(完整word版)多元线性回归模型案例分析
多元线性回归分析范例

多元线性回归分析范例多元线性回归是一种用于预测因变量和多个自变量之间关系的统计分析方法。
它假设因变量与自变量之间存在线性关系,并通过拟合一个多元线性模型来估计因变量的值。
在本文中,我们将使用一个实际的数据集来进行多元线性回归分析的范例。
数据集介绍:我们选取的数据集是一份汽车销售数据,包括了汽车的价格(因变量)和多个与汽车相关的特征(自变量),如车龄、行驶里程、汽车品牌等。
我们的目标是通过这些特征来预测汽车的价格。
数据集包括了100个样本。
数据集的构成如下:车龄(年),行驶里程(万公里),品牌,价格(万元)----------------------------------------5,10,A,153,5,B,207,12,C,10...,...,...,...建立多元线性回归模型:我们首先需要将数据集划分为自变量矩阵X和因变量向量y。
其中,自变量矩阵X包括了车龄、行驶里程和品牌等特征,因变量向量y包括了价格。
在Python中,我们可以使用NumPy和Pandas库来处理和分析数据。
我们可以使用Pandas的DataFrame来存储数据集,并使用NumPy的polyfit函数来拟合多元线性模型。
首先,我们导入所需的库并读取数据集:```pythonimport pandas as pdimport numpy as np#读取数据集data = pd.read_csv('car_sales.csv')```然后,我们将数据集划分为自变量矩阵X和因变量向量y:```python#划分自变量矩阵X和因变量向量yX = data[['车龄', '行驶里程', '品牌']]y = data['价格']```接下来,我们使用polyfit函数来拟合多元线性模型。
我们将自变量矩阵X和因变量向量y作为输入,并指定多项式的次数(线性模型的次数为1):```python#拟合多元线性模型coefficients = np.polyfit(X, y, deg=1)```最后,我们可以使用拟合得到的模型参数来预测新的样本。
建模实例(多元线性回归模型)

以上图为例,按当年价格计算,我国1992年的GDP 是1980年的5.9倍,而按固定价格计算,我国1992 年的GDP是80年的2.8倍。
2、依照经济理论以及对具体经济问题的深入
分析初步确定解释变量。例:关于某市的食 用油消费量,文革前常驻人口肯定是重要解 释变量。现在则不同,消费水平是重要解释 变量,因为食用油供应方式已改变。 3、当引用现成数据时,要注意数据的定义是 否与所选定的变量定义相符。例:“农业人 口”要区别是“从事农业劳动的人口”还是 相对于城市人口的“农业人口”。
t
案例2:《全国味精需求量的计量经济模型》
1.依据经济理论选择影响味精需求量变化的因素 依据经济理论初设为: 商品需求量 = f (商品价格,代用品价格,收入水 平,消费者偏好) 根据分析,针对味精需求量只考虑两个重要解释变 量,商品价格和消费者收入水平。 味精需求量 = f (商品价格,收入水平)
一建模过程中应注意的问题?1研究经济变量之间的关系要剔除物价变动因素?以上图为例按当年价格计算我国1992年的gdp是1980年的59倍而按固定价格计算我国1992年的gdp是1980年的28倍
一、建模过程中应注意的问题
1、研究经济变量之间的关系要剔除物价变动因素
30000 25000 20000 15000 10000 5000 GD P GD P(f) 0 80 81 82 83 84 85 86 87 88 89 90 91 92
4、通过散点图,相关系数,确定解释变量与
被解释变量的具体函数关系。(线性、非线 性、无关系)
5、谨慎对待离群值(outlier)。离群值可能是正常
值也可能是异常值。不能把建立模型简单化为一个纯 数学过程,目的是寻找经济规律。(欧盟对华投资和 中国从欧盟进口)
多元线性回归模型(6)

样本,可表示为
Y1 1 2 X 21 3 X31 ... k X k1 u1 Y2 1 2 X 22 3 X32 ... k X k2 u2
Yn 1 2 X 2n 3 X3n ... k X kn un
11
用矩阵表示
Y1 1
即 X可X逆
假定6:正态性假定 ui ~ N(0,σ2)
15
第二节 多元线性回归模型的估计
本节基本内容:
● 普通最小二乘法(OLS) ● OLS估计式的性质 ● OLS估计的分布性质
● 随机扰动项方差 的估2 计
● 回归系数的区间估计
16
一、普通最小二乘法(OLS)
最小二乘原则
剩余平方和最小: min ei2 (Yi -Yˆi)2
1 X 22
X kiei
X
k1
Xk2
1 e1
0
X
2n
e2
=
XБайду номын сангаас
e
=
0
X
kn
en
0
X
e
因为样本回归函数为 Y = Xβˆ + e
两边乘 X有 :
X Y = X Xβˆ + X e
因为 Xe,= 0则正规方程为:
X Xβˆ = X Y
19
OLS估计式
由正规方程 多元回归中 二元回归中
或取固定值的矩阵
2.无偏特性:
E(βˆk ) βk
21
3. 最小方差特性
在 βk所有的线性无偏估计中,OLS估计 β具ˆk 有
最小方差
结论:在古典假定下,多元线性回归的 OLS估计 式是最佳线性无偏估计式(BLUE)
多元线性回归模型案例(DOC)

