 限 运 算 极 限 运 算 多元连续函数 多元连续函数 的性质 的性质
第七章、多元函数微分法 习题课
多元函数概念 多元函数概念
多元函数 多元函数 的极限 的极限
多元函数 多元函数 连续的概念 连续的概念
dz . 消去 d y 即可得 dx
第七章、多元函数微分法 习题课
⎧ x 2 + y 2 + z 2 − 3x = 0 例7. 求曲线 ⎨ 在点(1,1,1) ⎩2 x − 3 y + 5 z − 4 = 0 的切线与法平面. 解: 点 (1,1,1) 处两曲面的法向量为
n1 = (2 x − 3 , 2 y , 2 z ) (1,1,1) = (−1, 2 , 2 ) n 2 = (2 , − 3 , 5 )
(完整版)多元函数微分学复习题及答案

第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
hx
+
hz
⋅
dz dx
=
0.
所确定,
(1) (2) (3)
将方程组的变元 Βιβλιοθήκη 以及 y, z 都看成是 x 的函数.
第七章、多元函数微分法 习题课
由(3) 得 由(2) 及上式得
dz = − hx , dx hz
gx
+
gdhyux⋅ dx
dd+=xyhf+zx⋅g+ddzxz⋅f
d=zd0y.= dy xdx
⎞ ⎟⎠
=
x5
f1′1′ +
2x3
f1′2′
+
xf
′′
22
,
第七章、多元函数微分法 习题课
xy
x
f1′,
f
′
2
y
y
x
∂z ∂y
=
x4
f1′+
x2
f2′,
∂2z ∂x∂y
= ∂2z ∂y∂x
=
∂ ∂x
(
x4
f1′ +
x2 f2′)
=
4x3
f1′+
x4
⋅
⎛ ⎜⎝
f1′1′ y
+
f1′2′
⎛ ⎜⎝
−
y x2
x
+
ϕ
′
2
⋅
e
y
dy dx
+
ϕ
′
3
dz dx
=
0,
于是
dz dx
=
−
1
ϕ′ 3
(
2
xϕ
′
1
+
esin x
⋅
cos
xϕ
′
2
),
故
du dx
=
∂f ∂x
+
cos
x
∂f ∂y
−
1
ϕ′ 3
(
2
xϕ
′
1
+
esin x
⋅
cos
xϕ
′
2
)
∂f ∂z
.
第七章、多元函数微分法 习题课
⎧u = f ( x, y),
例6
设函数
u( x)
由方程组
⎪ ⎨
g(
x,
y, z)
=
0,
⎪⎩h( x, z) = 0.
且
∂g ∂y
≠ 0, ∂h ≠ 0, ∂z
试求
du . dx
解法1 方程组各方程两边对 x 求导,得
⎧ ⎪⎪ ⎨ ⎪ ⎪⎩
du dx
=
fx
gx + gy ⋅
+ fy dy + dx
dy
dx gz
, ⋅
dz dx
=
0,
多元函数连续、可导、可微的关系
函数连续
函数可偏导
方向导数存在
函数可微 偏导数连续
第七章、多元函数微分法 习题课
二、典型例题
例1 求极限 lim ( y − x)x .
x + y x→0
2
2
y→0
解 令 x = ρ cosθ , y = ρ sinθ ,
(ρ > 0)
则 ( x, y) → (0,0) 等价于 ρ → 0.
0,
dy = gz ⋅ hx − gx , dx g y ⋅ hz g y
代入(1)得
du dx
=
fx −
fy ⋅ gx gy
+
f y ⋅ gz ⋅ hx . g y ⋅ hz
第七章、多元函数微分法 习题课
解法2 全微分形式不变性。
du = fx ⋅ dx + f y ⋅ dy,
(1)
⎧u = f ( x, y),
→ 0 ,而点 P 沿 x 轴趋于 (0,0) 时,f ( x, y)
= a2 − x2 → a,
所以 lim f ( x, y) 不存在, ( x, y)→(0,0)
从而 f ( x, y) 在 (0,0) 不连续。
。
第七章、多元函数微分法 习题课
例3.设 u = f ( x, y, z) 有二阶连续偏导数, 且
x = 0或y = 0,
⎪⎩0,
其它
其中 a > 0 ,求 fx (0, 0), f y (0, 0).
