财政收入和国家生产总值之间的一元线性回归分析

合集下载

计量经济学实验一 一元回归模型

计量经济学实验一 一元回归模型

实验二一元回归模型【实验目的】掌握一元线性、非线性回归模型的建模方法【实验内容】建立我国税收预测模型【实验步骤】【例1】建立我国税收预测模型。

表1列出了我国1985-1998年间税收收入Y和国内生产总值(GDP)x的时间序列数据,请利用统计软件Eviews建立一元线性回归模型。

一、建立工作文件⒈菜单方式在录入和分析数据之前,应先创建一个工作文件(Workfile)。

启动Eviews软件之后,在主菜单上依次点击File\New\Workfile(菜单选择方式如图1所示),将弹出一个对话框(如图2所示)。

用户可以选择数据的时间频率(Frequency)、起始期和终止期。

图1 Eviews菜单方式创建工作文件示意图图2 工作文件定义对话框本例中选择时间频率为Annual(年度数据),在起始栏和终止栏分别输入相应的日期85和98。

然后点击OK,在Eviews软件的主显示窗口将显示相应的工作文件窗口(如图3所示)。

图3 Eviews工作文件窗口一个新建的工作文件窗口内只有2个对象(Object),分别为c(系数向量)和resid(残差)。

它们当前的取值分别是0和NA(空值)。

可以通过鼠标左键双击对象名打开该对象查看其数据,也可以用相同的方法查看工作文件窗口中其它对象的数值。

⒉命令方式还可以用输入命令的方式建立工作文件。

在Eviews软件的命令窗口中直接键入CREATE命令,其格式为:CREATE 时间频率类型起始期终止期本例应为:CREATE A 85 98二、输入数据在Eviews软件的命令窗口中键入数据输入/编辑命令:DA TA Y X此时将显示一个数组窗口(如图4所示),即可以输入每个变量的数值图4 Eviews数组窗口三、图形分析借助图形分析可以直观地观察经济变量的变动规律和相关关系,以便合理地确定模型的数学形式。

⒈趋势图分析命令格式:PLOT 变量1 变量2 ……变量K作用:⑴分析经济变量的发展变化趋势⑵观察是否存在异常值本例为:PLOT Y X⒉相关图分析命令格式:SCAT 变量1 变量2作用:⑴观察变量之间的相关程度⑵观察变量之间的相关类型,即为线性相关还是曲线相关,曲线相关时大致是哪种类型的曲线说明:⑴SCAT命令中,第一个变量为横轴变量,一般取为解释变量;第二个变量为纵轴变量,一般取为被解释变量⑵SCAT命令每次只能显示两个变量之间的相关图,若模型中含有多个解释变量,可以逐个进行分析⑶通过改变图形的类型,可以将趋势图转变为相关图本例为:SCA T Y X图5 税收与GDP趋势图图5、图6分别是我国税收与GDP时间序列趋势图和相关图分析结果。

财政收入和国家生产总值之间的一元线性回归分析

财政收入和国家生产总值之间的一元线性回归分析

成绩评定表课程设计(论文)任务书摘要现实世界中,经常出现一些变量,他们相互联系相互依存着,他们之间存在着一定的关系,数理统计中研究变量之间的相互关系的一种有效方法是回归分析。

对于一元线性相关关系,用线性方程大致描述变量之间的关系,按最小二乘法求位置参数的估计值,最终求得线性回归方程找到变量之间的关系。

这些复杂的步骤在spss中可简单实现。

本文通过运用spss线性回归的方法对我国财政收入和国内生产总值的关系进行回归分析,求解线性回归方程,并通过方差分析和相关系数检验进行显著性检验。

了解了影响国内生产总值的因素与其实质关系。

本文利用概率纶与数理统计中的所学的回归分析知识,根据1992~2006年财政收入和生产总值的数据建立数学模型,利用这些数据做出国内生产总值x关于财政收入y的线性回归方程,并SPSS软件对验数据进行分析处理,得出线性回归系数与拟合系数等数据,并用F检验法检验了方法的可行性,同时用分布参数置信区间和假设检验问题,得出了国内生产总值x关于财政收入y的线性关系显著,并进行了深入研究,提出了小样本常用分布参数的置信区间与假设检验的解决方法。