多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
(完整word版)多重共线性问题的几种解决方法

多重共线性问题的几种解决方法在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X1,X2,……,X k中的任何一个都不能是其他解释变量的线性组合。
如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。
多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。
这里,我们总结了8个处理多重共线性问题的可用方法,大家在遇到多重共线性问题时可作参考:1、保留重要解释变量,去掉次要或可替代解释变量2、用相对数变量替代绝对数变量3、差分法4、逐步回归分析5、主成份分析6、偏最小二乘回归7、岭回归8、增加样本容量这次我们主要研究逐步回归分析方法是如何处理多重共线性问题的。
逐步回归分析方法的基本思想是通过相关系数r、拟合优度R2和标准误差三个方面综合判断一系列回归方程的优劣,从而得到最优回归方程。
具体方法分为两步:第一步,先将被解释变量y对每个解释变量作简单回归:对每一个回归方程进行统计检验分析(相关系数r、拟合优度R2和标准误差),并结合经济理论分析选出最优回归方程,也称为基本回归方程。
第二步,将其他解释变量逐一引入到基本回归方程中,建立一系列回归方程,根据每个新加的解释变量的标准差和复相关系数来考察其对每个回归系数的影响,一般根据如下标准进行分类判别:1.如果新引进的解释变量使R2得到提高,而其他参数回归系数在统计上和经济理论上仍然合理,则认为这个新引入的变量对回归模型是有利的,可以作为解释变量予以保留。
2。
如果新引进的解释变量对R2改进不明显,对其他回归系数也没有多大影响,则不必保留在回归模型中。
3.如果新引进的解释变量不仅改变了R2,而且对其他回归系数的数值或符号具有明显影响,则认为该解释变量为不利变量,引进后会使回归模型出现多重共线性问题。
不利变量未必是多余的,如果它可能对被解释变量是不可缺少的,则不能简单舍弃,而是应研究改善模型的形式,寻找更符合实际的模型,重新进行估计.如果通过检验证明回归模型存在明显线性相关的两个解释变量中的其中一个可以被另一个很好地解释,则可略去其中对被解释变量影响较小的那个变量,模型中保留影响较大的那个变量。
(整理)第四章 多元线性回归模型

第四章 多元线性回归模型在一元线性回归模型中,解释变量只有一个。
但在实际问题中,影响因变量的变量可能不止一个,比如根据经济学理论,人们对某种商品的需求不仅受该商品市场价格的影响,而且受其它商品价格以及人们可支配收入水平的制约;影响劳动力劳动供给意愿(用劳动参与率度量)的因素不仅包括经济形势(用失业率度量),而且包括劳动实际工资;根据凯恩斯的流动性偏好理论,影响人们货币需求的因素不仅包括人们的收入水平,而且包括利率水平等。
当解释变量的个数由一个扩展到两个或两个以上时,一元线性回归模型就扩展为多元线性回归模型。
本章在理论分析中以二元线性回归模型为例进行。
一、预备知识(一)相关概念对于一个三变量总体,若由基础理论,变量21,x x 和变量y 之间存在因果关系,或21,x x 的变异可用来解释y 的变异。
为检验变量21,x x 和变量y 之间因果关系是否存在、度量变量21,x x 对变量y 影响的强弱与显著性、以及利用解释变量21,x x 去预测因变量y ,引入多元回归分析这一工具。
将给定i i x x 21,条件下i y 的均值i i i i i x x x x y E 2211021),|(βββ++= (4.1) 定义为总体回归函数(Population Regression Function,PRF )。
定义),|(21i i i i x x y E y -为误差项(error term ),记为i μ,即),|(21i i i i i x x y E y -=μ,这样i i i i i x x y E y μ+=),|(21,或i i i i x x y μβββ+++=22110 (4.2)(4.2)式称为总体回归模型或者随机总体回归函数。
其中,21,x x 称为解释变量(explanatory variable )或自变量(independent variable );y 称为被解释变量(explained variable )或因变量(dependent variable );误差项μ解释了因变量的变动中不能完全被自变量所解释的部分。
实验(二)多变量线性回归模型Microsoft Word 文档

