高中数学必修4第一章知识点总结及典型例题
高中数学人教A版必修4第一章正弦型函数y=Asin(ωx+φ)的图像平移及解析式的求法

正弦型函数y =Asin(ωx +φ)的图像平移及解析式的求法【知识点梳理及分析】一、有关正弦型函数y =Asin(ωx +φ)基础知识1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点如A 叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.3.函数y =A sin(ωx +φ) (A >0,ω>0)的性质如下: 4.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k∈Z)成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z)成中心对称图形. 二、图像的平移转换图像的平移转换遵循左加右减,上加下减原则 1.函数y =A sin(ωx +φ)图像变换(1)左右平移:由y =sinx 的图象向左或向右平行移动|φ|个单位,得到y =sin (x +φ)的图象.(2)胖瘦变换:由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象.(3)高矮变换:由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象.2.两种变换方法注意:左侧为先平移后伸缩,右侧为先伸缩后平移 三、正弦型函数y =Asin(ωx +φ)解析式的求法1.表达式的化简(主要利用辅助角公式)(1)辅助角公式sin cos a b αα+22)a b αϕ++(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,2222sin tan ba ab a b ϕϕϕ===++ ,该法也叫合一变形).(2)所涉及到公式① 两角和与差的正弦、余弦公式: (1)βαβαβαsin cos cos sin )sin(+=+ (2)βαβαβαsin cos cos sin )sin(-=- (3)βαβαβαsin sin cos cos )cos(-=+ (4)βαβαβαsin sin cos cos )cos(+=-②二倍角公式(1)a a a cos sin 22sin =(2)1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a③降幂公式:(1)22cos 1cos 2a a += (2) 22cos 1sin 2aa -=注:表达式的化简攻略可化简的表达式多种多样,很难靠举例一一道明,化简往往能够观察并抓住式子的特点来进行操作,主要有以下几个特征:(1)观察式子:主要有三点①系统:整个表达式是以正余弦为主,如果有正切需要切化弦进行统一 ②确定研究对象:是以x 作为角来变换,还是以x 的表达式看做一个角来进行变换③式子是否齐次:式子要做到齐次统一,利用所涉及到三角函数恒等式的公式进行转换,把同一角转换为齐二次式或是齐一次式在使用辅助角公式,使结果成为y =A sin(ωx +φ)(2)向“同角齐次正余全”靠拢,能拆就拆,能降幂就降幂(注意平方降幂).2. 求解A 、ω、φ以及确定解析式 (1)A 的求解A 的求解:根据图象的最高点和最低点,即A =最高点-最低点2(2)ω的求解结合图象,先求出周期,然后由T =2πω(ω>0)来确定ω①如果y =Asin(ωx +φ)相邻的两条对称轴为x=a ,x=b (a<b ),则T=2(b-a).②如果y =Asin(ωx +φ)相邻的两个对称中心为(a ,0)、(b ,0)(a<b ),则T=2(b-a).③如果y =Asin(ωx +φ)相邻的对称轴与对称中心分别为x=a ,(b ,0)则T=4a -b .注意:在y =Asin(ωx +φ)中,对称轴与最值点等价,对称中心与零点等价.(3)φ的求解①代入法:把图上已知点代入即可. ②五点法确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图像上升时与x 轴交点)为ωx +φ=0;“第二点”(即图像的“峰点”)为ωx +φ=π2;“第三点”(即图像下降时与x 轴交点)为ωx +φ=π;“第四点”(即图像的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(4)y =Asin(ωx +φ)+B 中“B ”的确定 B 的确定:根据图象的最高点和最低点,即B =最高点+最低点2补充:函数的最值(几种常见的函数及其最值的求法):①b x a y +=sin (或)cos b x a +型:利用三角函数的值域,须注意对字母的讨论②x b x a y cos sin +=型:引进辅助角化成)sin(22ϕ++=x b a y 再利用有界性③c x b x a y ++=sin sin 2型:配方后求二次函数的最值,应注意1sin ≤x 的约束④dx c bx a y ++=sin sin 型:反解出x sin ,化归为1sin ≤x 解决⑥c x x b x x a y +⋅++=cos sin )cos (sin 型:常用到换元法:x x t cos sin +=,但须注意t 的取值范围:2≤t 。
