线性回归模型的研究毕业论文
多元线性回归论文

房地产价格与GDP和房屋造价的联系一、研究的目的要求房地产业的运行和发展涉及众多的相关产业,显示出很强的相关性。
房地产业在许多国家和地区成为支柱产业,占GDP的比重在10%以上。
在我国,房地产业对全国GDP的直接贡献率和间接贡献率约占15%,带动一大批关联产业发展,初步成为国民经济的支柱产业。
然而,房地产业也呈现出投资过热,价格过高的现象。
尽管,政府一次次出台新的政策对房地产价格进行调控,在一定程度上控制了房价上涨的速度,但是,我国的房价依然远远超出了老百姓的购买能力。
因此,认识和掌握房地产市场价格特征、制约因素及其变化规律,将有利于我们分析房地产市场,进而采取行之有效的、有针对性的调控措施,实现房地产业与整个国民经济的持续、平稳、协调发展。
影响房地产价格上涨的因素很多,但就生产商来考虑我们主要考虑成本问题,也就是竣工房屋的造价,从消费者来考虑,我们主要分析的是他的消费能力,也就是居民的可支配收入,为了过去数据方便且较接近真实这里用GDP来考虑。
二、模型设定如下,选取了“全国各地商品房平均销售价格”作为被解释变量,以反映房地产价格的增长;选择“国内生产总值(GDP)”作为消费者购买能力的代表;选择“竣工房屋造价”作为生厂商成本的代表。
从《中国统计年鉴》收集到以下数据。
年份商品房平均竣工房屋销售价格造价GDP地区(元/平方米) (亿元) Y X2 X3北京11553.26 2388.866 9353.32 天津5811.111 2595.563 5050.4 河北2585.775 1647.412 13709.5 山西2249.609 1480.499 5733.35 内蒙古2246.532 1313.703 6091.12 辽宁3490.152 1422.739 11023.49 吉林2302.465 1154.665 5284.69 黑龙江2471.316 1404.483 7065 上海8361 3073.801 12188.85 江苏4024.359 1606.274 25741.15 浙江5786.03 2040.268 18780.44 安徽2664.369 1401.732 7364.18 福建4684.342 1382.131 9249.13 江西2071.887 1006.444 5500.25 山东2904.141 1468.505 25965.91河南2253.429 1173.155 15012.46湖北3053.116 1835.511 9230.68湖南2233.148 1332.366 9200广东5914.295 2174.868 31084.4广西2538.637 996.8082 5955.65海南4161.6 1805.126 1223.28重庆2722.583 1411.658 4122.51四川2840.447 1041.371 10505.3贵州2136.737 958.4769 2741.9云南2454.98 1432.329 4741.31西藏2704.124 2425.483 342.19陕西2622.002 1677.122 5465.79甘肃2190.541 1076.76 2702.4青海2310.999 1452.996 783.61宁夏2136.203 1133.523 889.2新疆2081.132 1158.719 3523.16设定的线性回归模型为Y=β1+β2 X2+β3X 3+μi三、参数估计利用Eviews估计模型的参数,得到以下回归结果。
《2024年多元线性回归分析的实例研究》范文

《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计学方法,用于探究一个因变量与多个自变量之间的关系。
这种方法在各个领域的研究中广泛应用,如经济学、社会学、心理学等。
本文将通过一个具体的实例,展示多元线性回归分析的应用过程及其实证结果。
二、研究背景与目的本研究以某地区房价为研究对象,探讨房价与地理位置、房屋面积、房屋装修等因素之间的关系。
目的是通过多元线性回归分析,找出影响房价的主要因素,为房地产投资者和购房者提供参考依据。
三、数据收集与处理本研究采用某地区房地产交易数据,包括房价、地理位置、房屋面积、房屋装修等变量。
在数据收集过程中,我们确保数据的准确性和完整性,并对数据进行清洗和处理,以消除异常值和缺失值的影响。
四、多元线性回归分析(一)模型构建根据研究目的和收集的数据,构建多元线性回归模型。
假设房价为因变量Y,地理位置、房屋面积、房屋装修等因素为自变量X1、X2、X3。
则模型可以表示为:Y = β0 + β1X1 + β2X2 +β3X3 + ε。
其中,β0为常数项,β1、β2、β3为回归系数,ε为随机误差项。
