初中数学-用函数的观点看方程(组)与不等式

合集下载

函数与方程、不等式在初中数学教学中有重要地位,函数是初

函数与方程、不等式在初中数学教学中有重要地位,函数是初

函数与方程、不等式在初中数学教学中有重要地位,函数是初中数学教学的重点和难点之一。

方程、不等式与函数综合题,历年来是中考热点之一,主要采用以函数为主线,将函数图象、性质和方程及不等式的相关知识进行综合运用,用函数观点看方程(组)与不等式是数形结合思想的又一体现,它教给我们从另一个方位来思考方程(组)与不等式的问题,让人耳目一新,让我们领略了数学思维的多元性,进一步体验了数形结合思想的重要性.从一次函数与一元一次方程开始.思考解方程ax+b=0与求一次函数自变量x为何值时,y=ax+b的值为0的关系?通过实例进而确认两者关系.接着探究一次函数与一元一次不等式关系.进一步得到解不等式ax+b>0与求自变量x•在什么范围内,一次函数y=ax+b的值大于0的关系,发现一次函数.•一元一次方程与一元一次不等式之间的联系,对继续学习数学很重要.进而归纳图象法解二元一次方程组的具体方法,学会用函数思维解决实际问题,并知道了方程(组)、不等式与函数都是基本的数学模型.它们之间互相联系,用函数观点可以把它们统一起来.解决问题时,应根据具体情况灵活地、有机地把这些数学模型结合起来使用.数的观点重新认识方程(组)、不等式,从而能把它们统一起来.解决有关问题时,又能根据具体情况灵活、有机地应用这些方法.渗透数形结合的思想,同时由一次函数过渡到二次函数,由浅入深地把函数、方程、不等式三者联系起来。

然后过渡到本节课的难点二次函数的实际应用。

实际问题的应用及其变式训练,这一环节的训练,旨在拓展深化,发展学生智能,让学生学会用函数与方程的思想来解决实际问题,通过对实际问题的分析,寻找出变量之间的函数关系,并能利用函数的图象和性质求出实际问题的答案。

体会函数模型是解决实际问题的一种重要的数学模型,便于获得解决问题的经验。

养成积极探索的学习态度,感受数学的应用价值,培养学数学用数学的观念,这也是本节课的知识点的拓展与提升。

最后环节五的总结提高部分由学生讨论归纳,对整节课的内容进行回顾整理,让每一部分的内容重新清晰呈现。

一次函数用函数的观点看方程(组)与不等式含答案

一次函数用函数的观点看方程(组)与不等式含答案

教师辅导讲义例3:乘坐益阳市某种出租汽车.当行驶路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.(1)请你求出x≥2时乘车费用y(元)与行驶路程x(千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x的范围.答案:(1) 根据题意可知:y=4+1.5(x-2) ,∴y=1.5x+1(x≥2)(2)依题意得:7.5≤1.5x+1<8.5∴≤x<5例4:如图,点的坐标分别为(0,1),(,0),(1,0),设点与三点构成平行四边形.(1)写出所有符合条件的点的坐标;(2)选择(1)中的一点,求直线的解析式.解:(1)符合条件的点的坐标分别是,,.(2)①选择点时,设直线的解析式为,由题意得解得直线的解析式为.②选择点时,类似①的求法,可得直线的解析式为.③选择点时,类似①的求法,可得直线的解析式为.例5:如图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接..写出点的坐标.解:(1)由,令,得...(2)设直线的解析表达式为,由图象知:,;,.直线的解析表达式为.(3)由解得.,.(4).例6:2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x (小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2分)(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定.(4分)解:(1)1.9(2) 设直线EF的解析式为乙=kx+b∵点E(1.25,0)、点F(7.25,480)均在直线EF上∴解得∴直线EF的解析式是y乙=80X-100∵点C在直线EF上,且点C的横坐标为6,∴点C的纵坐标为80×6—100=380∴点C的坐标是(6,380)设直线BD的解析式为y甲= mx+n∵点C(6,380)、点D(7,480)在直线BD上∴解得∴BD的解析式是y甲=100X -220∵B点在直线BD上且点B的横坐标为4.9,代入y甲得B(4.9,270)∴甲组在排除故障时,距出发点的路程是270千米。