数学必修四第一章知识点总结

数学必修四第一章知识点总结第一章矩阵与行列式1.矩阵的定义:矩阵是由m∙n个数按照m行n列排列起来的一个数表。
2.矩阵的运算:(1)矩阵的加法:对应位置上的元素进行相加。
(2)矩阵的乘法:满足矩阵乘法规则的两个矩阵相乘,结果矩阵的元素等于第一个矩阵的相应行和第二个矩阵的相应列元素的乘积之和。
(3)数字与矩阵的乘法:数乘矩阵中的每一个元素。
3.矩阵的性质:(1)矩阵的加法满足交换律和结合律。
(2)矩阵的数乘满足结合律和分配律。
4.单位矩阵:n阶单位矩阵是一个n∙n的矩阵,主对角线上元素为1,其他元素为0。
5.方阵和对角阵:(1)方阵是行数和列数相等的矩阵。
(2)主对角线外的元素全为零的方阵是对角阵。
6.转置矩阵:矩阵的转置是指将矩阵的行与列互换得到的新矩阵。
7.矩阵的乘积:(1)若矩阵A的列数等于矩阵B的行数,则可以计算矩阵A与矩阵B 的乘积,得到一个新的矩阵C,其中矩阵C的行数等于矩阵A的行数,列数等于矩阵B的列数。
(2)矩阵乘积的运算性质:结合律,分配律,但一般不满足交换律。
8.克拉默法则:若n元线性方程组的系数矩阵的行列式不等于0,则n元线性方程组有唯一解,且解可以用各个未知量的系数作为分子和系数矩阵的行列式作为通分式的分母来表示。
9.行列式的定义:(1)一阶行列式:行列式的元素就是该元素本身。
(2)二阶行列式:行列式元素按主对角线方向相乘,再减去次对角线方向的元素相乘。
(3)三阶行列式:每个元素与与其所在行行标和列标分别相同、不相同的元素构成的二阶行列式之差相乘,最后再按正负号相加。
(4)多阶行列式:利用拉普拉斯定理进行计算。
10.行列式的性质:(1)行列式的转置等于行列式本身。
(2)若行列式有两行或两列完全相同,则行列式的值等于零。
(3)互换行列式的两行(两列),行列式值不变。
(4)行列式的其中一行(列)的元素都乘以一个数k,等于用数k乘以此行列式的值。
(5)行列式中有两行(两列)元素对应成比例,则行列式的值等于零。
(完整word)高中数学必修四第一章知识点梳理-1,推荐文档

高中数学必修四第一章知识点梳理一、角的概念的推广•任意角的概念角可以看成平面内一条射线绕着端点从一个位置转到另一个位置所成的图形。
•正角、负角、零角按逆时针方向旋转成的角叫做正角,按顺时针方向旋转所成的角叫做负角,一条射线没有作任何旋转所成的叫做零角。
可见,正确理解正角、负角和零角的概、关键是看射线旋转的方向是逆时针、顺时针还是没有转动。
•象限角、轴线角当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合时,那么角的终边在第几象限(终边的端点除外),就说这个角是第几象限角。
当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合时,终边落在坐标轴上的角叫做轴线角。
•终边相同角所有与角a终边相同的角,连同角a在内,可构成集合S={ 3 | 3 =a +k?360° ,k € Z},即任一与角a终边相同的角,都可以表示成角a与整数个周角的和。
二、弧度制•角度定义制1规定周角的—为一度的角,记做1 °,360这种用度作为单位来度量角的单位制叫做角度制,角度制为60进制。
•弧度制定义1 、长度等于半径的弧度所对的圆心角叫做1弧度的角。
用弧度作为单位来度量角的单位制叫做弧度制。
1弧度记做1rad。
2、根据圆心角定理,对于任意一个圆心角a,它所对的弧长与半径的比与半径的大小无关,而是一个仅与角a有关的常数,故可以取为度量标准。
•弧度数一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.如果半径为r的圆的圆心角a所对的弧的长为I,那么,角a的弧度数的绝对值是|a | -。
ra的正负由角a的终边的旋转方向决定,逆时针方向为正,顺时针方向为负。
三、任意角的三角函数•任意角的三角函数的定义设a是一个任意大小的角,a的终边上任意点P的坐标是(x,y),它与原点的距离r(r J X2~y20),那么1、比值-叫做a的正弦,记做sin ,即sin 上。
r r2、比值-叫做a 的余弦,记做COS ,即COS r3、比值—叫做a 的正切,记做tan ,即tanxx另外,我们把比值 一叫做a 的余切,记做COt ,即COtyrrr;把比值一叫做a 的余割,记做 CSC ,即CSC x yy对于一个确定的角 a ,上述的比值是唯一确定的, 它们都可以看成从一个角的集合到一个 比值的集合的映射,是以角为自变量,以比值为函数值的函数,我们把它们统称为三角函数。
高中数学必修4第一章知识点总结