(二)参数估计与假设检验利用统计软件对模型进行参数估计,得到各回归系数的估计值及其显著性水平。
通过假设检验,检验自变量与因变量之间的线性关系是否显著。
若显著性水平低于预设的阈值(如0.05),则认为自变量与因变量之间存在显著的线性关系。
(三)模型检验与优化对模型进行检验和优化,包括检查模型的拟合优度、自相关性和异方差性等。
若存在显著问题,则采取相应的方法进行修正和优化。
五、实证结果与分析(一)回归系数解释根据参数估计结果,得出各回归系数的估计值。
解释各系数在模型中的意义和作用,如地理位置对房价的影响程度、房屋面积对房价的影响程度等。
(二)实证结果分析根据实证结果,分析自变量与因变量之间的关系及影响程度。
通过对比各回归系数的估计值和显著性水平,找出影响房价的主要因素。
同时,结合实际情况,对实证结果进行深入分析和解释。
毕业论文:线性模型的估计

1 绪论1.1线性模型的估计的发展线性回归模型是现代统计学中内容丰富、应用广泛的一个研究分支。
它的最终目的是确定并数字性地表示所研究的自变量和应变量之间的线性关系。
随着计算机的日益普及与数字计算能力的不断提高,它被广泛应用于生物、医学、经济、管理、金融、工农业、工程技术等领域,并在其中发挥着重要作用。
近几十年来,很多学者对线性模型进行了深入细致的分析和研究,使它无论在广度和深度上都有不少新的发展,例如有偏估计、可容许性理论、非参数回归、稳健回归、大样本理论、序贯理论、Bayes 方法、回归诊断等等。
这些新的研究方法中,多数在一定程度上扩大了线性模型的研究范围,有的具有很强的实用价值,有的则是对原有方法及其理论的修正和改进。
总之,这些新的理论和方法进一步将线性模型的研究推向新的高峰,使得线性模型更加广泛地应用于国民生产各个领域。
简而言之,有偏估计的产生源于传统的最小二乘估计(Least SquaresEstimation,简称LSE)方法在处理共线性问题中的缺陷和估计的不可容许性。
最小二乘法是线性模型中最经典的结果之一。
著名数学家A.M.Legendre 和C.F.Gauss 分别于1806 年和1809 年把最小二乘法应用于观测数据的误差分析,从而开启了最小二乘法的大门。
1900 年A.A.Markov 证明了著名Gauss-Markov 定理刻画最小二乘估计在线性无偏估计类中的最优性,从而奠定了最小二乘估计在线性模型参数估计理论中的地位。
1971 年,针对奇异线性模型的情况,Rao 提出了‘最小二乘统一理论’,这种方法既适用于设计阵列满秩或列降秩情形,又适用于协方差阵奇异或非奇异的情形,进一步巩固了最小二乘估计在参数估计中的地位。
这些结果[1]使得人们在很长时间里认为最小二乘估计是解决线性模型参数估计的最好的估计。
随着回归分析研究的深入,统计学家在理论分析和实际应用中发现最小二乘估计存在一些问题(1)理论分析中,最小二乘估计的不可容许性。
线性回归模型的研究毕业论文

线性回归模型的研究毕业论文1 引言回归分析最早是由19世纪末期高尔顿(Sir Francis Galton)发展的。
1855年,他发表了一篇文章名为“遗传的身高向平均数方向的回归”,分析父母与其孩子之间身高的关系,发现父母的身高越高或的其孩子也越高,反之则越矮。
他把儿子跟父母身高这种现象拟合成一种线性关系。
但是他还发现了个有趣的现象,高个子的人生出来的儿子往往比他父亲矮一点更趋向于平均身高,矮个子的人生出来的儿子通常比他父亲高一点也趋向于平均身高。
高尔顿选用“回归”一词,把这一现象叫做“向平均数方向的回归”。
于是“线形回归”的术语被沿用下来了。
回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。
此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。
按照参数估计方法可以分为主成分回归、偏最小二乘回归、和岭回归。
一般采用线性回归分析,由自变量和规定因变量来确定变量之间的因果关系,从而建立线性回归模型。
模型的各个参数可以根据实测数据解。
接着评价回归模型能否够很好的拟合实际数据;如果不能够很好的拟合,则重新拟合;如果能很好的拟合,就可以根据自变量进行下一步推测。
回归分析是重要的统计推断方法。
在实际应用中,医学、农业、生物、林业、金融、管理、经济、社会等诸多方面随着科学的发展都需要运用到这个方法。
从而推动了回归分析的快速发展。
2 回归分析的概述2.1 回归分析的定义回归分析是应用极其广泛的数据分析方法之一。
回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
2.2 回归分析的主要容(1)从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。