关键词:一元线性回归分析;国内生产总值和财政收入;方差分析目录一、设计目的 (1)二、设计问题 (1)三、设计原理 (1)四、设计程序 (2)五、结果分析 (6)六、设计总结 (9)致谢 (10)参考文献 (11)财政收入和国家生产总值之间的一元线性回归分析一、 设计目的为了更好的了解概率论与数理统计的知识,熟练掌握概率论与数理统计在实际问题上的应用,并将所学的知识结合SPSS 数据处理软件对数据的处理解决实际问题。

本设计是利用方差分析等对财政收入和柜内生产总值进行分析,并利用SPSS 数据处理软件进行求解。

二、设计问题现有1992~2006年财政收入和生产总值(单位:亿元)的数据,如表 所示,请研究财政收入和国内生产总值之间的线性关系。

年份财政收入年份财政收入19923483.37200013395.2319934348.95200116386.0419945218.10200218903.6419956242.20200321715.2519967407.99200426396.4719978651.14200531649.2919989875.95200638760.20199911444.08183867.9210871.071176.678973.084402.389677.199214.6109655.2120332.7135822.8159878.3国内生产总值国内生产总值26923.535333.948197.960793.7由此我们利用这些数据做出国内生产总值x 关于财政收入y 的线性回归方程。

SPSS 论文--回归分析

SPSS 论文--回归分析

河南省财政收入与经济增长的回归模型分析【摘要】经济发展对中国来说是一个持久的问题,研究经济发展是中国不变的主题。

根据中国地域广阔的特点,各个地区的发展必有其独特的特征,特对河南省的经济增长做了研究。

财政收入与经济增长之间存在着高度的相关性,因此在相关经济学理论的基础上,对河南省近些年财政收入与经济增长的关系,通过回归分析的方法做了分析,发现了河南省财政收入与经济增长之间存在的一些问题以及特点,同时可以为政府提供经济发展方面的决策数据。

【关键词】财政收入;GDP;相关1引言财政收入是政府部门的公共收入,是国民收入分配中用于保证政府行使其公共职能、实施公共政策及提供公共服务的资金需求。

其主要有资源配置、收入再分配和宏观经济调控三大职能。

财政收入的增长情况关系着一个国家经济的发展和社会的进步。

因此,研究财政收入的增长就显得尤为必要。

在西方经济学教科书中,国内生产总值(GDP)是指经济社会(即一国或一地区)在一定时期内运用生产要素所生产的全部最终产品(物品和劳务)的市场价值,是国民经济活动最终成果的总量指标。

财政收入的增长受到多方面因素的影响,但最根本的原因是经济的总体发展态势,即GDP的增长。

财政收入与经济增长密切相关,财政是从国民经济增长中取得收入,经济发展水平高,国民生产总值就多,财政收入总额多;而财政收入对于满足经济发展的需要,支撑政府职能的实现,保证经济社会稳定协调发展,具有相当重要的作用。

因此财政收入与经济增长之间存在着相互依存、相互制约的关系,正确认识二者之间的关系,对促进我省经济增长有重要作用。

2理论分析及说明经济增长可以用GDP来表示,建立计量经济模型,解释财政收入与经济增长之间的关系。

对于一个地区或一个国家要保持经济的可持续增长,财政收入与经济增长之间应形成相依相存的长期稳定关系。

对生产总值GDP与财政收入关系进行描述和分析,以寻求GDP和财政收入之间相互适应的增长程度和相对合理的比例界限,为在宏观层面上判断经济现象之间的数量关系作一些新的探索,为政府决策和经济管理提供参考。

对GDP与财政收入关系的研究(1)

对GDP与财政收入关系的研究(1)

对GDP与财政收入关系的研究在我国国民经济评价体系中,GDP和财政收入是两个最核心的指标。

作为反映一个国家和地区综合经济实力的重要标志,这两个指标之间从理论上看存在着必然的逻辑联系,但在实际经济生活中,从不同时期和不同范围观察,又往往存在着明显的差异。

这两个指标之间究竟存在哪些定量关系,经济发展与财政收入之间到底有哪些相互影响因素?这是各级政府、经济管理和研究部门普遍关注的问题。

本文利用历年的数据资料,对国家和地市两级的GDP与财政收入的总量规模、增长情况、比例关系和影响因素进行描述和分析,以寻求GDP和财政收入之间相互适应的增长程度和相对合理的比例界限,为在宏观层面上判断经济现象之间的数量关系作一些新的探索,为政府决策和经济管理提供参考。

