高中数学常见函数图像

合集下载

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。

高中数学函数的图像

高中数学函数的图像

y 3 2 1 –1 O –1 1 2 3 4 x
规律方法 函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置;从 函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势. (3)从函数的奇偶性,判断图象的对称性. (4)从函数的特征点,排除不合要求的图象.利 用上述方法排除、筛选选项.
解析
x-1,x≥2, (1)f(x)= 3-x,x<2.
1 其中 A(2,1),则 kOA= . 2 如图,作出 y=f(x)的图象,
要使方程f(x)=g(x)有两个不相等的实根, 则函数f(x)与g(x)的图象有两个不同的交点, 1 由图可知, < k< 1.选 B 2
考点三
函数图象的应用
【训练 2】(2)(2014· 新课标全国Ⅰ卷) 如图,圆 O 的半径为 1,A 是圆上的定点,P 是圆上的动点, 角 x 的始边为射线 OA,终边为射线 OP,过点 P 作直线 OA 的垂线,垂足为 M.将点 M 到直线 OP 的距离表示成 x 的函数 f(x),则 y=f(x)在[0,π]的图象大致为(
考点二
函数图象的辨识
x
(x≤1), 3 【例 2】(2)函数 f(x)=log1x(x>1), 则 y=f(1-x)的图象是( ) 3
(2)画出y=f(x)的图象, 再作其关于y轴对称的图象, 得到y=f(-x)的图象, –3 –2 再将所得图象向右平移1个单位, 得到y=f[-(x-1)]=f(-x+1)的图 象.
【例 3】 (2)直线 y= 1 与曲线 y= x2- |x|+a 有四个交点, 则 a 的取值 范围是 ________.
2 x -x+a,x≥0, (2)y= 2 作出图象,如图所 x +x+a,x<0,

高中数学的所有重要函数图像及其性质图像特点单调性定义域值域

高中数学的所有重要函数图像及其性质图像特点单调性定义域值域

数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x 的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。

可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学14种函数图像和性质知识解析新人教A版必修1高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。

而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。

1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。

人教版高中数学课件-函数的图像

人教版高中数学课件-函数的图像

高考总复习 数学
第二章 函数与基本初等函数
(2)对称变换: y=f(x)―关―于―x―轴―对―称→y=-f(x); y=f(x)―关―于―y―轴―对―称→y=f(-x); y=f(x)―关―于―原―点―对―称→y=-f(-x) y=f(x)关―于―直―线―y―=―x对→称y=f-1(x); y=f(x)关―于―直―线―x―=―a对→称y=f(2a-x); y=f(x)关―于―点―a―,―0―对→称y=-f(2a-x).
[答案] A
高考总复习 数学
第二章 函数与基本初等函数
高考总复习 数学
第二章 函数与基本初等函数
1.運用描點法作圖象應避免描點前的盲目性,也應避免 盲目地連點成線.要把表列在關鍵處,要把線連在恰當處.這 就要求對所要畫圖象的存在範圍、大致特徵、變化趨勢等作一 個大概的研究.而這個研究要借助於函數性質、方程、不等式 等理論和手段,是一個難點.用圖象變換法作函數圖象要確定 以哪一種函數的圖象為基礎進行變換,以及確定怎樣的變換, 這也是個難點.
[答案] 3
高考总复习 数学
第二章 函数与基本初等函数
f(x)是定義在區間[-c,c]上的奇函數,其圖象如右圖 所示,令g(x)=af(x)+b,則下列關於函數g(x)的敘述正確的是
() A.若a<0,則函數g(x)的圖象關於原點對稱 B.若a=1,0<b<2,則方程g(x)=0有大於2的實根 C.若a=-2,b=0,則函數g(x)的圖象關於y軸對稱 D.若a≠0,b=2,則方程g(x)=0有三個實根
高考总复习 数学
第二章 函数与基本初等函数
[解析] 解法一:用淘汰法,当 a<0 时,g(x)=af(x)+b 是非奇非偶函数,不关于原点对称,淘汰 A.当 a=-2,b= 0 时,g(x)=-2f(x)是奇函数,不关于 y 轴对称,淘汰 C.当 a≠0,b=2 时,因为 g(x)=af(x)+b=af(x)+2,当 g(x)=0 有 af(x)+2=0,∴f(x)=-2a,从图中可以看到,当-2<-2a<2 时,f(x)=-2a才有三个实根,所以 g(x)=0 也不一定有三个 实根,淘汰 D.故选 B.

高中数学函数图像总结

高中数学函数图像总结

编制者;石嘉炜
①k>0时,y的值随x值的增大而增大;
②k﹤O时,y的值随x值的增大而减小.
|k|越大,直线与x轴相交的锐角度数越大〔直线陡〕,|k|越小,直线与x轴相交的锐角度数越小〔直线缓〕;
①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.
①当k>0,b>0时,直线经过第一、二、三象限〔直线不经过第四象限〕;②当k>0,b﹥O时,直线经过第一、三、四象限〔直线不经过第二象限〕;③当k﹤O,b>0时,直线经过第一、二、四象限〔直线不经过第三象限〕;④当k﹤O,b﹤O时,直线经过第二、三、四象限〔直线不经过第一象限〕
〔1〕正比例函数y=kx的图象必经过原点;
〔2〕当k>0时,图象经过第一、三象限,y随x的增大而增大;〔3〕当k<0时,图象经过第二、四象限,y随x的增大而减小.。