估计参数的常用方法是最小二乘法。
数据建模与分析:线性回归小论文

ylabel('Shanghai Commercial Housing Price in RMB one million');
xlabel('Shanghai Commercial Housing Area in 10 square meters');
data = load('house.txt');%调用数据
X = data(:, 1); y = data(:, 2);%向量存储
m = length(y); %计算训练样本数量
3.1.2绘制离散图程序
该过程主要包括主程序的调用以及调用函数的定义,定义函数首先要打开一个绘图窗口,然后定义数值范围,最终附上标签绘制图形或者点。通过这样的方式处理,我们可以清晰的看到上海售房面积和价格的离散分布关系。
theta(1) = temp1;
theta(2) = temp2;
J_history(iter) = computeCost(X, y, theta);
end
end
2.4散点图的绘制
具体的数据已经根据一定格式记录在txt文件中,因此只需调取其中的数据并将散点绘制到图中[6],具体程序如下:
function plotData(x, y)
ylabel('y');
end
运行程序后得到散点图如图2所示:
图2散点图
Fig.2scatter diagram
2.5回归线的绘制
通过机器统计学习后得到线性回归线,如图3所示:
图3回归线
fig.3Theregression line
本科毕业论文---基于多元线性回归模型对我国城镇居民家庭人均可支配收入的分析

应用回归分析课程设计报告课程:应用回归分析题目:人均可支配收入的分析年级:11金统专业:金融统计学号:姓名:指导教师:基于多元线性回归模型对我国城镇居民家庭人均可支配收入的分析摘要:收入分配和消费结构都是国民经济的重要课题居民消费的主要来源是居民收入而消费又是拉动经济增长的重要因素。
本文将通过多远统计分析方法对我国各地区城镇居民收入的现状进行分析。
通过分析找出我国城镇居民收入特点及其中存在的不足。
城镇居民可支配收入是检验我国社会主义现代化进程的一个标准。
本文根据我国城镇居民家庭人均可支配收入为研究对象,选取可能影响我国城镇居民家庭人均可支配收入的城乡居民储蓄存款年底余额、城乡居民储蓄存款年增加额、国民总收入、职工基本就业情况、城镇居民家庭恩格尔系数(%)5个因素,运用多元线性回归分析建立模型,先运用普通最小二乘估计求回归系数再对方程进行异方差、自相关、和多重共线性诊断,用迭代法消除了自变量之间的自相关。
对于多重共线性问题,先是用逐步回归和剔除变量的方法,最终转变为用方差扩大因子法城乡居民储蓄存款年增加额剔除城镇居民家庭恩格尔系数(%)解决多重共线性,建立最终回归方程432108.0039.0012.0470.5305x x x y +++-=∧标准化回归方程**3*24108.0863.0031.0x x x y ++=∧以其探究最后进入回归方程的几个变量在影响城镇居民收入孰轻孰重,达到学习与生活结合的效果。
分析出影响城镇居民收入的主要原因,并对模型联系实际进行分析,以供国家进行决策做参考。
关键词:多元线性回归 异方差 自相关 多重共线性 逐步回归 方差扩大因子(一)引言:改革开放以来我国的国民经济增长迅速居民的收入水平也大幅提高但居民收入分配差距也在不断扩大。
2008年的金融危机为我国带来的后遗症还在继续影响着居民正常生活物价上涨和通货膨胀的压力仍然困扰着老百姓收入和消费支出体系的健康发展至关重要。
线性回归模型论文回归模型论文

线性回归模型论文回归模型论文一种基于线性回归模型的运动矢量重估算法摘要:针对H.264/AVC空间分辨率缩减的视频转码,提出一种基于线性回归模型的运动矢量重估计算法。
它利用原始视频流的运动矢量与下采样视频流的运动矢量之间的相关性,运用线性回归模型建模,得到下采样视频的运动矢量。
仿真实验结果表明:在保持率失真性能的同时,计算复杂度明显降低。
关键词:视频转码;H.264;线形回归模型;运动矢量重估计A Motion Vector Re-estimation Algorithm based on Linear Regression ModelYANG Gao-bo1, XIA Zhong-chao1, ZHANG Zhao-yang2, WANG Hui-qian1(1.College of Computer and Communication, Hunan Univ, Changsha, Hunan410082, China;2.Key Lab of Advanced Display and System Applications, Ministry of Education, Shanghai