一、对GDP与财政收入及其关系的理论阐述(一) GDP和财政收入的一般定义GDP:中文译名为国内生产总值(对地方核算范围来说,即为地区生产总值),是反映一个国家(地区)在一定时期内国民经济活动最终成果的总量指标。

是指一个国家(地区)辖区内所有常住单位在一定时期内生产活动所新创造的价值,对于各产业部门来说,这部分新创造的价值称为增加值,从收入分配的角度来看,主要包括劳动者报酬、固定资产折旧、生产税净额和营业盈余。

财政收入:指国家财政参与社会产品分配所取得的货币收入,是整个国民收入中属于国家(政府)所有的部分,是实现国家职能的财力保证。

财政收入所包括的内容几经变化,目前主要包括:各项税收、行政性收费收入、罚没收入、专项收入、其他收入以及国有企业亏损补贴,其中占主体地位的是税收收入。

中央财政收入和地方财政收入:按现行分税制财政体制,财政收入又划分为中央本级收入和地方本级收入。

1994年实行分税制财政体制以后,属于中央财政的收入包括关税、海关代征消费税和增值税、消费税、中央企业所得税、地方银行和外资银行及非银行金融企业所得税、铁道部门、各银行总行、各保险总公司等集中缴纳的营业税、利润和城市维护建设税、车辆购置税、船舶吨税、增值税的75%部分、证券交易税(印花税)94%部分、个人所得税中的利息所得税、利息所得税之外的个人所得税中央分享的部分及海洋石油资源税等。

线性回归经典假设的分析(案例)

线性回归经典假设的分析(案例)

线性回归经典假设的分析(案例)多重共线性分析财政收入是一个国家政府部门的公共收入。

国家财政收入的规模大小往往是衡量其经济实力的重要标志。

近20年来,我国财政收入一直保持着快速增长态势,经济总体发展良好。

一个国家财政收入的规模要受到经济规模等诸多因素的影响。

因此我们以财政收入为被解释变量,建立财政收入影响因素模型,分析影响财政收入的主要因素及其影响程度。

财政收入的因素众多复杂,但是通过研究经济理论对财政收入的解释以及对实践的考察,我们选取影响财政收入的因素为工业总产值、农业总产值、建筑业总产值、社会商品零售总产值、人口总数和受灾面积。

将这六个变量作为解释变量,财政收入作为被解释变量,利用1989~2003年数据建立中国国家财政收入计量经济模型,资料如下表。

表1 影响财政收入的因素资料(资料来源:《中国统计年鉴2004》)使用上述数据建立多元线性模型,采用普通最小二乘法得到国家财政收入估计方程为:1234562(0.46)(0.44)(8.59)(0.03)(3.80)(0.65)( 1.53)6922.5880.1260.9360.0400.5720.0920.0470.998620.56Y X X X X X X R F ---=-+-+++-==由上可以看出模型的拟合优度2R 和F 值都较大,说明建立的回归方程显著。

但在显著性水平为5%下, t (15)=2.131,大多数回归参数的t 检验不显著,若据此判断大部分因素对财政收入的影响不显著。

因此可以判定解释变量之间存在严重的多重共线性。

采用逐步回归法对解释变量进行筛选。

分别将Y 与各解释变量作一元线性回归方程,以拟合优度值最大的模型为基础,将其余变量依次引入方程中。

经过我们多次比较各模型的F 值和各参数的t 值,最终确定的模型为:242(1.79)(13.42)(35.57)519.6780.8120.7230.9971943.91Y X X R F -=-+==该模型的经济意义十分明显,即财政收入主要取决于农业总产值和社会商品零售总产值,各因素数量的变化引起财政收入总量变化的程度由各自的系数来反映。

(整理)安徽省财政收入与经济增长的回归模型分析.

(整理)安徽省财政收入与经济增长的回归模型分析.