解
fx (0,0) =
lim
Δx→0
f (Δx,0) − Δx
f (0,0)
z
= lim a2 − Δx2 − a
Δx→0
Δx
= lim
−(Δx)2
=0
• O
x
Δx→0 Δx( a2 − Δx2 + a)
( f ,ϕ 具有一阶连续偏导数 ),且 ∂ϕ ≠ 0, 求 du .
∂z
dx
解 du = ∂f + ∂f ⋅ dy + ∂f dz , 显然 dy = cos x,
dx ∂x ∂y dx ∂z dx
dx
求 dz , 对 ϕ ( x2 ,e y , z) = 0 两边求 x 的导数,得
dx
ϕ
′
1
⋅
2
z = x2 sin t, t = ln( x + y), 求 ∂u , ∂2u .
∂x ∂x∂y
x
解: u
y z
x t
x y
∂u ∂x
=
f1′ +
f3′⋅ ( 2x sin t
+
x2
cos t
⋅
x
1 +
)
y
x
f1 ' f3 '
y z
x t
x y
第七章、多元函数微分法 习题课
例4 设 z = x3 f ( xy, y ), ( f 具有二阶连续偏导数 ), x
0 ≤ ( y − x)x = ρ 2 (sinθ − cosθ )cosθ
x2 + y2
ρ
= ρ (sinθ − cosθ )cosθ ≤ 2ρ ,
故 lim ( y − x)x = 0.
x + y x→0
2
2
y→0
第七章、多元函数微分法 习题课
例2
设
f
(
x,
y)
=
⎪⎧ ⎨
a2 − x2 − y2 ,
方方向向导导数数
全全微微分分 概概念念
全全微微分分 的的应应用用
复复合合函函数数 求求导导法法则则
全全微微分分形形式式 的的不不变变性性
偏偏导导数数 概概念念
高高阶阶偏偏导导数数 隐隐函函数数 求求导导法法则则
多多元元函函数数的的极极值值
微微分分法法在在 几几何何上上的的应应用用
第七章、多元函数微分法 习题课
f =0
y
同理可得:
f y (0,0) = 0.
第七章、多元函数微分法 习题课
f
(
x,
y)
=
⎧⎪ ⎨
a2 − x2 − y2 ,
x = 0或y = 0,
⎪⎩0,
其它
但极限 lim f ( x, y)不存在, 因点 P 沿 ( x, y)→(0,0)
直线 y = kx(k ≠ 0) 趋于 (0,0) 时, f ( x, y) = 0
⎞ ⎟⎠
⎞ ⎟⎠
+
2
xf
′
2
+
x
2
⎛ ⎜⎝
f
′′
21
y
+
f2′′2
⎛ ⎜⎝
−
y x2
⎞⎞ ⎟⎠ ⎟⎠
=
4x3
f1′ +
2
xf
′
2
+
x4 yf1′1′ −
yf
′′
22
.
第七章、多元函数微分法 习题课
例5 设 u = f ( x, y, z), ϕ ( x2 ,e y , z) = 0, y = sin x,
第七章 多元函数微分法及其应用 习题课
一、主要内容 二、典型例题 三、作业
一、主要内容
平平面面点点集集 和和区区域域
极极 限限 运运 算算
多多元元连连续续函函数数 的的性性质质
第七章、多元函数微分法 习题课
多多元元函函数数概概念念
多多元元函函数数 的的极极限限
多多元元函函数数 连连续续的的概概念念
求 ∂z , ∂2z , ∂ 2z . ∂y ∂y2 ∂x∂y
解
∂z ∂y
=
x
3
⎛ ⎜⎝
f1′x +
f2′
1 x
⎞ ⎟⎠
f12′
xy y
x y
= x4 f1′+ x2 f2′,
x
∂2z ∂y 2
=
x4 ⋅
⎛ ⎜⎝
f1′1′x +
f1′2′
1 x
⎞ ⎟⎠
+
x2
⋅
⎛ ⎝⎜
f 2′′1 x
+
f2′′2
1 x