Univ, Shanghai 200072, China) Abstract: For the spatial resolution reduction ofH.264/AVC stream, a motion re-estimation algorithm based on linear regression model is proposed in this paper. It exploits the correlation between the motion vectors of original video stream and those of down-sampled video, which is modelled bylinear regression model to obtain the estimated motion vectors. Experimental results demonstrate that the proposed approach can significantly reduce the computational complexity of the transcoder with only slight sacrifice of visual quality.Key words: video transcoding;H.264/AVC;linear regression model;motion vector re-estimation随着网络和多媒体通信的发展,不同网络上各种视频信息的交流需求在不断增加。
数据建模与分析线性回归小论文

数据建模与分析线性回归小论文线性回归是一种常见的数据建模和分析方法,在多个领域中都有广泛的应用。
本文将通过探讨线性回归的基本概念、模型建立、评价指标和应用案例等方面,分析线性回归在数据建模与分析中的重要性和价值。
首先,线性回归是一种用于建立因变量和自变量之间线性关系的统计模型。
其基本假设是,在给定自变量的情况下,因变量是自变量的线性函数加上随机误差项的组合。
线性回归的目标是寻找最佳拟合直线,以最小化实际观测值与预测值之间的差异。
在进行线性回归建模时,首先需要选择合适的自变量,这可以通过领域知识、相关性分析和特征选择等方法来进行。
然后,根据选定的自变量,建立线性回归模型,这可以通过最小二乘法估计回归系数。
为了评价线性回归模型的性能,可以使用多个指标。
其中,最常见的指标是均方误差(Mean Squared Error, MSE)和决定系数(R-squared)。
均方误差反映了模型的预测误差大小,而决定系数则表示模型解释数据方差的能力。
此外,还可以使用假设检验和置信区间等方法来评价回归系数的显著性和可靠性。
线性回归在数据建模与分析中具有广泛的应用。
例如,在市场营销中,可以使用线性回归分析来预测产品销量与广告投入的关系,从而确定最佳的广告策略。
在经济学中,线性回归可以用于分析GDP与劳动力市场、物价等经济变量之间的关系。
在医学研究中,线性回归可以用于探索生物标志物与疾病之间的相关性。
总之,线性回归是一种常见且有价值的数据建模与分析方法。
通过选择合适的自变量、建立合理的模型和评价模型的性能,线性回归可以帮助我们探索变量之间的关系,预测未来趋势,并为决策提供依据。
然而,需要注意的是,线性回归的使用必须满足一些假设条件,如线性关系、正态分布等,对于非线性关系或异常数据,需要采用其他方法进行建模和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性回归模型的研究毕业论文1 引言回归分析最早是由19世纪末期高尔顿(Sir Francis Galton)发展的。
1855年,他发表了一篇文章名为“遗传的身高向平均数方向的回归”,分析父母与其孩子之间身高的关系,发现父母的身高越高或的其孩子也越高,反之则越矮。
他把儿子跟父母身高这种现象拟合成一种线性关系。
但是他还发现了个有趣的现象,高个子的人生出来的儿子往往比他父亲矮一点更趋向于平均身高,矮个子的人生出来的儿子通常比他父亲高一点也趋向于平均身高。
高尔顿选用“回归”一词,把这一现象叫做“向平均数方向的回归”。
于是“线形回归”的术语被沿用下来了。
回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。
此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。
按照参数估计方法可以分为主成分回归、偏最小二乘回归、和岭回归。
一般采用线性回归分析,由自变量和规定因变量来确定变量之间的因果关系,从而建立线性回归模型。
模型的各个参数可以根据实测数据解。
接着评价回归模型能否够很好的拟合实际数据;如果不能够很好的拟合,则重新拟合;如果能很好的拟合,就可以根据自变量进行下一步推测。