安徽省财政收入与经济增长的回归模型分析摘要:财政收入与经济增长之间存在着高度的相关性,本文在相关经济学理论的基础上,对安徽省财政收入与经济增长间关系做了实证分析,并得出结论,要保持一地区或一个国家经济的可持续增长,财政收入与经济增长之间应形成相互依存的长期稳定关系.关键词:财政收入,经济增长,回归分析财政收入与经济增长之间存在着相互依存、相互制约的关系,正确认识二者之间的关系,对促进我省经济增长有重要作用。

一.理论分析财政收入是政府部门的公共收入,表现为政府部门在一定时期内所取得的货币收入。

在西方经济学教科书中,国内生产总值(GDP)是指经济社会(即一国或一地区)在一定时期内运用生产要素所生产的全部最终产品(物品和劳务)的市场价值,是国民经济活动最终成果的总量指标。

研究过财政收入与经济增长之间关系的学者很多。

最先比较明确提出国家财政税收原则的是威廉·配第,他在代表作《赋税论》中,比较深刻地分析了税收与国民财富、税收与国家经济实力之间的关系。

亚当·斯密在其著作《国富论》一书中,综合了自由主义学说的观点,主张对经济实行自由放任的政策,认为政府应当减少干预或者不干预,政府只应作为“守夜人”存在。

斯密之后,许多经济学家从不同角度提出了不同的财政税收观点,比如瓦格纳在其代表著作《财政学》中提出了社会政策的财政理论,认为财政收入增长能够随着经济增长自动增加。

哈勃格计算了税收的超额负担,进而发现课税扭曲了消费者对课税商品与其他商品的选择。

我国学者高培勇认为,应当根据实际情况合理科学地确定财政收入和财政支出,不能简单的量入为出。

一个地区或一个国家要保持经济的可持续增长,财政收入与经济增长之间应形成相依相存的长期稳定关系,并且,只有合理的财政收入水平才能对GDP的增长产生积极的影响,这一命题可以根据拉弗曲线得以证明。

在经济学界,美国供给学派经济学家拉弗知名度颇高,以其“拉弗曲线”而著称于世。

拉弗曲线表明:在税率增长的初期,GDP迅速增长;当税率增长超过某一点,尽管其增长率不变,但GDP的增长率迅速下降,甚至出现负增长,图中表示为EB线段。

计量经济学 实验一 一元线性回归 完成版

计量经济学 实验一 一元线性回归 完成版

实验一一元线性回归方程1.下表是中国2007年各地区税收Y和国内生产总值GDP的统计资料。

单位:亿元地区Y GDP 地区Y GDP北京1435.7 9353.3 湖北434.0 9230.7 天津438.4 5050.4 湖南410.7 9200.0 河北618.3 13709.5 广东2415.5 31084.4 山西430.5 5733.4 广西282.7 5955.7 内蒙古347.9 6091.1 海南88.0 1223.3 辽宁815.7 11023.5 重庆294.5 4122.5 吉林237.4 5284.7 四川629.0 10505.3 黑龙江335.0 7065.0 贵州211.9 2741.9 上海1975.5 12188.9 云南378.6 4741.3 江苏1894.8 25741.2 西藏11.7 342.2 浙江1535.4 18780.4 陕西355.5 5465.8 安徽401.9 7364.2 甘肃142.1 2702.4 福建594.0 9249.1 青海43.3 783.6 江西281.9 5500.3 宁夏58.8 889.2 山东1308.4 25965.9 新疆220.6 3523.2 河南625.0 15012.5要求,运用Eviews软件:(1)作出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;解:散点图如下:得到估计方程为:ˆ0.07104710.62963=-y x这个估计结果表明,GDP 每增长1亿元,各地区税收将增加0.071047亿元。

(2) 对所建立的回归方程进行检验;解:从回归的估计的结果来看,模型拟合得较好。

可决系数20.7603R =,表明各地区税收变化的76.03%可由GDP 的变化来解释。

从斜率项的t 检验值看,大于5%显著性水平下自由度为229n -=的临界值0.025(29) 2.05t =,且该斜率满足0<0.071047<1,表明2007年,GDP 每增长1亿元,各地区税收将增加0.071047亿元。