基于课程标准的单元教学设计——以《从函数观点看一元二次方程和一元二次不等式》为例

基于课程标准的单元教学设计——以《从函数观点看一元二次方程和一元二次不等式》为例

基于课程标准的单元教学设计 ———以《从函数观点看一元二次方程和一元二次不等式》为例吕建林(江苏省南京市第一中学,210019)基金项目:南京市教育科学“十三五”规划2020年度立项课题“指向数学抽象的高中数学单元教学设计实证研究”(编号L/2020/471)研究成果. 单元是基于一定目标与主题所构成的教材与经验的模块、单位,单元设计可以认为是对一个学习阶段的教与学活动的整体规划,主要包含学习主题、学习目标、学习内容、学习过程、评价任务、学后反思等要素.单元设计一般遵循“分析(Analysis)、设计(Design)、开发(Development)、实施(Implementa tion)、评价(Evaluation)”的程序.《从函数观点看一元二次方程和一元二次不等式》是高中数学必修课程预备知识板块中的重要内容.本单元是在学生学习了一元一次方程、一元一次不等式、一次函数、二次函数的基础上,学习从函数的观点看一元二次方程和一元二次不等式,体会函数、方程、不等式的统一性,为今后应用函数的方法解决有关问题奠定知识技能和学习方法的基础.1 学习目标的制定和学习内容的确立制定学习目标,可使学习者明确学习要求,了解学习路径和方法.本单元学习目标(见表1)是从“三个一次”入手,感受用函数观点看待问题的方法;结合一元二次不等式的求解探索,体会“三个二次”的关系,学会用函数观点认识和解决一元二次方程和不等式问题.单元学习目标采用三维叙写的书写方式,呈现“知识与技能→过程与方法→习惯与素养”的发展路径.为落实学习目标,需要选定与之相匹配的学习内容.本单元学习内容(见图1)的选择与划分体现“观察—计算—研究”与“图像—代数—数形结合”的双向沟通,便于学生深度学习,自主建构.横向:呈现一次到二次、具体到一般的双重递进,便于学生类比迁移、拓展延伸.纵向:挖掘函数、方程、不等式三者的数形关联,便于学生数形结合,聚焦函数观点.表1 本单元学习目标课标要求学习目标用函数理解方程和不等式是数学的基本思想方法.本单元的学习,可以帮助学生用二次函数认识一元二次方程和一元二次不等式.通过梳理初中数学的相关内容,理解函数、方程和不等式之间的联系,体会数学的整体性. 1、通过求解实际问题,知道函数零点即对应方程的根,会结合一元一次函数图像分析得出一元一次不等式的解集,感受用函数观点看待问题的方法.2、会从实际情境中抽象出一元二次不等式模型,能运用函数观点,结合图像发现一元二次函数的零点与一元二次方程根的关系,会通过代数方法求具体的一元二次不等式的解集,提高数学运算能力.3、会用一元二次函数图像求一元二次不等式的解集,体会数学的整体性,养成借助直观理解概念、进行逻辑推理的思维习惯.2 任务情境的设计和学习路径的规划学科素养往往体现在真实的问题解决之中.要让学生置身于真实、有意义的任务情境,在“真做事”的过程中用数学的眼光观察世界,体会求解一元二次不等式的真实需求,感受探求一般的一元二次不等式解法的必要性;用数学的思维思考世界,主动联系已有的“三个一次”的经验,将之运用于“三个二次”相关任务,体会函数的思想方法.生活中与一元二次不等式有关的问题很多,例如:为达成单元目标,笔者创设了设计房屋雨水槽的真实情境,从具体规格要求出发,衍生出三项任务,引发学生思考和探究.详见表2:表2 本单元任务情境和学习路径任务任务情境探索路径核心素养任务一设计符合底面积要求的、截面为矩形的雨水槽现实问题抽象为熟悉的数学问题雨水槽底面积要求→解一元一次不等式数学建模、数学抽象任务二对比截面分别为矩形和等腰梯形的雨水槽设计方案,并做出选择具体问题转化为未知的数学问题雨水槽造型选择→解具体的一元二次不等式数学抽象、数学运算、直观想象任务三探寻一般的一元二次不等式的解集特殊问题拓展为一般问题解具体的一元二次不等式→解一般的一元二次不等式数学抽象、直观想象、数学运算 学习任务可通过“情境—问题—问题解决—总结”的程序来落实.