实验(二)多变量回归模型及面板数据初步处理【实验目的】掌握多变量线性回归模型的参数估计及相关内容【实验内容】建立多变量线性回归模型,回归参数估计,散点图,残差图等。
建立面板数据库并处理数据。
【实验步骤】实验步骤一:如何在数据表删除某一列数据,或在两列数据中插入一列数据,在数据表删除某一列数据的操作:双击数据组标示→打开数据组表→编辑一组数据→点击鼠标右键→拉出一菜单→点击Remove Series。
在两列数据中插入一列数据:双击数据组标示→打开数据组表→编辑一组数据→点击鼠标右键→拉出一菜单→点击Insert Series。
实验步骤二:建立面板数据库并处理数据。
向EViews6.0中输入截面数据名称的时候,应先建立一个合并数据(Pool)对象。
★选择EViews6.0主菜单Object→New Object→Pool★在Pool中输入_BJ_TJ_HB_LN_SHH_JS_ZHJ_FJ_SHD_GD_HN★在Pool窗口点击name,保存。
★在Pool窗口点击sheet,打开一个窗口,输入GDP?,RENKOU?,GSH?,GZH?。
就得到一个东部地区GDP,RENKOU,GSH,GZH的Poolsheet(面板数据表)。
★在Pool窗口点击define,回到Pool的标示窗口;点击Pool的标示窗口sheet,打开一个窗口,输入GDP?,RENKOU?,GSH?,GZH?。
得到GDP,RENKOU,GSH,GZH的Poolsheet (面板数据表)。
★Pool序列的序列名使用的是基本名和“?”占位符。
例如,GDP?代表:GDP_BJ——北京GDPGDP_TJ——天津GDPGDP_HB——河北GDPGDP_LN——辽宁GDPGDP_SHH——上海GDPGDP_JS——江苏GDPGDP_ZHJ——浙江GDPGDP_FJ——福建GDPGDP_SHD——山东GDPGDP_GD——广东GDPGDP_HN——海南GDP★还可以通过Pool窗口中的PoolGenerate,通过公式可以生成以面板数据为基础的新数据。
《2024年多元线性回归分析的实例研究》范文