一元线性回归模型实验报告

一元线性回归模型实验报告

一元线性回归模型实验报告——以中国1985~2009年财政收入Y 和国内生产总值(和国内生产总值(GDP GDP GDP)为例)为例以GDP 为横轴,Y 为纵轴的散点图为纵轴的散点图以GDP 为解释变量,Y 为被解释变量,建立一元线性回归方程:为被解释变量,建立一元线性回归方程:Y i =β0+β1·GDP iDependent Variable: Y Method: Least Squares Date: 11/06/11 Time: 22:35 Sample: 1985 2009 Included observations: 25Variable Coefficient Std. Error t-Statistic Prob. C -3225.757 787.7145 -4.095084 0.0004 GDP0.1973980.00565734.894270.0000R-squared0.981461 Mean dependent var 16899.30 Adjusted R-squared 0.980655 S.D. dependent var 19287.38 S.E. of regression 2682.632 Akaike info criterion 18.70360 Sum squared resid1.66E+08Schwarz criterion 18.80111Log likelihood -231.7950 F-statistic 1217.610 Durbin-Watson stat0.118499Prob(F-statistic) 0.000000图3:回归分析结果:回归分析结果可得出β^0=-3225.757 β^1=0.197398财政收入随国内生产总值变化的一元线性回归方程为:财政收入随国内生产总值变化的一元线性回归方程为:Y ^=-3225.757+0.197398·GDPR 2=0.981461斜率的经济意义是:在1985~2009年间,GDP 每增加一单位,财政收入平均增加0.197398单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成绩评定表
课程设计(论文)任务书
摘要
现实世界中,经常出现一些变量,他们相互联系相互依存着,他们之间存在着一定的关系,数理统计中研究变量之间的相互关系的一种有效方法是回归分析。

对于一元线性相关关系,用线性方程大致描述变量之间的关系,按最小二乘法求位置参数的估计值,最终求得线性回归方程找到变量之间的关系。

这些复杂的步骤在spss中可简单实现。

本文通过运用spss线性回归的方法对我国财政收入和国内生产总值的关系进行回归分析,求解线性回归方程,并通过方差分析和相关系数检验进行显著性检验。

了解了影响国内生产总值的因素与其实质关系。

本文利用概率纶与数理统计中的所学的回归分析知识,根据1992~2006年财政收入和生产总值的数据建立数学模型,利用这些数据做出国内生产总值x关于财政收入y的线性回归方程,并SPSS软件对验数据进行分析处理,得出线性回归系数与拟合系数等数据,并用F检验法检验了方法的可行性,同时用分布参数置信区间和假设检验问题,得出了国内生产总值x关于财政收入y的线性关系显著,并进行了深入研究,提出了小样本常用分布参数的置信区间与假设检验的解决方法。

关键词:一元线性回归分析;国内生产总值和财政收入;方差分析
目录
一、设计目的 (1)
二、设计问题 (1)
三、设计原理 (1)
四、设计程序 (2)
五、结果分析 (6)
六、设计总结 (9)
致谢 (10)
参考文献 (11)
财政收入和国家生产总值之间的一元线性
回归分析
一、 设计目的
为了更好的了解概率论与数理统计的知识,熟练掌握概率论与数理统计在实际问题上的应用,并将所学的知识结合SPSS 数据处理软件对数据的处理解决实际问题。

本设计是利用方差分析等对财政收入和柜内生产总值进行分析,并利用SPSS 数据处理软件进行求解。

二、设计问题
现有1992~2006年财政收入和生产总值(单位:亿元)的数据,如表 所示,请研究财政收入和国内生产总值之间的线性关系。

年份财政收入年份财政收入19923483.37200013395.2319934348.95200116386.0419945218.10200218903.6419956242.20200321715.2519967407.99200426396.4719978651.14200531649.2919989875.952006
38760.20
1999
11444.08
183867.9210871.0
71176.678973.084402.389677.1
99214.6109655.2120332.7135822.8159878.3国内生产总值国内生产总值26923.535333.948197.960793.7由此我们利用这些数据做出国内生产总值x 关于财政收入y 的线性回归方程。

三、设计原理
在实际问题中,经常会出现两个变量之间的相关关系不是线性的(即直线型),而是非线性的(即曲线型)。

设其中有两个变量X 与Y ,我们可以用一个确定函数关系式:y=u( )大致的描述Y 与X 之间的相关关系,函数u( )称为Y 关于X 的回归函数,方程y=u( )成为Y 关于X 的回归方程。