任务达成基于富有层次的活动驱动,应围绕任务设计独立探究或小组合作活动,并酌情穿插问答以支持学生学习.以任务二中的探究活动为例:【活动】雨季将至,为了提前做好房屋排水工作,某小区住户准备更换自家房屋的雨水槽.该住户测量了自家房檐的长度,购买了一块长380厘米,宽30厘米的长方形铝板来自制雨水槽.为了与屋檐下预留的雨水槽位置相匹配,雨水槽底面的面积不得超过5700平方厘米.经市场调查,雨水槽横截面的造型一般有两种.方案一:矩形;方案二:底角为53°的倒置等腰梯形,上不封顶.当地气象台预计,今年雨季的降雨量大约会比往年增加5%.为保证排水量,物业要求雨水槽的横截面积不得小于100平方厘米.住户根据屋檐特点,希望雨水槽深度尽可能小,请帮他选择一个设计方案.(铝板厚度忽略不计)活动过程中,教师可提出以下问题,为学生提供学习支架:【问题1】针对“雨水槽的横截面积不得小于100平方厘米”的要求,在方案一中,你能列出对应的关系式并进行求解吗?方案二呢?【问题2】借鉴任务一中对一元一次不等式求解的研究过程和结论,你能进一步求解问题1吗?学生可将问题1中的一元二次不等式转化成两个一次不等式联立的不等式组解决.问题2则启发学生联系“三个一次”的研究经验,用函数观点分析求解,完成探究任务.3 评价任务的设计和素养水平的考察每项学习任务都可以成为评价的工具.在一段学习活动结束时,也应设计一些练习检测,进行及时的、有针对性的测评,便于学生了解自己的学习状况,便于教师了解学生学会与否,为开展下一步的教学活动提供证据,从而落实“学—教—评一致”的设计要求.为检测学习目标2的达成情况,笔者选择了一个判定交通事故责任人的问题,考察学生能否从实际情境中抽象出一元二次不等式模型,会不会求解一元二次不等式,分析不等式解集并说明结论,检测相关素养的发展水平.详见表3:表3 问题及核心素养考查说明问题及指向解答与说明核心素养水平 汽车刹车距离与其行驶速度有关.在一条限速30km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不妙,同时刹车,但还是发生了碰擦.事发后交警现场测得甲车的刹车距离略超过8m,乙车的刹车距离略超过6m,又知甲、乙两种车型的刹车距离S(m)与车速x(km/h)之间有如下关系:S甲=0.01x2+0.2x,S乙=0.005x2+0.05x.问:应负超速行驶主要责任的是谁?(检测表1中学习目标2) 由题意,对于甲车,有0.01x2+0.2x>8,即x2+20x-800>0,解得x>20或x<-40(不符合实际意义,舍去),这表明甲车的车速超过20km/h.但根据题意刹车距离略超过8m,由此估计甲车车速不会超过限速30km/h.对于乙车,有0.005x2+0.05x>6,即x2+10x-1200>0,解得x>30,或x<-40(不符合实际意义,舍去),这表明乙车的车速超过30km/h,即超过规定限速,乙应负主要责任. 1.数学抽象(水平一):能从熟悉的汽车刹车情境中抽象出求解一元二次不等式问题;2.数学运算(水平一):会解简单的一元二次不等式,能用解集情况说明是否超速;3.逻辑推理(水平一):明确“主要责任”的问题内涵,有条理地表达观点.4 基于课程标准的单元教学设计反思基于新课程标准的教学有三大基本特征:素养为本的单元设计、真实情境的深度学习、问题解决的进阶测试.4.1 真实的任务情境有利于素养目标达成课程标准凝练了学科核心素养,明确了学生学习该学科课程后应达成的正确价值观念、必备品格和关键能力.崔允誋教授指出,关键能力即“能做事”,必备品格即“习惯做正确的事”,价值观念即“坚持把事做正确”.从具体的“做事”,能看出一个人的素养.改变高分低能、只会解题的现状,从让学生在真实情境中面对问题、思考和解决问题开始.