P xyAOM T 高中数学必修4知识点总结 第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.6、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭.7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()22r r x y =+>,则sin y r α=,cos x r α=,()tan 0y x x α=≠.9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭. 12、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限. 13、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.14、函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.15、正弦函数、余弦函数和正切函数的图象与性质: sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性2π 2ππ奇偶性奇函数 偶函数 奇函数函数 性 质单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦()k∈Z上是增函数;在32,222k kππππ⎡⎤++⎢⎥⎣⎦()k∈Z上是减函数.在[]()2,2k k kπππ-∈Z上是增函数;在[]2,2k kπππ+()k∈Z上是减函数.在,22k kππππ⎛⎫-+⎪⎝⎭()k∈Z上是增函数.对称性对称中心()(),0k kπ∈Z对称轴()2x k kππ=+∈Z对称中心(),02k kππ⎛⎫+∈Z⎪⎝⎭对称轴()x k kπ=∈Z对称中心(),02kkπ⎛⎫∈Z⎪⎝⎭无对称轴第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b-≤+≤+ .⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c++=++ ;③00a a a +=+= .⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=-- .19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ.①a aλλ=;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ= .⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③()a b a bλλλ+=+.⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ= .设()11,a x y =,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠ba CBAa b C C -=A -AB =B共线.21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫ ⎪++⎝⎭.(当时,就为中点公式。
数学必修四第一章知识点总结

数学必修四第一章知识点总结第一章初等数论与数论方法一、整数研究了整数及其运算性质,引导学生辨识和解决在初中学习过程中遇到的有关整数的复杂问题。
1. 整数的概念整数是正整数、负整数和零的统称。
整数的绝对值是指它离原点的距离,是非负的整数。
2. 整数的四则运算(1)加法运算:正数相加、负数相加应用法则,可以化为正数相加或正负数相减的运算问题来解决。
(2)减法运算:整数减法法则就是整数加法法则的推广。
(3)乘法运算:两个数相乘的积的符号与它们的积的因数的符号有关。
(4)除法运算:零不能作为除数,有理数的除法也要遵循约分原则。
3. 整数的应用整数是在数轴上有序排列的,整数运算也是数轴上大小关系的推算。
在温度、债务、货币、海拔高度、海拔深度等相关实际生活中,需要使用整数。
二、整数的乘方及开方1. 乘方概念以数 a 为底 n 为指数的乘方运算通常记作aⁿ (a ≠ 0, n > 0), 它表示连续相同乘数 a 用 n-1个乘号与自己相乘的乘积。
2. 乘方的运算性质(1)乘方的运算性质: 同底数乘方相乘,指数相加;(2)乘方运算的简便法则:同一底数不同指数相乘可以利用指数运算法则;(3)指数运算法则:①乘方的运算法则:同底数的几个数的乘方, 底数相同, 指数相加;②除法可以转换为乘方;(4)零的乘方等于 1: 0 的任何正整数次幂都等于 1。
3. 开方的概念一个数的平方根就是对应的平方的运算过程,一个数的 n 次方根是对应的 n 次方的运算过程。
4. 定义(1)二次方程的解法:①因式分解法;②公式法;③配方法;(2)含一个未知数的方程;(3)一元二次方程:我国古代代数的发展,以求一元二次方程的解为目标;(4)一次方程:秦九韶二次方程的解法是把一次方程的求根问题化成二次方程的求根问题。
5. 一元二次方程(1)一元二次方程的定义:① 它是一元的;② 它的最高次项是二次项③ 它与一元二次函数有相联系的地方;一元二次方程及根的关系:一元二次方程的单解和两解,它对应的一元二次函数的图象几何方程的根与几何意义的关系;(2)整数系数的一元二次方程;(3)一元二次方程及根的关系;(4)一元二次方程数学题。
高中数学必修4第一章

3 1 ,2 2 3 1 , 2 2
=
3 . 2
专题一
专题二
专题三
专题四
变式训练 1 若点 P(3,y)是角 α 终边上的一点,且满足 y< 0,cos α= 5,
则 tan α=( A.3 4
3
)
B.