一元线性回归处理的是两个变量x 与y 之间的线性关系,可以设想y 的值由两部分构成:一部分由自变量x 的线性影响所致,表示x 的线性函数a+bx ;另一部分则由众多其他因素,包括随机因素的影响所致,这一部分可以视为随机误差项,记为ε。

可得一元线性回归模型y=a+bx+ε 。

式中,自变量x 是可以控制的随机变量,成为回归变量;固定的未知参数a ,b 成为回归系数;y 称为响应变量或因
变量。

由于ε是随机误差,根据中心极限定理,通常假定ε~ N(0,2),2是未知参数。

确定Y与X之间的关系前,可根据专业知识或散点图,选择适当的曲线回归方程,而这些方程往往可以化为线性方程或者就是线性方程,因此,我们可以用线性方程:y=a+bx大致描述变量Y与X之间的关系;
回归分析一般分为一元线性回归和多元线性回归,本文采用一元线性回归。

回归分析的基本思想是:虽然自变量和因变量之间没有严格的,确定性的函数关系,但可以设法找出最能代表他们之间关系的数学表达式。

四、设计程序
1、定义3个变量,分别为year(年份),x(国内生产总值),y(财政收入)并输入数据。

如图4.1和4.2。

图4.1
图4.2
2、做散点图,观察两个变量的相关性。

依次选择菜单→图形→旧对话框→散点/点状→简单分布,将国内生产总值作为x轴财政收入作为y轴,得到如图4.3所示的散点图。

图4.3
由上图可以看出两变量具有较强的线性关系可以用一元线性回归来拟合两变量。

3、一元线性回归分析设置
(1)选择菜单“分析→回归→线性”,打开“线性回归”对话框,并按图4.4所示进行设置。

图4.4
(2)“统计量”对话框设置:单击“统计量(S)…”按钮,打开“线性回
归:统计量”对话框,并按图4.5所示进行设置。

图4.5
(3)“图形”对话框设置:单击“绘制(T)…”按钮,打开“线性回归:图”对话框,并按图4.6所示进行设置。

图4.6
(4)“保存”对话框设置:单击“保存(S)…按钮,打开”线性回归:保存“对话框,并按图4.7所示进行设置。

图4.7
(5)“选项”对话框设置:单击“选项(O)…”打开线性回归:选项“对话框,并按图4.8所示进行设置。

图4.8
五、结果分析
1、模型汇总表,主要是回归方程的拟合优度检验,表中显示相关系数R决定系数R方,调整的相关系数的平方和估计值的标准误差等信息,这些信息反映了因变量和自变量之间的线性相关强度。

从表中可以看出R=0.989,说明自变量与因变量之间的相关性很强。

R方等于0.979说明自变量x可以解释因变量y的97.9%
6、图5-6和图5-7是残差分布直方图和观测累计概率P-P图.再回归分析中总是假设残差服从正态分布,这两个图就是根据样本数据的计算结果显示残差分析实际情况.从残差分布的直方图与附于其上的正态分布曲线的比较,可以观察出残差分析的正态性.同时,从观测量累计概率P-P图也可以看出残差分布服从正态性。

图5-6
图5-7
六、设计总结
通过对概率论与数理统计的这道实际问题的解决,不仅使我更加深刻的理解了概率论与数理统计的基础知识,对一元线性回归以及线性回归的方差分析、相关系数的显著性检验有了更深刻的了解,而且使我对这些知识在实际中的应用产生了浓厚的兴趣,同时对我学习好概率论与数理统计这门课有很大帮助。

在实现这道题的过程中我应用了SPSS软件,学会了一些软件的应用,更加熟练的操作该软件进行一些数据上的处理。

致谢
本论文是在张玉春老师的悉心指导下完成的,老师渊博的知识,严谨的治学态度,一丝不苟的工作作风,平易近人的性格都是我学习的楷模。

在此谨向导师表示忠心的感谢和崇高的敬意。

同时我还要感谢我的同学们,在论文设计中,他们给了我很多的建议和帮助。

我还要感谢我的论文中被我引用或参考的文献的作者。

参考文献
[1]张庆利,spss宝典,电子工业出版社
[2]沈恒范,概率论与数理统计教程[M],第四版,高等教育出版社
[3] 茆诗松,概率论与数理统计教程(第二版),高等教育出版社。

相关文档
最新文档