(下转第51页)4 拉近现实联系,构建情趣飞扬的统计课堂随着大数据时代的来临和社会信息化水平的不断提高,无论是在学习、工作还是在生活中,人们都越来越离不开数据信息.统计必将在未来生活中发挥更多的作用,掌握统计知识、具备数据分析能力已成为每一位公民必备的基本素养.这样的发展趋势对教育教学提出了全新的挑战.而我们每一位小学数学教师,必然要直面统计教学的进一步发展,因为“生活已经先于数学课程,将统计推到了学生的面前”.因此,拉近统计与现实生活的联系,进一步构建情趣飞扬的统计课堂,培养学生获得数据、解释数据的能力,已成了必然的教学趋势.在寻找“生活中的平均数”学习环节,笔者借助互联网工具,收集了2019年两会中的统计数据,制作了简单的小视频《2018全民对账单》,通过呈现“网购花费”“收寄快递件数”“流量数”“收入结余金额”“国内旅游次数”“图书拥有量”“用水量”等与学生紧密联系的生活中的平均数,呈现了利用“互联网+”获得大数据的方式.在轻松愉悦的背景音乐中,孩子们不由自主地将各类“大数据”与自己本人以及家庭的生活数据相联系,他们的惊呼此起彼伏———“我的国内旅游次数超过了平均数量”“我的图书拥有量还不够,今年要加油多阅读”“我家的用水量比较少,我们是节约家庭”“我妈妈的网购花费远远超出了,真是太浪费了”……就是在这样尝试比较、解释数据的过程中,孩子们感受到了统计的作用,也在不知不觉中培养了生活的情趣.在后续学习环节中,笔者进一步引入“人均淡水资源”“中国儿童身高均值”等互联网数据,让学生在具体的情境中,继续通过对大数据的分析,进一步感受平均数在生活中的作用,思索平均数的统计意义与价值,体验用数学解决实际问题的学习乐趣和健康生活的积极情趣,真正创设了关注人的发展的生本课堂.总之,在“统计与概率”领域教学中,我们要立足发展学生的数据分析素养这一出发点,让学生经历统计的全过程,创设有效的统计情境,凸显统计教学的概念特点,感受统计与现实生活的联系,培养学生的生长兴趣、生性智趣、生命理趣和生活情趣,构建和谐宽松、智慧理性的“四趣”统计课堂檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸.(上接第37页) 从单元学习目标的确立到学习过程设计,再到检测与评价,都要体现“做事”的要求.价值观念、必备品格不是标签,也不能成为标签.让学生经历真实的“做事”,让素养在“做事”中发展、在“做事”时显现,素养目标就不会成为只说不做的标签.4.2 教学设计要努力创设真实任务情境数学来源于生产生活实践,良好的任务情境有利于让学生深入与自身经验相关的问题探究过程.本单元将“雨水槽设计”情境融入单元学习过程,学生从中发现数学问题,运用数学知识尝试解决,并产生用函数观点研究一元二次不等式解集的兴趣,获得用数形结合方法解一元二次不等式的能力,感受函数、方程、不等式的整体性,发展数学抽象、直观想象、数学运算等素养.教师应主动拓宽自身知识疆域,积极推进研学、社会实践活动,努力创设“真实的任务”,让学生有机会真正“做事”,帮助学生实现自主建构和社会建构.4.3 核心素养水平要在真实任务中评价杨向东教授指出,要站在素养发展的角度,而不仅仅是知识的角度,进行测评设计.练习与测评要指向本单元的核心知识、方法、能力与素养,力求检测学生相关核心素养的发展水平.每个学习目标都应有相应的评价任务,每个练习与测评都必须指向有关的学习目标,一个目标也可以通过多个问题来检测.真实情境中解决问题的能力就是素养.除了传统的纸笔测试题以外,应设计基于真实情境的评价任务,记录过程数据、开展表现评价,更全面地评估学生的发展状况.学习过程中也应适时嵌入评价任务,便于及时了解学习效果,及时发现并弥补缺漏,保障后续学习的顺利开展.参考文献:[1]钟启泉.学会“单元设计”[N].中国教育报,2015-06-12(09):1.[2]加涅等.王小明等,译.教学设计原理[M].5版.上海:华东师范大学出版社,2007:21-35.[3]中华人民共和国教育部.普遍高中数学课程标准[S].北京:人民教育出版社,2018.。