《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计方法,用于研究多个变量之间的关系。
在社会科学、经济分析、医学等多个领域,这种分析方法的应用都十分重要。
本实例研究以一个具体的商业案例为例,展示了如何应用多元线性回归分析方法进行研究,以便深入理解和探索各个变量之间的潜在关系。
二、背景介绍以某电子商务公司的销售额预测为例。
电子商务公司销售量的影响因素很多,包括市场宣传、商品价格、消费者喜好等。
因此,本文通过收集多个因素的数据,使用多元线性回归分析,以期达到更准确的销售预测和因素分析。
三、数据收集与处理为了进行多元线性回归分析,我们首先需要收集相关数据。
在本例中,我们收集了以下几个关键变量的数据:销售额(因变量)、广告投入、商品价格、消费者年龄分布、消费者性别比例等。
这些数据来自电子商务公司的历史销售记录和调查问卷。
在收集到数据后,我们需要对数据进行清洗和处理。
这包括去除无效数据、处理缺失值、标准化处理等步骤。
经过处理后,我们可以得到一个干净且结构化的数据集,为后续的多元线性回归分析提供基础。
四、多元线性回归分析1. 模型建立根据所收集的数据和实际情况,我们建立了如下的多元线性回归模型:销售额= β0 + β1广告投入+ β2商品价格+ β3消费者年龄分布+ β4消费者性别比例+ ε其中,β0为常数项,β1、β2、β3和β4为回归系数,ε为误差项。
2. 模型参数估计通过使用统计软件进行多元线性回归分析,我们可以得到每个变量的回归系数和显著性水平等参数。
这些参数反映了各个变量对销售额的影响程度和方向。
3. 模型检验与优化为了检验模型的可靠性和准确性,我们需要对模型进行假设检验、R方检验和残差分析等步骤。
同时,我们还可以通过引入交互项、调整自变量等方式优化模型,提高预测精度。
五、结果分析与讨论1. 结果解读根据多元线性回归分析的结果,我们可以得到以下结论:广告投入、商品价格、消费者年龄分布和消费者性别比例均对销售额有显著影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归模型案例分析
——中国人口自然增长分析一·研究目的要求
中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定
为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):
表1 中国人口增长率及相关数据
设定的线性回归模型为:
1222334t t t t t Y X X X u ββββ=++++
三、估计参数
利用EViews 估计模型的参数,方法是:
1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对
话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。
年份 人口自然增长率
(%。
) 国民总收入(亿元) 居民消费价格指数增长
率(CPI )% 人均GDP (元) 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 2006
5.38 213132 1.5 16024
2、输入数据:点击“Quik ”下拉菜单中的“Empty Group ”,出现“Group”窗口数据编辑框,点第一列与“obs ”对应的格,在命令栏输入“Y ”,点下行键“↓”,即将该序列命名为Y ,并依此输入Y 的数据。
用同样方法在对应的列命名X 2、X
3、X 4,并输入相应的数据。
或者在EViews 命令框直接键入“data Y 2X X 3 X 4 … ”,回车出现“Group”窗口数据编辑框,在对应的Y 、X 2、X 3、X 4下输入响应的数据。
3、估计参数:点击“Procs “下拉菜单中的“Make Equation ”,在出现的对话框的“Equation Specification ”栏中键入“Y C X 2 X 3 X 4”,在“Estimation Settings ”栏中选择“Least Sqares ”(最小二乘法),点“ok ”,即出现回归结果: 表3.4
根据表3.4中数据,模型估计的结果为:
432005109.0047918.0000332.060851.15X X X Y t -++=Λ
(0.913842) (0.000134) (0.033919) (0.001771)
t= (17.08010) (2.482857) (1.412721) (-2.884953) 930526.02
=R 915638.02
=R F=62.50441 四、模型检验
1、经济意义检验
模型估计结果说明,在假定其它变量不变的情况下,当年国民总收入每增长1亿元,人口增长率增长0.000332%;在假定其它变量不变的情况下,当年居民消费价格指数增长率每增长 1%,人口增长率增长0.047918%;在假定其它变量不变的情况下,当年人均GDP 没增加一元,人口增长率就会降低0.005109%。
这与理论分析和经验判断相一致。
2、统计检验
(1)拟合优度:由表3.4中数据可以得到:930526.02
=R ,修正
的可决系数为915638
.02
=R
,这说明模型对样本的拟合很好。
(2)F 检验:针对0234:0H βββ===,给定显著性水平0.05α=,在F 分布表中查出自由度为k-1=3和n-k=14的临界值34.3)14,3(=αF 。
由表3.4中得到F=62.50441 ,由于F=62.50441 >(3,21) 3.075F α=,应拒绝原假设0234:0H βββ===,说明回归方程显著,即“国民总收入”、“居民消费价格指数增长率”、“人均GDP ”等变量联合起来确实对“人口自然增长率”有显著影响。
(3)t 检验:分别针对0H :0(1,2,3,4)j j β==,给定显著性水平0.05α=,
查t 分布表得自由度为n-k=14临界值145.2)(2/=-k n t α。
由表3.4中数据可得,与^
1β、^
2β、^
3β、^
4β对应的t 统计量分别为17.08010、2.482857 、1.412721、-2.884953
除^
3β,其绝对值均大于145.2)(2/=-k n t α,这说明分别都应当拒
绝0H :)4,2,1(0==j j β,也就是说,当在其它解释变量不变的情况下,
解释变量“国民总收入”、“人均GDP ”分别对被解释变量“人口自
然增长率”Y 都有显著的影响。
^
3β的绝对值小于145.2)(2/=-k n t α,:这说明接受0H :03=β,X3系数对t 检验不显著,这表明很可能存在多重共线性。
所以计算各解释变量的相关系数,选择X2、X3、X4数据,
点”view/correlations ”得相关系数矩阵(如表4.4):
表4.4
由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。
五、消除多重共线性
采用逐步回归的办法,去检验和解决多重共线性问题。
分别作Y 对X2、X3、X4的一元回归,结果如表4.5所示:
表4.5
变量 X2
X3 X4 参数估计值 0.000134 0.033919 0.001771 t 统计量
2.482857
1.412721 -
2.88495
0.873915
0.388495
0.886412
按2R 的大小排序为:X4、X2、X3
以X2为基础,顺次加入其他变量逐步回归。
首先加入X2回归结果为:
40005397.02000350.035540.16ˆX X Y
-+= t=(2.542529) (-2.970874) 920622.02
=R
当取05.0=α时,131
.2)318(025
.0)(2
/=-=-t
t k n α,X2参数的t 检验显
著,加入X3回归得
432005109.0047918.0000332.060851.15X X X Y t -++=Λ
t= (17.08010) (2.482857) (1.412721) (-2.884953)
930526.02
=R 915638.02
=R F=62.50441
当取05.0=α时, 145.2)418(2/=-αt ,X3参数的t 检验不显著,予以剔除
即40005397.02000350.035540.16ˆX X Y
-+=,这是最后消除多重共线性的结果。
在假定其它变量不变的情况下,当年国民总收入每增长1亿元,人口增长率增长0.000332%;在假定其它变量不变的情况下,在假定其它变量不变的情况下,当年人均GDP 没增加一元,人口增长率就会降低0.005109%。
金服131 王亚平
13019122。