回归分析是重要的统计推断方法。
在实际应用中,医学、农业、生物、林业、金融、管理、经济、社会等诸多方面随着科学的发展都需要运用到这个方法。
从而推动了回归分析的快速发展。
2 回归分析的概述2.1 回归分析的定义回归分析是应用极其广泛的数据分析方法之一。
回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
2.2 回归分析的主要容(1)从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。
估计参数的常用方法是最小二乘法。
(2)对这些关系式的可信程度进行检验。
(3)在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。
(4)利用所求的关系式对某一生产过程进行预测或控制。
回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
2.3一元线性回归与多元线性回归的分析一元线性回归模型, 是分析两个变量之间相互关系的数学方程式, 其一般表达式为y=a+bx式中, y表示因变量的估计值, x 表示自变量, a,b 称为回归模型的待定参数, 其中b 又称为回归系数。
上述的回归方程式在平面坐标系中表现为一条直线即回归直线。
当 b>0 时 y 随 x 的增加而增加, 两变量之间为正相关关系; 当 b<0 时,y 随 x 的增加而减少, 两变量之间为负相关关系; 当y为一个常量时, 不随x的变动而变动。
这样就为我们判断现象之间的关系, 分析现象之间是否处于正常状态提供了一条标准。
多元线性回归模型旨在分析两个或者两个以上的自变量作用后产生的结果,即多个自变量下的因变量结果,研究的是随机变量y与多个普通变量x1,x2,…x p, (p≥2),的相关关系。
表达式为y=β0 +β1 x1 +β2 x2 +…βp x p+ε,对随机误差项ε常假定E(ε)=0,Var(ε)=σ2。
并且称E(y)= β0 +β1 x1 +β2 x2 +…βp x p为理论回归方程。
在实际应用中,如果获得n组观测数据(x i1 ,x i2,…,x ip ;y i),i=1,2,…,n,则线性回归模型变为y=β0 +β1 x i1 +β2 x i2 +…βp x ip+εi 。
并且,量y与自变量x之间的关系往往是非线性关系,而不是简单的线性关系。
但在非线性回归分析研究实际问题时,往往选择可以通过一定变换后能转换成线性关系的研究模型,从而避免了非线性回归分析的计算的复杂性。
随着技术的不断进步,研究过程中经常运用到计算机,复杂的非线性回归分析模型也将被应用在研究中,而且会越来越频繁。
2.4 回归分析的基本思想在回归分析中,把变量分为两类。
一类是因变量,它们通常是实际问题中所关心的一类指标,通常用Y表示;而影响因变量取值的的另一类变量称为自变量,用X来表示。
回归分析研究的主要问题是:(1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;(2)对求得的回归方程的可信度进行检验;(3)判断自变量X对因变量Y有无影响;(4)利用所求得的回归方程进行预测和控制。
2.5回归分析的实现过程(1)确定变量:明确预测的具体目标,也就确定了因变量。
如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。
通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。
(2)建立预测模型:依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
(3)进行相关分析:回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。
只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。
因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。
进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。
(4)计算误差量:回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。
回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。
(5)确定预测值:利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。