初中数学《一次函数》单元教学设计以及思维导图

初中数学《一次函数》单元教学设计以及思维导图

一次函数适用八年级年级所需课内共用10课时,每周8课时;课外共用1课时时间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500)“函数”主题单元包括“变量与函数”,“一次函数”,“用函数观点看方程(组)与不等式”,“课题学习”四部分。

教学设计由研究变化的世界开始,从“变量”很自然的过度到“函数”这个数学模型,从而让学生体会到“生活离不开数学”(最基本的学习动机就建立起来了)。

很多学生认为“函数”非常深奥,搞不明白它到底是怎样的个数学模型,从初中到高中甚至到大学都觉得函数学习枯燥无味,实际上很大的原因在于“函数”的概念没有在头脑中建立起来。

所以“变量与函数”这一部分对一个人是否对学习数学感兴趣表现的极为重要。

当学生通过亲身体验明白了“在同一变化过程中,y 和x两个相互依赖,相互制约的变量满足一定的条件,y就是x的函数”时,后面的知识(包括反比例函数和二次函数)学起来就很“舒畅”了。

学习完“变量与函数”,学生禁不住要想:“我会判断两个变量是否满足函数关系了,后面还要学习怎样的知识呢?”很自然的进入了最简单的函数“一次函数”的学习。

学生通过探究“一次函数”由“数”到“形”的认识以后,更加有勇气甚至有些迫不及待的走进“函数”学习的世界。

教材紧接安排了函数的应用。

此时学生的思维又经历了逆向的训练——数学知识服务于生活。

第三部分“函数(一次)观点看(一元一次)方程(组)与(一元一次)不等式(组)”,使“数形结合”的数学思想在孩子们的脑海里提升了很大一截。

学完这部分知识孩子们脑海里已经有了在生活中使用函数的初步想法,进入第四部分课外课时“选择方案”以后,在经历了数学抽象思维给予他们的成就感之后完成了本部分的学习,并未初中甚至高中的函数知识的学习奠定了坚实的基础。

主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操作见《2013学员教师远程研修手册》。

初中数学八年级下册《一次函数与一元一次方程、不等式》优秀教学设计

初中数学八年级下册《一次函数与一元一次方程、不等式》优秀教学设计

19.2.3一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式【学习目标】1.理解一次函数与一元一次方程、一元一次不等式之间的关系,会根据一次函数的图象解决一元一次方程和一元一次不等式的求解问题.2.学习用函数的观点看待方程及不等式的方法,初步感受用全面的观点处理局部问题的思想.【学习重点】用一次函数解一元一次方程、一元一次不等式.【学习难点】理解一次函数与一元一次方程、一元一次不等式之间的关系.情景导入生成问题1.已知直线经过点A(2,4)和点B(0,-2),那么这条直线的解析式是( )A.y=-2x+3B.y=3x-2C.y=-3x+2 D.y=2x-32.一个y关于x的函数同时满足两个条件:①图象过点(2,1);②当x>0时,y随x 的增大而减小,这个函数的解析式为(写出一个即可)自学互研生成能力一.阅读教材P96思考,完成下列内容:1.一元一次方程kx+b=0的解就是一次函数的图象与轴交点的坐标.2.已知一次函数y=ax+3与x轴的交点的横坐标为-4,则一元一次方程ax+3=0的解为.二.合作探究一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0 D.x=3归纳:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=kx+b,确定它与x轴的交点的横坐标的值.三.自主探究阅读教材P96思考,完成下列问题:1.一次函数与一元一次不等式的关系:一元一次不等式kx+b>0(或kx+b<0)的解集,就是一次函数的图象在x轴方(或方)相应的自变量x的取值范围.2.已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b≤0的解集是.四.合作探究对照图象,请回答下列问题:(1)当x取何值时,2x-5=-x+1?(2)当x取何值时,2x-5>-x+1?(3)当x取何值时,2x-5<-x+1?解:(1)由图象可知,直线y=2x-5与直线y=-x+1的交点的横坐标是,所以当x取时,2x-5=-x+1;(2)由图象可知,当时,直线y=2x-5落在直线y=-x+1的上方,即2x-5>-x+1;(3)由图象可知,当时,直线y=2x-5落在直线y=-x+1的下方,即2x-5<-x+1.五.合作探究A、B两城相距600 km,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车行驶过程中,y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时,两车相遇,求乙车车速.解:(1)(2)交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.检测反馈达成目标一.当堂检测1.一次函数y=2x-4的图象与x轴的交点坐标为(2,0),则一元一次不等式2x-4≤0的解集应是( )A.x≤2 B.x<2 C.x≥2 D.x>22.函数y=kx+b,当x>5时,y<0;当x<5时,y>0,则y=kx+b的图象必经过点( ) A.(0,5) B.(5,0) C.(-5,0) D.(0,-5)3.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围为.二课后检测见《长江作业》课后反思查漏补缺1.我的收获:------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- 2.我的困惑:------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------。