解析:由已知
3 4 3
C.
3 5
4 3
D.-
4 3
32 +������2
= ,∴y=±4. D.
考点一
考点二
考点三
考点四
解析:由 f(x)=(1-cos x)sin x 知其为奇函数 .可排除 B.当 x∈ 时,f(x)>0,排除 A. 当 答案:C
3π 3π x= 时,f 4 4
π 0, 2
=
3π 1-cos 4
3π sin 4
=
2+1 >1,排除 2
D.
考点一
考点二
考点三
考点四
考点二
π 2
π π π 2 6 2 π π kπ- ≤x≤kπ+ (k∈ Z), 6 3
(k∈ Z) .
所以当 x=0 时 ,f(x)取得最小值 . 即 2sin π 6
+a=-2,故 a=-1.
考点一
考点二
考点三
考点四
考点一 三角函数图象的判定 1.(2013· 课标全国Ⅰ高考)函数f(x)=(1-cos x)sin x在[-π,π]的图象大 致为( )
即 tan θ=1, 于是 sin2θ+3sin θcos θ+2cos2θ
sin2 ������+3sin������cos������+2cos2������ = sin2 ������+cos2 ������
高一数学必修4第一章知识点+测试题(含答案)

第一章 三角函数(初等函数二)⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα= sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<. sin y x = cos y x = tan y x = 图象定义域 RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数 奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k ∈Z 上是增函数;在 32,222k k ππππ⎡⎤++⎢⎥⎣⎦ 在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数. 在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.函 数 性质第一单元本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分(时间:90分钟.总分150分)第Ⅰ卷(选择题 共60分)一、选择题:本答题共12小题,每小题5分,共60分。
高一数学必修4知识点总结

高一数学必修4知识点总结高一数学必修4知识点总结在我们的学习时代,说起知识点,应该没有人不熟悉吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
那么,都有哪些知识点呢?下面是店铺为大家整理的高一数学必修4知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
高一数学必修4知识点总结 1第一章三角函数正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.第二象限角的集合为k36090k360180,k第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k第一象限角的集合为k360k36090,k3、与角终边相同的角的集合为k360,k4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r的圆的圆心角所对弧的长为l,则角的弧度数的绝对值是l. r1806、弧度制与角度制的换算公式:2360,1,157.3. 1807、若扇形的圆心角为为弧度制,半径为r,弧长为l,周长为C,面积为S,则lr,C2rl,111Slrr2.228、设是一个任意大小的角,它与原点的距离是rr的终边上任意一点的坐标是x,y,则sin0,yxy,cos,tanx0. rrx9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin,cos,tan.222211、角三角函数的基本关系:1sin2cos21sin1cos,cos1sin;2sintancossinsintancos,cos.tan12、函数的诱导公式:1sin2ksin,cos2kcos,tan2ktank.2sinsin,coscos,tantan. 3sinsin,coscos,tantan. 4sinsin,coscos,tantan.口诀:函数名称不变,符号看象限.5sincos,cossin.6sincos,cossin. 2222口诀:正弦与余弦互换,符号看象限.13、①的图象上所有点向左(右)平移个单位长度,得到函数ysinx的图象;再将函数ysinx的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数ysinx的图象.②数ysinx的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数ysinx的图象;再将函数ysinx的图象上所有点向左(右)平移个单位长度,得到函数ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横2坐标不变),得到函数ysinx的图象. 14、函数ysinx0,0的性质:①振幅:;②周期:2;③频率:f1;④相位:x;⑤初相:. 2函数ysinx,当xx1时,取得最小值为ymin ;当xx2时,取得最大值为ymax,则11x2x1x1x2ymaxyminymaxymin22,,2.yASinx , A0 , 0 , T215 周期问题2yACosx , A0 , 0 , TyASinx, A0 , 0 , TyACosx, A0 , 0 , TyASinxb , A0 , 0 , b 0, T22yACosxb , A0 , 0 , b0 ,TTyAcotx , A0 , 0 ,yAtanx , A0 , 0 , TyAcotx, A0 , 0 , TyAtanx , A0 , 0 , T3第二章平面向量16、向量:既有大小,又有方向的.