正弦函数余弦函数的图象【新教材】人教A版高中数学必修第一册课件

正弦函数余弦函数的图象【新教材】人教A版高中数学必修第一册课件

O
x
“五点法”画正弦、余弦函数图象:
正弦函数、余弦函数图象的画法:
(3) 连线(用光滑的曲线顺次连结五个点)
画出函数
的简图:
途径:利用单位圆中正弦线来解决。
正弦函数、余数函数的图象 画出函数
5 y=1+sinx,x [0, 2 ] 则 解 集 是 { x | + 2 k x + 2 k ,k Z } . 正弦函数、余弦函数图象的画法:
的简图. 正弦函数、余数函数的图象
探究4:类比于正弦函数图象的五个关键点,你能找出余弦函数的五个关键点吗?请将它们的坐标填入下表,然后作出
的简图.
-1 0 函数在[0,2π]
范围1 以外0的图象-与1 此y范围的图象有什么关系呢?
-1 0
1 0 -1 2
y1sinx
1
210
1
正弦函数、余弦函数图象的画法:
y
-
-
1
1-
6 -4 -34
-2 2 -
oo
-1-
-1
2 2
43
4 6 5
6xx
函 数 y s in x x R 的 图 象
正弦曲线
探究2:你能利用学过的知识作y=cosx的 图象?
ycox ssix n(), xR
2
结 论 :把 正 弦 函 数 ysinx,xR 的 图 象 向 左 平 移
个 单 位 , 得 到 余 弦 y 函 数 ycosx,xR 的 图 象 .
【课堂小结】
1.代数描点法(误差大)
正余弦函 数图象 的作法
2.几何描点法(精确但步骤繁) 3.五点法(重点掌握)
4.平移法
其中五点法最常用,要牢记五个关键点的坐标.

高中数学常考特殊函数图像汇总(共66个)

高中数学常考特殊函数图像汇总(共66个)

高中数学常考特殊函数图像汇总(共66个)高中数学中有许多特殊的函数,它们在图像上呈现出各种有趣的形状和特点。

本文将对这些常考的特殊函数图像进行汇总,共涉及66个函数。

让我们一起来了解它们吧!第一个函数是一次函数,也就是线性函数。

它的函数表达式为y = kx + b,其中k表示斜率,b表示截距。

这个函数的图像是一条直线,斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点。

第二个函数是二次函数,它的函数表达式为y = ax² + bx + c,其中a、b、c是常数。

二次函数的图像是一个开口向上或向下的抛物线,a决定了抛物线的开口方向和大小,b决定了抛物线在x轴上的平移,c决定了抛物线在y轴上的平移。

第三个函数是立方函数,它的函数表达式为y = ax³ + bx² + cx + d,其中a、b、c、d是常数。

立方函数的图像是一个S形曲线,它在原点左右对称,并且随着x的增大,曲线呈现出逐渐增长或逐渐减小的趋势。

第四个函数是指数函数,它的函数表达式为y = a^x,其中a是常数且大于0。

指数函数的图像是一条递增或递减的曲线,具有不断增长或不断衰减的特点。

当a大于1时,曲线递增;当0<a<1时,曲线递减。

第五个函数是对数函数,它的函数表达式为y = loga(x),其中a是常数且大于0且不等于1。

对数函数的图像是一条递增或递减的曲线,与指数函数相反。

当x大于1时,曲线递增;当0<x<1时,曲线递减。

第六个函数是正弦函数,它的函数表达式为y = a*sin(bx+c)+d,其中a、b、c、d是常数。

正弦函数的图像是一条波动的曲线,具有周期性的特点。

a决定了振幅的大小,b决定了周期的长度,c决定了曲线的左右平移,d决定了曲线的上下平移。

第七个函数是余弦函数,它的函数表达式为y = a*cos(bx+c)+d,其中a、b、c、d是常数。

余弦函数的图像也是一条波动的曲线,与正弦函数相似,但形状上有一定的差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学常见函数图像1.
2.
过定点 图象过定点(1,0),即当1x =时,
0y =.
奇偶性
非奇非偶
单调性

在(0,)+∞上是增函数
在(0,)+∞上是减函数
定义
形如α
x y =(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.
图像
性质。

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).
单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.

~
{
4.
函数
sin y x =
cos y x = tan y x =
图象
%
定义域
R
R
,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭
值域
(
[]1,1-
[]1,1-
R
最值

22
x k π
π=+
()
k ∈Z 时,
max 1y =;
当22
x
k π
π=-
()k ∈Z 时,min 1y =-.
当()2x k k π
=∈Z 时,
/
max 1y =;
当2x k π
π=+
()k ∈Z 时,min 1y =-.
既无最大值也无最小值
周期性


π

奇偶性
奇函数 偶函数 奇函数
单调性

2,222k k ππππ⎡
⎤-+⎢⎥⎣⎦
()k ∈Z 上是增函数;在
32,222k k π
πππ⎡⎤++⎢⎥⎣
⎦ 在[]()
2,2k k k πππ-∈Z 上






[]2,2k k πππ+ ()k ∈Z 上是减函数.
在,2
2k k π
ππ
π⎛

-
+
⎪⎝

()k ∈Z 上是增函数.。

相关文档
最新文档