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。

怎样教“用函数的观点看方程(组)与不等式”

怎样教“用函数的观点看方程(组)与不等式”

怎样教“用函数的观点看方程(组)与不等式”?作者:向利平曾辉来源:《湖南教育·下》2012年第01期人教版初中教材用三个课时的篇幅安排了“用函数的观点看方程(组)与不等式”的内容。

该教学内容的安排,有利于学生进一步体会函数的价值,整体上理解方程、不等式与函数的联系,构建统一的知识体系。

但一些老师由于没能很好地领会教材安排这一教学内容的意图,对本教学内容的教育价值理解不够,在教学该内容时,把目标仅定位在“估计方程、不等式解”的结果上,而对学习“用函数的观点看方程(组)与不等式”的必要性渗透不够,对估计解的过程及过程中隐含的数学思想和方法挖掘、提炼不够,致使实际操作中往往是蜻蜒点水、草草收场,给习题课让路。

本文试图从“教学内容分析”、“教学难点分析”两个方面阐述该教学内容的地位和作用,通过具体的教学案例说明该教学内容应该教什么和怎么教,以求引发更深层次的思考:在数学教学中,除了知识和技能以外,我们还应该教给学生些什么?一、教学内容分析看似简单的教学内容实际上蕴含丰富的教育价值。

“用函数的观点看方程(组)与不等式”这一教学内容从函数的角度对学过的一元一次方程、一元一次不等式和二元一次方程组重新进行了分析。

这种认识不是原来水平上的回顾与复习,而是站在更高的起点上的动态分析,用函数把三个不同的数学模型有机地结合和统一起来。

揭示三个不同数学模型间的内在联系,有利于学生从整体上把握数学知识间的联系,体会数学知识、研究方法的发展过程,进而提高学生的数学素养。

用函数的观点看方程(组)与不等式,实质上就是借助函数的图像(几何图形)研究方程(组)的解和不等式的解集。

这一教学内容是渗透数形结合思想、使学生体会数学的和谐美等方面很好的教学素材。

用函数的观点看方程(组)与不等式是后续学习用二次函数的观点看一元二次方程,高中阶段函数的零点、二分法求方程的近似解、一元二次不等式的解法、线性规划、曲线与方程等内容的基础。

初二上册数学知识点总结归纳

初二上册数学知识点总结归纳

初二上册数学知识点总结归纳初二上册数学知识点总结第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c 分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。