2.6回归分析的优缺点回归分析的优点是在分析多个因素模型的时候,更加的简单有效,可以准确的计量多个因素之间的相关程度与回归拟合程度的高低,从而提高预测方程式的准确性。
但有时候在回归分析中,选用何种因子和该因子采用何种表达式只是一种推测,这影响了因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。
3 回归分析的应用3.1一元线性回归分析中国人口发展的第四个高峰期是在新中国建立之后的50年。
在这一时期里,中国人口的大展呈现着许多复杂的特点,而且这些特点都与中国历史时期人口有着密切的关系人口问题一直是一个全球性问题,也是中国经济社会发展和可持续发展的一个基本问题。
2010年,中国人口总数已经达到134091万,全世界大约683059万人。
全世界平均五个人中就有一个是中国人。
中国人口的特点是基数大、育龄人群和农村人口的比重高、增长速度较快而且地区分布不均匀。
虽然中国人口基数大,但是每年净增人口数也很大。
那么未来人口增长趋势如何呢,未来男性比重、人口老龄化趋势、城市人口比重又如何呢?查阅大量资料得到以下数据观察历年总人口散点图,发现变量间呈线性相关趋势,所以应该选取一元线性回归的方法。
通过spss软件回归分析得到下图模型拟合度检验模型汇总b模型R R 方调整 R 方标准估计的误差1 .995a.990 .989 393.666a. 预测变量: (常量), 年份。
b. 因变量: 总人口其中第二列R表示复相关系数,其反映的是自变量与因变量之间的密切程度。
其值在0到1之间,越大越好。
第三列R方是复相关系数的平方,又称决定系数。
通过观察这几个数据,可知拟合情况很好。
方差分析表Anova a模型平方和df 均方 F Sig.1 回归217948139.136 1 217948139.136 1406.364 .000b 残差2169618.301 14 154972.736总计220117757.438 15a. 因变量: 总人口b. 预测变量: (常量), 年份。
从上图中可知,回归模型的Sig值为0,说明该模型有显著的统计意义。
系数a模型非标准化系数标准系数t Sig.B 标准误差试用版(常量) -1474830.963 42773.884 -34.480 .0001年份800.640 21.350 .995 37.502 .000a. 因变量: 总人口根据上图得到拟合的结果为总人口=年份*800.640-1474830.963。
但是一个完整的回归分析过程还包括利用残差分析,对拟合结果进行检验。
下图中所示的是与残差值有关的一些统计量,包括预测值及标准化的预测值、残差及残差的预测值的最小值、最大值、均值、标准差和样本值。
这些数据中无离群值,且数据的标准差也比较小,可以认为模型是健康的。
残差统计量a极小值极大值均值标准偏差N预测值123245.89 135255.48 129250.69 3811.807 16残差-856.890 403.272 .000 380.317 16标准预测值-1.575 1.575 .000 1.000 16标准残差-2.177 1. .000 .966 16a. 因变量: 总人口对于模型的检验,除了分析残差统计量之外,还可以直接作出标准化残差值的直方图和正态P-P图来观察其是否服从正态分布。
如下图所示,由于残差具有正态分布的趋势。
因此可以认为这里的回归模型是恰当的。
观察历年城市人口比重散点图,发现变量间呈线性相关趋势,所以应该选取一元线性回归的方法。
通过spss软件回归分析得到下图模型拟合度检验通过观察这几个数据可知拟合度很好。
Anova a模型平方和df 均方 F Sig.1 回归643. 1 643. 34629.231 .000b 残差.260 14 .019总计643.306 15a. 因变量: 城市人口比重b. 预测变量: (常量), 年份。
拟合的结果为城市人口比重=年份*1.375-2714.342。
同样可以通过以上两种方法对拟合结果进行检验,发现该回归模型是恰当的。
结论通过建立回归模型可以预测未来几年中国人口,中国人口一直呈现上升趋势,上升速度基本平缓,没有出现很大的波动,但上升幅度有略微的下降。
同样通过回归模型能够预测未来几年中国城市人口比重,中国城市人口比重也一直呈现上升趋势,上升速度快,城市人口越来越多,已经超过50%,未来几年还会继续上升,没有下跌的趋势,而且上升幅度基本不变。
结合实际情况,比如“计划生育”方面可以改善一下,适当的放宽要求。
3.2多元线性回归分析篮球运动是一项热门的竞技体育运动项目,由两队参与的球类运动。
篮球比赛强调篮球运动员之间的配合来完成比赛。
而篮球运动对运动员的技战术和身体素质要求越来越高,尤其是当今世界篮球水平最高的联赛是美国的国家篮球协会(NBA),其对技术的要求比起其他赛事更高。