量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.C⑶三角形不等式:ababab.⑷运算性质:①交换律:abba;abcabc②结合律:;③a00aa.ababCC4⑸坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.设、两点的坐标分别为x1,y1,x2,y2,则x1x2,y1y2.19、向量数乘运算:⑴实数与向量a的积是一个向量的运算叫做向量的数乘,记作a.①aa;②当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0.⑵运算律:①aa;②aaa;③abab.⑶坐标运算:设ax,y,则ax,yx,y.20、向量共线定理:向量aa0与b共线,当且仅当有唯一一个实数,使ba.设ax1,y1,bx2,y2,其中b0,则当且仅当x1y2x2y10时,向量a、bb0共线.21、平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1、2,使a1e12e2.(不共线的向量e1、e2作为这一平面内所有向量的一组基底)22、分点坐标公式:设点是线段12上的一点,1、2的坐标分别是x1,y1,x2,y2,当12时,点的坐标是x1x2y1y2时,就为中点公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修四 第一章
知识点归纳
第一:任意角的三角函数
一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角终边
相同的角的集合
}
{|2,k k z ββπα=+∈ ,弧度制,弧度与角度的换算,
弧长l
r α=、扇形面积2
112
2
s lr r α==,
二:任意角的三角函数定义:任意角α的终边上任意取一点p 的坐标是(x ,y ),它与原点的距离是22
r x y =+(r>0),那么角α的正弦r y a =sin 、余弦r x a =cos 、正切x
y
a =tan ,它们都是以角为自变量,以比值为函数值的函数。
三:同角三角函数的关系式与诱导公式:
1.平方关系:
22sin cos 1
αα+=
\
2. 商数关系:
sin tan cos α
αα
=
3.诱导公式——口诀:奇变偶不变,符号看象限。
)
正弦
:
余弦
%
正切
~
第二、三角函数图象和性质 基础知识:1、三角函数图像和性质
2、熟练求函数sin()y A x ωϕ=+的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五点法作
sin()y A x ωϕ=+简图:五点分别为:
、 、 、 、 。
3、图象的基本变换:相位变换:sin sin()y x y x ϕ=⇒=+
、
周期变换:sin()sin()y x y x ϕωϕ=+⇒=+
振幅变换:sin()sin()y x y A x ωϕωϕ=+⇒=+ 4、求函数
sin()y
A x ωϕ=+的解析式:即求A 由最值确定,ω有周期确定,φ有特殊点确定。
基础练习:
1、tan(600)
-= . sin 225︒= 。
2、已知扇形AOB 的周长是6cm ,该圆心角是1弧度,则扇形的面积= cm 2
.
3、设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于
4、函数
y =的定义域是_____ __
}
5、的结果是 。
6、函数x y 2sin 3=的图象可以看成是将函数)3
x 2sin(3y π
-=的图象-------( ) (A )向左平移个6π单位 (B )向右平移个6π单位(C )向左平移个3π单位 (D )向右平移个3
π
单位
7、已知0tan ,0sin ><θθ,那么θ是 。
8.已知点P (tan α,cos α)在第三象限,则角α的终边在
9、下列函数中,最小正周期为π,且图象关于直线3
π
=
x 对称的是( ) A .sin(2)3π=-y x B.sin(2)6π=-y x C.sin(2)6π=+y x D.sin()23
π
=+x y
10、下列函数中,周期为π的偶函数是( )
(
A.cos y x =
B.sin 2y x =
C. tan y x =
D. sin(2)2
y x π
=+
解答题解答题应写出文字说明、演算步骤或证明过程.
第一类型:1、已知角α终边上一点P (-4,3),求)
2
9sin()211cos()
sin()2cos(απαπαπαπ
+---+的值
;
2.已知α是第二象限角,sin()tan()
()sin()cos(2)tan()
f πααπαπαπαα---=
+--.
(1)化简()f α; (2)若31
sin()23
πα-=-,求()f α的值.
|
3.已知tan 3α=,求下列各式的值: " (1)
4sin cos 3sin 5cos αααα-+ ;(2)2
1
2sin cos cos ααα
+.
第二类型: 1.已知函数sin()y A x B ωϕ=++的一部分图象
如右图所示,如果0,0,||2
A π
ωϕ>><
,
(1)求此函数的周期及最大值和最小值 (2)求这个函数函数解析式
第三类型:1.已知函数4
5)62sin(21++=
πx y (1)求函数的单调递增区间;
(2)求出函数的对称中心和对称轴方程. (3) 写出y=sinx 图象如何变换到15
sin(2)264
y x π=++的图象。