那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学-用函数的观点看方程(组)与不等式当k <0时,不等式kx b +>0的解集为bx k<-,不等式kx b +<0的解集为b x k >-.4、一次函数与二元一次方程(组)的关系.每个二元一次方程都对应一个一次函数,也对应一条直线,同样每个二元一次方程组都对应两个一次函数,也对应两条直线,从“形”的角度看,解方程组相当于确定两条直线交点的坐标.上述关系可以用下表来分析:二元一次方程 一次函数解析式0ax by c ++=解析式(0)a cy x ab b b=--≠ 方程的解x my n=⎧⎨=⎩图像上点的坐标(m ,n )m ,n 表示数(m ,n )表示平面内一个点典型例题:例1: 甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法: (1)他们都骑行了20km; (2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度. 根据图象信息,以上说法正确的有 A.1个 B.2个 C.3个 D.4个例2: 如图,OA ,BA 分别表示甲、乙两名学生运动的一次函数图象,图 中s 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的 速度每秒快多少?例3: 乘坐益阳市某种出租汽车.当行驶 路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.(1)请你求出x≥2时乘车费用y(元)与行驶路程x(千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x的范围.例4:如图,点的坐标分别为(0,1),(,0),(1,0),设点与三点构成平行四边形.(1)写出所有符合条件的点的坐标;(2)选择(1)中的一点,求直线的解析式.例5:如图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接..写出点的坐标.例6:2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x (小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2分)(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定.(4分)练习:1.一次函数y=2x+3与y=2x-3的图象的位置关系是,即交点(填“有”或“没有”),由此可知230230x yx y-+=⎧⎨--=⎩,的解的情况是.2.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是.3.一次函数y=(3m-1)x-m中,y随x的增大而减小,且其图象不经过第一象限,则m的取值范围是.4.一次函数y=-2x+4与x轴的交点坐标为,与y轴的交点坐标是.5.一次函数y=x-2与y=2x-1的图象交点的坐标为,即x= ,y= 是方程组的解.6.当x=2时,函数y=kx-2与y=2x+k的值相等,则k=.7.已知一次函数y=kx+b的图象如图所示,由图象可知,方程kx+b=0的解为,不等式kx+b>0的解集为.8.直线132y x=--与直线y=3x+b都经过y轴上同一点,则b的值是.9.以方程x+y=5的解为坐标的所有点组成的图形是直线()A.y=x-5 B.y=x+5 C.y=5-x D.y=-x-510.如图4所示,直线y=kx+b与x轴交于点(-4,0),则y>0时,x的取值范围是()22.快教学手段的现代化,某校计划购置一批电脑,已知甲公司的报价是每台5800元,优惠条件是购买10台以上,则从第11台开始按报价的70%计算;乙公司的报价也是每台5800元,优惠条件是每台均按报价的85%计算.假如你是学校有关方面负责人,在电脑品牌、质量、售后服务等完全相同的前提下,你如何选择?请说明理由?23,在购买某场足球赛门票时,设购买门票数为(张),总费用为(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,与的函数关系式为;方案二中,当时,与的函数关系式为;当时,与的函数关系式为;(2)如果购买本场足球赛超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.24.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8∶00~12∶00,下午14∶00~18∶00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品件数(件)生产乙产品件数(件)所用总时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元. 根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分? (2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?课后作业: 1.如图,直线对应的函数表达式是( )A.y=-23x+3B. y=23x+3C. y=-32x+3D. y=32x+32.如图是某工程队在“村村通”工程中,修筑的公路长度(米)与时间(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是______米.3.网络时代的到来,很多家庭都接入了网络,电信局规定了拨号上网的两种收费方式,用户可以任选其一:A 计时制:0.05元/分;B 包月制:54元/月.此外,每一种上网方式都得加收通信费0.02元/分. 小强家也想上网,在上网时间相等的条件下,请你帮他算一算选择哪种方式上网更省钱?A32y xOB2)若乙公司优惠:则10×5800+5800(x-10)×70%>5800×85% x解得: x<303)若两公司一样优惠:则10×5800+5800(x-10)×70%=5800×85% x解得: x=30答:购置电脑少于30台时选乙公司较优惠,购置电脑正好30台时两公司随便选哪家,购置电脑多于30台时选甲公司较优惠,23.解:(1) 方案一: y=60x+10000 ;当0≤x≤100时,y=100x ;当x>100时,y=80x+2000 ;(2)因为方案一y与x的函数关系式为y=60x+10000,∵x>100,方案二的y与x的函数关系式为y=80x+2000;当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3) 设甲、乙单位购买本次足球赛门票数分别为a张、b张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:b≤100或b>100.当b≤100时,乙公司购买本次足球赛门票费为100b,解得不符合题意,舍去;当b>100时,乙公司购买本次足球赛门票费为80b+2000,解得符合题意答:甲、乙单位购买本次足球赛门票分别为500张、200张.24.解:(1)设小王每生产一件甲种产品用x分,每生产一件乙种产品用y分,由题意得:解得:答:小王每生产一件甲种产品,每生产一件乙种产品分别15分和20分.(2)小王一月的工作时间:〔(12-8)×60+(16-14)×60〕×25=9000(分) 设每月生产甲种产品x 件,则生产乙种产品件.设该月的收入为y 元,则因为k=-0.6<0,所以y 随x 的增大而减小,当x 取最小值60时,y 取到最大值。

此时y= -0.6×60+1260=1224当x=60时,, 所以此时生产甲、乙两种产品各60、405件.课后作业:1.答案:A2.答案:5043.当每个月上网时间在18小时以下时,应选计时制;当每个月上网时间在18小时以上时,应选包月制;当每个月上网时间是18个小时时,两种上网方式都一样.4.(1)41k -<<.(2)直线26x y -=与y 轴的交点为(03)-,. 直线31x y +=与y 轴的交点为103⎛⎫ ⎪⎝⎭,,它们的交点为(41)-,. 所以112043233S ⎛⎫=⨯⨯+= ⎪⎝⎭△ 5(1)53600y x =+.x 可取40或41或42或43或44.(2)生产M 型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

相关文档
最新文档